• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    晚二叠世全球海洋生态系统逐步坍塌与缺氧的可能联系

    何卫红 吴攸攸 张克信 铃木纪毅 肖异凡 杨廷禄 吴琛 黄亚飞

    何卫红, 吴攸攸, 张克信, 铃木纪毅, 肖异凡, 杨廷禄, 吴琛, 黄亚飞, 2025. 晚二叠世全球海洋生态系统逐步坍塌与缺氧的可能联系. 地球科学, 50(3): 983-999. doi: 10.3799/dqkx.2024.140
    引用本文: 何卫红, 吴攸攸, 张克信, 铃木纪毅, 肖异凡, 杨廷禄, 吴琛, 黄亚飞, 2025. 晚二叠世全球海洋生态系统逐步坍塌与缺氧的可能联系. 地球科学, 50(3): 983-999. doi: 10.3799/dqkx.2024.140
    He Weihong, Wu Youyou, Zhang Kexin, Suzuki Noritoshi, Xiao Yifan, Yang Tinglu, Wu Chen, Huang Yafei, 2025. Gradual Collapse of Global Marine Ecosystem in the Late Permian and Its Link to the Anoxia. Earth Science, 50(3): 983-999. doi: 10.3799/dqkx.2024.140
    Citation: He Weihong, Wu Youyou, Zhang Kexin, Suzuki Noritoshi, Xiao Yifan, Yang Tinglu, Wu Chen, Huang Yafei, 2025. Gradual Collapse of Global Marine Ecosystem in the Late Permian and Its Link to the Anoxia. Earth Science, 50(3): 983-999. doi: 10.3799/dqkx.2024.140

    晚二叠世全球海洋生态系统逐步坍塌与缺氧的可能联系

    doi: 10.3799/dqkx.2024.140
    基金项目: 

    国家自然科学基金项目 42230205

    国家自然科学基金项目 42172012

    国家自然科学基金项目 41772016

    中国地质调查局项目 1212011220529

    中国地质调查局项目 DD20221645

    详细信息
      作者简介:

      何卫红(1971-),女,教授,主要从事古生物学与地层学研究. ORCID:0000-0003-1703-8833. E-mail:whzhang@cug.edu.cn

    • 中图分类号: P52

    Gradual Collapse of Global Marine Ecosystem in the Late Permian and Its Link to the Anoxia

    • 摘要: 一般认为二叠纪末生物大灭绝持续的时间为3~6万年.然而,越来越多的研究显示在生物灭绝高峰期到来之前存在着环境危机预警信号,但相关研究仍然较少.本文聚焦于大灭绝全过程,包括灭绝高峰期到来之前、灭绝高峰期以及大灭绝之后残存期生物与环境的变化,揭示海洋生态系统坍塌的过程.通过对全球30个海相剖面的化石和古环境记录综合研究,结果表明:(1)深水环境(包括远洋环境、深水陆架、深水盆地和台地边缘斜坡)生态系统衰退发生较早,浅水环境(包括浅水碳酸盐台地、礁和浅水陆架)生态系统衰退发生较晚;(2)浮游生态系统的衰退早于底栖生态系统的衰退.全球海洋生态系统衰退的这种时空差异与最小含氧带(OMZ)的形成及扩展,并导致缺氧有关.

       

    • 图  1  全球晚二叠世古地理与研究剖面的分布

      全球古地理图根据http://www.scotese.com;华南古地理图根据He et al.2023);黑五角星标注为代表性剖面;黄五角星标注为参考剖面.a. 华南以外的研究剖面及其古地理位置:①挪威Spitsbergen;②意大利Western Dolomites;③巴基斯坦Salt Range;④中国西藏色龙;⑤克什米尔地区Guryul Ravine;⑥中国西藏土隆;⑦阿曼;⑧西伯利亚Kuznetsk Basin;⑨加拿大北极West Blind Fiord;⑩澳大利亚悉尼盆地;11新西兰Island Bay of Waiheke Island;12日本.b. 华南研究剖面及其古地理分布:1. 浅海碳酸盐台地;2. 陆相;3. 近岸浅海碎屑岩陆架;4. 孤立碳酸盐台地;5. 深水硅质岩盆地(半深海及以下);6. 浅海硅质岩局限盆地;7. 古陆;8. 水下隆起;9. 古特提斯洋俯冲;10. 裂谷盆地;11. 礁和微生物岩相;12. 古地理方向.剖面代号含义:SS. Shangsi,四川广元上寺;YDZ. Yudongzi,四川江油鱼洞子;LLD. Laolongdong,重庆老龙洞;LFY. Liangfengya,重庆凉风垭;RCP. Rencunping,湖南桑植仁村坪;DXK. Daxiakou,湖北兴山大峡口;CL. Cili,湖南慈利;CB. Chibi,湖北赤壁;MJS. Majiashan,安徽巢湖马家山;MS. Meishan,浙江长兴煤山;HZS. Huangzhishan,浙江湖州黄芝山;YG. Yangou,江西沿沟;CH. Chahe,贵州威宁岔河;ZZ. Zhongzhai,贵州六枝中寨;KJ. Kejiao,贵州惠水克脚;DJ. Dajiang,贵州罗甸打讲;ZD. Zuodeng,广西田东作登;DP. Dongpan,广西扶绥东攀

      Fig.  1.  Late Permian global palaeogeography and localities of studied sections

      图  2  华南长兴期古地理与研究剖面位置及地层对比

      a.华南研究剖面长兴期的古地理; b.华南研究剖面二叠系-三叠系界线附近地层划分与对比,依据见表 1参考文献或者He et al.(2025)的附件材料

      Fig.  2.  Changhsingian palaeogeographic localities and stratigraphic correlation for studied sections of South China

      图  3  全球不同古地理环境中代表性剖面生物灭绝的层位及灭绝率(基于10个代表性剖面)

      剖面原始资料来源: 凉风垭.腕足类参考沈树忠和何锡麟(1991),有孔虫参考Liu et al.2020).慈利.有孔虫和蜓参考杨利蓉等(2013).黄芝山.腕足类参考Heet al.(2015), 有孔虫参考Chen etal. (2009).煤山.腕足类参考He et al.(2015, 2023): 有孔虫参考Song et al.(2009): 放射虫参考Heet al.(2005).上寺.有孔虫参考Liu et al.(2020): 放射虫在聂小妹等(2012)基础上补充(根据课题组最近的工作).仁村坪.腕足类参考He et al.(2015, 2019): 放射虫参考Xiao et al.(2024).克脚.腕足类和放射虫根据Wang el al.(2023).东攀.腕足类根据He et al.(2019): 放射虫参考Feng et al.,2007), He et al.(2024).日本Nf1212.放射虫参考Sano et al.(2010).北极加拿大.硅质海绵参考Algeo el al.(2012).本图各剖面生物灭绝层位及灭绝率分析过程见He el al.(2025)的附件材料.岩性符号含义: (1).泥岩: (2).钙质泥岩: (3)碳质泥岩: (4).钙质碳质泥岩: (5).硅质泥岩: (6).碳质硅质泥岩: (7).碳质锰质泥岩: (8).钙质硅质泥岩: (9).含凝灰质泥岩: 10).含凝灰质钙质泥岩: (1).含凝灰质硅质泥岩; (12).含凝灰质粉砂质泥岩; (13).碳质页岩; (14).页岩; (15).粉砂岩; (16).粉砂质泥岩; (17).泥质粉砂岩; (18).含粉砂质钙质泥岩; (19).燧石条带; (20).燧石; ((21).碳质硅质岩; (22).微生物岩;(23).灰岩: (24).泥质灰岩: (25).含燧石团块泥质灰岩: (26).含燧石团块灰岩: (27).生物碎屑灰岩;(28).含燧石团块生物碎屑灰岩; (29).鲕状灰岩; (30).蠕虫状灰岩; (31).硅质灰岩; (32).碳质灰岩; (33).藻灰岩; (34).硅质锰质灰岩; (35).含硅的泥质灰岩; (36).含凝灰质泥质灰岩; (37).黄铁矿; (38).火山粘土; (39).铁质泥岩

      Fig.  3.  Columnar Permian-Triassic sections showing extinction horizons/intervals and/or extinction rates of different taxa in varied water depths from pelagic setting, deep-water basin, moderately deep-water slope to shallow-water facies (based on 10 representative sections)

      图  4  全球不同古地理环境中浮游生物‒底栖生物灭绝时间的对比

      华南研究剖面的地层对比根据图 2;其他地区的地层对比根据He et al. (2025)的附件材料.生物灭绝时间的数据来源:中国华南凉风垭、慈利、黄芝山、煤山、上寺、仁村坪、克脚以及东攀剖面,日本和加拿大北极剖面根据图 3;中国中寨根据Zhang et al.2015)、He et al.2023);阿曼根据Clarkson et al.2016);挪威根据Nabbefeld et al.2010)、Zuchuat et al.2020)、Rodríguez-Tovar et al.2021);意大利根据Posenato(2009, 2019);巴基斯坦、中国西藏色龙根据Shen et al.2006);克什米尔地区、中国西藏土隆根据Shen et al.2006

      Fig.  4.  Comparison of extinction timing between planktons and benthos across shallow to deep waters

      图  5  全球不同古水深环境浮游生物‒底栖生物灭绝时间的对比和总结

      部分图例解释参考图 4]

      Fig.  5.  Summary and comparison of extinction timings across shallow water, moderately deep water to deep water settings

      图  6  最小含氧带OMZ的形成与扩展对生态系统坍塌的影响

      a. Stage Ⅰ,OMZ形成导致深水浮游生物灭绝;b. Stage Ⅱ,OMZ向下扩展导致深水底栖生态系统坍塌;c. Stages Ⅲ和Ⅳ,OMZ继续向下和向上扩展导致深水和浅水生态系统倒塌

      Fig.  6.  Formation/expansion of the OMZ and its influence on the marine ecosystem collapse

      表  1  研究剖面古水深相关信息及文献来源

      Table  1.   Summary of studied sections, including details of palaeogeographic setting (palaeo-water depths) and source of published information for each chosen section

      序号 剖面名称 地区 代表性剖面重点研究内容 古纬度/
      古经度
      二叠系‒三叠系界线附近地层古水深证据 古水深 作为研究剖面的原因 参考文献
      1 中寨 中国
      华南
      14°20′45″S
      105°23′47″E
      粉砂质泥岩、泥岩;
      含大量腕足类(近岸)
      浅水 < 50 m 腕足类研究详细(但界线附近有疑问); 有关键层位的地层划分与对比 Shen et al., 2011; Zhang et al., 2015; He et al., 2023
      2* 慈利 生物灭绝, 氧化‒还原环境 10°22′07″S
      109°54′13″E
      生物碎屑灰岩;
      微生物岩(礁)
      化石和氧化‒还原环境(草莓状黄铁矿)研究详细;
      有关键层位的地层划分与对比
      王钦贤等, 2009;
      杨利蓉等, 2013;
      廖卫, 2020
      3* 鱼洞子 氧化‒还原环境 8°18′S
      104°32′E
      生物碎屑灰岩;
      微生物岩(礁)
      氧化‒还原环境(Ce异常)研究详细; 有关键层位的地层划分与对比 方宇恒, 2021
      4* 老龙洞 氧化‒还原环境 8°47′56″S
      114°39′59″E
      生物碎屑灰岩;
      微生物岩(礁)
      化石和氧化‒还原环境(草莓状黄铁矿)研究详细;
      有关键层位的地层划分与对比
      Huang et al., 2022
      5* 打讲 氧化‒还原环境 14°45′54″S
      106°44′15″E
      生物碎屑灰岩;
      微生物岩(礁)
      化石和氧化‒还原环境(草莓状黄铁矿)研究详细;
      有关键层位的地层划分与对比
      Song et al., 2009; Jiang et al., 2014; Liao et al., 2017
      6* 作登 氧化‒还原环境 16°49′03″S
      107°21′39″E
      生物碎屑灰岩;
      微生物岩(礁)
      化石和氧化‒还原环境(Ce异常)研究详细;
      有关键层位的地层划分与对比
      Wan et al., 2019; He et al., 2023;
      廖卫, 2020
      7* 黄芝山 生物灭绝, 氧化‒还原环境 7°04′36″S
      117°17′15″E
      生物碎屑灰岩、泥质灰岩(台地) 化石和氧化‒还原环境(草莓状黄铁矿)研究详细;
      有关键层位的地层划分与对比
      陈军等,2008Chen et al., 2009; He et al., 2015
      8* 沿沟 氧化‒还原环境 9°20′55″S
      115°31′43″E
      生物碎屑灰岩(台地) 化石和氧化‒还原环境(Ce异常)研究详细;
      有关键层位的地层划分与对比
      田力等, 2014;
      Li et al., 2017;
      Qiu et al., 2019
      9* 凉风垭 生物灭绝, 氧化‒还原环境 10°53′39″S
      105°57′44″E
      生物碎屑灰岩、泥质灰岩(台地) 化石和氧化‒还原环境(草莓状黄铁矿)研究详细;
      有关键层位的地层划分与对比
      沈树忠和何锡麟, 1991; 李国山, 2016; 袁东勋和沈树忠, 2011;
      Liu et al., 2020
      10* 煤山 生物灭绝, 氧化‒还原环境 6°59′29″S
      117°00′30″E
      生物碎屑灰岩, 硅质岩; 丘状交错层理; 球形放射虫(斜坡) 中等深水50~200 m 化石和氧化‒还原环境(草莓状黄铁矿)研究详细;
      有关键层位的地层划分与对比
      Song et al., 2009; Shen et al., 2011; Yuan et al., 2014; Li et al., 2016; He et al., 2023
      11* 上寺 生物灭绝, 氧化‒还原环境 8°12′15″S
      104°46′55″E
      生物碎屑灰岩, 硅质岩; 鲍玛序列; 深水放射虫(La. and Al.)(斜坡) 化石和氧化‒还原环境(草莓状黄铁矿)研究详细;
      有关键层位的地层划分与对比
      Yuan et al., 2019; Zhang et al., 2020; Liu et al., 2020; He et al., 2025
      12* 赤壁 氧化‒还原环境 9°34′28″S
      112°25′13″E
      生物碎屑灰岩, 硅质岩; 钙质角砾; 球形放射虫(斜坡) 化石和氧化‒还原环境(草莓状黄铁矿)研究详细;
      有关键层位的地层划分与对比
      李国山, 2016; Yang et al., 2022; He et al., 2025
      13* 大峡口 氧化‒还原环境 8°41′53″S
      109°30′45″E
      碳质灰岩, 碳质泥岩; 小有孔虫(盆地) 深水 > 200 m 化石和氧化‒还原环境(草莓状黄铁矿)研究详细;
      有关键层位的地层划分与对比
      Zhao et al., 2013; Shen et al., 2016; Zhang and Gu, 2015
      14* 马家山 氧化‒还原环境 4°39′42″S
      114°10′16″E
      硅质泥岩, 碳质泥岩; 深水放射虫(La.)(盆地) 化石和氧化‒还原环境(草莓状黄铁矿)研究详细;
      有关键层位的地层划分与对比
      方宇恒, 2021;
      He et al., 2023
      15* 克脚 生物灭绝, 氧化‒还原环境 14°31′18″S
      106°35′26″E
      硅质泥岩, 碳质泥岩; 深水放射虫
      (La. and Al.)(盆地)
      化石和氧化‒还原环境(草莓状黄铁矿)研究详细;
      有关键层位的地层划分与对比
      Wang et al., 2023
      16* 仁村坪 生物灭绝 10°19′32″S
      109°10′60″E
      硅质泥岩, 硅质灰岩, 钙质泥岩;
      深水放射虫
      (La. and Al.)(盆地)
      化石研究详细;
      有关键层位的地层划分与对比
      He et al., 2015, 2019, 2023;
      Xiao et al., 2024
      17* 东攀 生物灭绝, 氧化‒还原环境 17°53′28″S
      108°12′41″E
      硅质泥岩, 燧石;
      深水放射虫
      (La. and Al.)(盆地)
      化石和氧化‒还原环境(Ce异常)研究详细;
      有关键层位的地层划分与对比
      Feng et al., 2007; Shen et al., 2012; Baresel et al., 2017; He et al., 2023
      18 Western Dolomites (②) 意大利 12°45′N
      36°15′E
      生物碎屑灰岩、鲕状灰岩(浅水陆架) 浅水 < 50 m 化石和氧化‒还原环境初步研究;
      有地层时代对比
      Posenato, 2009, 2019
      19* Nf1212 日本⑫ 生物灭绝 2°06′N
      131°56′E
      燧石; 深水放射虫(La. and Al.)(远洋) 深水 > 500 m 放射虫研究详细;
      有关键层位的地层划分与对比
      Sano et al., 2010, 2012
      20 Sasayama- Kinkazan-Tenjinmaru
      复合剖面
      1°48′N
      130°48′E
      燧石; 深水放射虫(La. and Al.)(远洋) 氧化‒还原环境和地层时代有初步研究 Kajiwara et al., 1993a, 1993b; Kato et al., 2002
      21* Akkamori 氧化‒还原环境 4°23′N
      137°04′E
      燧石; 深水放射虫(La. and Al.)(远洋) 氧化‒还原环境和关键层位的地层时代研究较详细 Takahashi et al., 2021
      22 Salt Range (③) 巴基斯坦 35°S
      55°E
      灰岩, 粉砂质泥岩;
      大个体腕足类(浅水陆架)
      浅水 < 50 m 腕足类详细研究;
      有关键层位的地层时代对比
      Shen et al., 2006
      23 Selong (④) 中国西藏 47°01′S
      53°38′E
      灰岩, 白云岩; 大个体腕足类(浅水陆架) 腕足类详细研究;
      有关键层位的地层时代对比
      Shen et al., 2006
      24 Site 1 (⑦1) 阿曼 53°06′58″N
      22°17′37″E
      灰岩, 白云岩;
      珊瑚, 有孔虫(台地)
      有初步遗迹化石和地层时代研究;
      氧化‒还原环境研究详细
      Clarkson et al., 2016
      25 Guryul Ravine(⑤) 克什米尔地区 36°S
      56°E
      灰岩, 页岩;
      腕足类(深水陆架)
      深水 > 200 m 腕足类和氧化‒还原环境(Ce异常)研究详细; 有地层时代对比 Shen et al., 2006; Algeo et al., 2007
      26 Tulong (⑥) 中国西藏 47°33′S
      53°29′E
      泥质灰岩, 页岩, 砂岩; 腕足类(深水陆架) 腕足类详细研究; 地层时代有初步研究 Shen et al., 2006
      27 Site 6 (⑦2) 阿曼 52°52′34″N
      21°47′37″E
      硅质泥岩, 页岩;
      水平层理(盆地)
      氧化‒还原环境研究
      详细;地层时代有初步研究
      Clarkson et al., 2016
      28 Spitsbergen (①) 挪威 54°44′06″N
      22°58′06″E
      海绿石砂岩, 泥岩(浅水陆架) 浅水 < 50 m 氧化‒还原环境研究
      详细;有关键层位的地层时代对比
      Nabbefeld et al., 2010; Zuchuat et al., 2020; Rodríguez-Tovar et al., 2021
      29* Island Bay of Waiheke Island (⑪) 新西兰 氧化‒还原环境 86°21′26″S
      163°09′34″E
      燧石, 硅质泥岩; 放射虫; 水平层理(远洋) 深水 > 500 m 氧化‒还原环境(草莓状黄铁矿)研究详细;有关键层位的地层时代研究 Grasby et al., 2021
      30* West Blind Fiord (⑨WBF) 加拿大北极 生物灭绝 63°N
      42°E
      燧石, 硅质泥岩; 硅质海绵(远洋) 化石和关键层位的地层时代研究较详细 Algeo et al., 2012
      注:*代表性剖面(之所以被选为代表性剖面的理由见本表第4栏“代表性剖面重点研究内容”,即在生物灭绝或者氧化‒还原环境研究方面基础较好); ①为剖面编号,与图 1a一致; La. Latentifistularia十字多囊虫目, Al. Albaillellaria阿尔拜虫目(这两个目为深水分子,一般阿尔拜虫生活于200 m以下的深水环境,十字多囊虫生活于100~150 m水深以下,见He et al., 2024).
      下载: 导出CSV
    • Algeo, T. J., Hannigan, R., Rowe, H., et al., 2007. Sequencing Events across the Permian‒Triassic Boundary, Guryul Ravine (Kashmir, India). Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 328-346. https://doi.org/10.1016/j.palaeo.2006.11.050
      Algeo, T. J., Henderson, C. M., Ellwood, B., et al., 2012. Evidence for a Diachronous Late Permian Marine Crisis from the Canadian Arctic Region. Geological Society of America Bulletin, 124(9-10): 1424-1448. https://doi.org/10.1130/B30505.1
      Algeo, T. J., Kuwahara, K., Sano, H., et al., 2011. Spatial Variation in Sediment Fluxes, Redox Conditions, and Productivity in the Permian‒Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 65-83. https://doi.org/10.1016/j.palaeo.2010.07.007
      Baresel, B., Bucher, H., Bagherpour, B., et al., 2017. Timing of Global Regression and Microbial Bloom Linked with the Permian‒Triassic Boundary Mass Extinction: Implications for Driving Mechanisms. Scientific Reports, 7: 43630. https://doi.org/10.1038/srep43630
      Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High‒Precision Timeline for Earth's Most Severe Extinction. Proceedings of the National Academy of Sciences, 111(9): 3316-3321. https://doi.org/10.1073/pnas.1317692111
      Burgess, S. D., Muirhead, J. D., Bowring, S. A., 2017. Initial Pulse of Siberian Traps Sills as the Trigger of the End‒Permian Mass Extinction. Nature Communications, 8: 164. https://doi.org/10.1038/s41467‒017‒00083‒9
      Chen, J. B., Zhou, Y. L., Liu, W. J., et al., 2024. Spatiotemporal Disparity of Volcanogenic Mercury Records in the Southwestern Neo‒Tethys Ocean during the Permian‒Triassic Transition. Global and Planetary Change, 240: 104534. https://doi.org/10.1016/j.gloplacha.2024.104534
      Chen, J., Henderson, C. M., Shen, S. Z., 2008. Conodont Succession around the Permian‒Triassic Boundary at the Huangzhishan Section, Zhejiang and Its Stratigraphic Correlation. Acta Palaeontologica Sinica, 47(1): 91-114 (in English with Chinese abstract).
      Chen, Z. Q., Tong, J. N., Zhang, K. X., et al., 2009. Environmental and Biotic Turnover across the Permian‒Triassic Boundary on a Shallow Carbonate Platform in Western Zhejiang, South China. Australian Journal of Earth Sciences, 56(6): 775-797. https://doi.org/10.1080/08120090903002607
      Clarkson, M. O., Wood, R. A., Poulton, S. W., et al., 2016. Dynamic Anoxic Ferruginous Conditions during the End‒Permian Mass Extinction and Recovery. Nature Communications, 7: 12236. https://doi.org/10.1038/ncomms12236
      Davydov, V. I., Karasev, E. V., Nurgalieva, N. G., et al., 2021. Climate and Biotic Evolution during the Permian‒Triassic Transition in the Temperate Northern Hemisphere, Kuznetsk Basin, Siberia, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology, 573: 110432. https://doi.org/10.1016/j.palaeo.2021.110432
      Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High‒Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953
      Fang, Y. H., 2021. Late Permian to Early Triassic Redox Variations of South China and Unusual Biosedimentary Responses (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Fang, Z. Y., He, X. Q., Zhang, G. J., et al., 2021. Ocean Redox Changes from the Latest Permian to Early Triassic Recorded by Chromium Isotopes. Earth and Planetary Science Letters, 570: 117050. https://doi.org/10.1016/j.epsl.2021.117050
      Feng, Q. L., He, W. H., Gu, S. Z., et al., 2007. Radiolarian Evolution during the Latest Permian in South China. Global and Planetary Change, 55(1-3): 177-192. https://doi.org/10.1016/j.gloplacha.2006.06.012
      Fielding, C. R., Frank, T. D., McLoughlin, S., et al., 2019. Age and Pattern of the Southern High‒Latitude Continental End‒Permian Extinction Constrained by Multiproxy Analysis. Nature Communications, 10: 385. https://doi.org/10.1038/s41467‒018‒07934‒z
      Grasby, S. E., Bond, D. P. G., Wignall, P. B., et al., 2021. Transient Permian‒Triassic Euxinia in the Southern Panthalassa Deep Ocean. Geology, 49 (8): 889-893. https://doi.org/10.1130/g48928.1
      He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U‒Pb Dating of Silicic Ignimbrites, Post‒Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3-4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021
      He, W. H., Feng, Q. L., Gu, S. Z., et al., 2005. Changxingian (Upper Permian) Radiolarian Fauna from Meishan D Section, Changxing, Zhejiang, China, and Its Possible Paleoecological Significance. Journal of Paleontology, 79(2): 209-218. https://doi.org/10.1666/0022‒3360(2005)0790209: cuprff>2.0.co;2 doi: 10.1666/0022‒3360(2005)0790209:cuprff>2.0.co;2
      He, W. H., Shi, G. R., Twitchett, R. J., et al., 2015. Late Permian Marine Ecosystem Collapse Began in Deeper Waters: Evidence from Brachiopod Diversity and Body Size Changes. Geobiology, 13(2): 123-138. https://doi.org/10.1111/gbi.12119
      He, W. H., Shi, G. R., Yu, J. X., et al., 2023. Stratigraphy around the Permian‒Triassic Boundary of South China. Springer, Singapore. https://doi.org/10.1007/978‒981‒99‒9350‒5
      He, W. H., Shi, G. R., Zhang, K. X., et al., 2019. Brachiopods around the Permian‒Triassic Boundary of South China. Springer, Singapore. https://doi.org/10.1007/978‒981‒13‒1041‒6
      He, W. H., Shi, G. R., Zhang, K. X., et al., 2025. The Deterioration and Collapse of Late Permian Marine Ecosystems and the End‒Permian Mass Extinction: A Global View. Earth‒Science Reviews, 261: 104971. https://doi.org/10.1016/j.earscirev.2024.104971
      He, W. H., Weldon, E. A., Yang, T. L., et al., 2024. An End‒Permian Two‒Stage Extinction Pattern in the Deep‒Water Dongpan Section, and Its Relationship to the Migration and Vertical Expansion of the Oxygen Minimum Zone in the South China Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 649: 112307. https://doi.org/10.1016/j.palaeo.2024.112307
      He, W. H., Zhang, Y., Zhang, Q., et al., 2011. A Latest Permian Radiolarian Fauna from Hushan, South China, and Its Geological Implications. Alcheringa: An Australasian Journal of Palaeontology, 35(4): 471-496. https://doi.org/10.1080/03115518.2010.536649
      Huang, Y. F., He, W. H., Liao, W., et al., 2022. Two Pulses of Increasing Terrestrial Input to Marine Environment during the Permian‒Triassic Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 586: 110753. https://doi.org/10.1016/j.palaeo.2021.110753
      Jiang, H. S., Lai, X. L., Sun, Y. D., et al., 2014. Permian‒Triassic Conodonts from Dajiang (Guizhou, South China) and Their Implication for the Age of Microbialite Deposition in the Aftermath of the End‒Permian Mass Extinction. Journal of Earth Science, 25(3): 413-430. https://doi.org/10.1007/s12583‒014‒0444‒4
      Jin, Y. G., Wang, Y., Wang, W., et al., 2000. Pattern of Marine Mass Extinction near the Permian‒Triassic Boundary in South China. Science, 289(5478): 432-436. https://doi.org/10.1126/science.289.5478.432
      Joachimski, M. M., Lai, X. L., Shen, S. Z., et al., 2012. Climate Warming in the Latest Permian and the Permian‒Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/G32707.1
      Kajiwara, Y., Ishida, K., Tanikura, Y., et al., 1993a. Sulfur Isotope Data from the Permian‒Triassic Boundary at Sasayama in the Tanba Terrane in Southwestern Honshu, Japan. Annual Report of the Institute of Geoscience, the University of Tsukuba, 19: 67-72.
      Kajiwara, Y., Yamakita, S., Kobayashi, D., et al., 1993b. Sulfur Isotope Data from the Permian‒Triassic Boundary at Tenjinmaru in the Chichibu Terrane in Eastern Shikoku, Japan. Annual Report of the Institute of Geoscience, the University of Tsukuba, 19: 59-66.
      Kato, Y., Nakao, K., Isozaki, Y., 2002. Geochemistry of Late Permian to Early Triassic Pelagic Cherts from Southwest Japan: Implications for an Oceanic Redox Change. Chemical Geology, 182(1): 15-34. https://doi.org/10.1016/S0009‒2541(01)00273‒X
      Li, G. S., 2016. Fluctuations of Redox Conditions and Ecological Responses across the Permian‒Triassic Boundary in Different Paleogeographic Settings of Middle & Lower Yangtze Region (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Li, G. S., Wang, Y. B., Shi, G. R., et al., 2016. Fluctuations of Redox Conditions across the Permian‒Triassic Boundary—New Evidence from the GSSP Section in Meishan of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 48-58. https://doi.org/10.1016/j.palaeo.2015.09.050
      Li, X. G., Song, J. M., Yuan, H. M., et al., 2017. The Oxygen Minimum Zones (OMZs) and Its Eco‒Environmental Effects in Ocean. Marine Sciences, 41(12): 127-138 (in Chinese with English abstract).
      Li, Y., Zhao, L. S., Chen, Z. Q., et al., 2017. Oceanic Environmental Changes on a Shallow Carbonate Platform (Yangou, Jiangxi Province, South China) during the Permian‒Triassic Transition: Evidence from Rare Earth Elements in Conodont Bioapatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 6-16. https://doi.org/10.1016/j.palaeo.2017.02.035
      Liao, W., 2020. Palaeoenvironment Change in Shallow‒ Marine Carbonate Platform across the Permian‒Triassic Boundary in South China and Its Possible Cause (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Liao, W., Bond, D. P. G., Wang, Y. B., et al., 2017. An Extensive Anoxic Event in the Triassic of the South China Block: A Pyrite Framboid Study from Dajiang and Its Implications for the Cause(s) of Oxygen Depletion. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 86-95. https://doi.org/10.1016/j.palaeo.2016.11.012
      Liu, X. K., Song, H. J., Bond, D. P. G., et al., 2020. Migration Controls Extinction and Survival Patterns of Foraminifers during the Permian‒Triassic Crisis in South China. Earth‒Science Reviews, 209: 103329. https://doi.org/10.1016/j.earscirev.2020.103329
      Mays, C., Vajda, V., Frank, T. D., et al., 2020. Refined Permian‒Triassic Floristic Timeline Reveals Early Collapse and Delayed Recovery of South Polar Terrestrial Ecosystems. GSA Bulletin, 132(7-8): 1489-1513. https://doi.org/10.1130/b35355.1
      Nabbefeld, B., Grice, K., Twitchett, R. J., et al., 2010. An Integrated Biomarker, Isotopic and Palaeoenvironmental Study through the Late Permian Event at Lusitaniadalen, Spitsbergen. Earth and Planetary Science Letters, 291(1-4): 84-96. https://doi.org/10.1016/j.epsl.2009.12.053
      Nie, X. M., Lei, Y., Feng, Q. L., et al., 2012. Evolution and Its Control Factors of the Changhsingian Radiolarian Fauna at the Shangsi Section in Jiange County, Guangyuan City, Sichuan Province. Geological Review, 58(5): 809-815 (in English with Chinese abstract).
      Posenato, R., 2009. Survival Patterns of Macrobenthic Marine Assemblages during the End‒Permian Mass Extinction in the Western Tethys (Dolomites, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 280(1-2): 150-167. https://doi.org/10.1016/j.palaeo.2009.06.009
      Posenato, R., 2019. The End‒Permian Mass Extinction (EPME) and the Early Triassic Biotic Recovery in the Western Dolomites (Italy): State of the Art. Bollettino Della Società Paleontologica Italiana, 58(1): 11-34.
      Qiu, X. C., Tian, L., Wu, K., et al., 2019. Diverse Earliest Triassic Ostracod Fauna of the Non‒Microbialite‒ Bearing Shallow Marine Carbonates of the Yangou Section, South China. Lethaia, 52(4): 583-596. https://doi.org/10.1111/let.12332
      Retallack, G. J., 2021. Multiple Permian‒Triassic Life Crises on Land and at Sea. Global and Planetary Change, 198: 103415. https://doi.org/10.1016/j.gloplacha.2020.103415
      Rodríguez‒Tovar, F. J., Dorador, J., Zuchuat, V., et al., 2021. Response of Macrobenthic Trace Maker Community to the End‒Permian Mass Extinction in Central Spitsbergen, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology, 581: 110637. https://doi.org/10.1016/j.palaeo.2021.110637
      Sano, H., Kuwahara, K., Yao, A., et al., 2010. Panthalassan Seamount‒Associated Permian‒Triassic Boundary Siliceous Rocks, Mino Terrane, Central Japan. Paleontological Research, 14(4): 293-314. https://doi.org/10.2517/1342‒8144‒14.4.293
      Sano, H., Wada, T., Naraoka, H., 2012. Late Permian to Early Triassic Environmental Changes in the Panthalassic Ocean: Record from the Seamount‒Associated Deep‒Marine Siliceous Rocks, Central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 363: 1-10. https://doi.org/10.1016/j.palaeo.2012.07.018
      Sashida, K., Sardsud, A., Igo, H., et al., 1998. Occurrence of Dienerian (Lower Triassic) Radiolarians from the Phatthalung Area of Peninsular Thailand and Radiolarian Biostratigraphy around the Permian/Triassic (P/T) Boundary. News of Osaka Micropaleontologists, 11: 59-70.
      Shen, J., Algeo, T. J., Zhou, L., et al., 2012. Volcanic Perturbations of the Marine Environment in South China Preceding the Latest Permian Mass Extinction and Their Biotic Effects. Geobiology, 10(1): 82-103. https://doi.org/10.1111/j.1472‒4669.2011.00306.x
      Shen, J., Chen, J. B., Algeo, T. J., et al., 2019b. Evidence for a Prolonged Permian‒Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10: 1563. https://doi.org/10.1038/s41467‒ 019‒09620‒0 doi: 10.1038/s41467‒019‒09620‒0
      Shen, J., Feng, Q. L., Algeo, T. J., et al., 2016. Two Pulses of Oceanic Environmental Disturbance during the Permian‒Triassic Boundary Crisis. Earth and Planetary Science Letters, 443: 139-152. https://doi.org/10.1016/j.epsl.2016.03.030
      Shen, S. Z., Cao, C. Q., Henderson, C. M., et al., 2006. End‒Permian Mass Extinction Pattern in the Northern Peri‒Gondwanan Region. Palaeoworld, 15(1): 3-30. https://doi.org/10.1016/j.palwor.2006.03.005
      Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End‒Permian Mass Extinction. Science, 334(6061): 1367-1372. https://doi.org/10.1126/science.1213454
      Shen, S. Z., He, X. L., 1991. Changxingian Brachiopod Assemblage Sequence in Zhongliang Hill, Chongqing. Journal of Stratigraphy, 15(3): 189-196 (in Chinese).
      Shen, S. Z., Ramezani, J., Chen, J., et al., 2019a. A Sudden End‒Permian Mass Extinction in South China. GSA Bulletin, 131(1-2): 205-223. https://doi.org/10.1130/b31909.1
      Song, H. J., Tong, J. N., Chen, Z. Q., 2009. Two Episodes of Foraminiferal Extinction near the Permian‒Triassic Boundary at the Meishan Section, South China. Australian Journal of Earth Sciences, 56(6): 765-773. https://doi.org/10.1080/08120090903002599
      Song, H. J., Wignall, P. B., Song, H. Y., et al., 2019. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 30(2): 236-243. https://doi.org/10.1007/s12583‒018‒1002‒2
      Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian‒Triassic Crisis. Nature Geoscience, 6(1): 52-56. https://doi.org/10.1038/ngeo1649
      Song, H. Y., Tong, J. N., Tian, L., et al., 2014. Paleo‒Redox Conditions across the Permian‒Triassic Boundary in Shallow Carbonate Platform of the Nanpanjiang Basin, South China. Science China Earth Sciences, 57(5): 1030-1038. https://doi.org/10.1007/s11430‒014‒4843‒2
      Takahashi, S., Hori, R. S., Yamakita, S., et al., 2021. Progressive Development of Ocean Anoxia in the End‒Permian Pelagic Panthalassa. Global and Planetary Change, 207: 103650. https://doi.org/10.1016/j.gloplacha.2021.103650
      Tian, L., Tong, J. N., Song, H. J., et al., 2014. Foraminferal Evolution and Formation of Oolitic Limestone near Permian‒Triassic Boundary at Yangou Section, Jiangxi Province. Earth Science, 39(11): 1573-1586 (in Chinese with English abstract).
      Vajda, V., McLoughlin, S., Mays, C., et al., 2020. End‒Permian (252 Mya) Deforestation, Wildfires and Flooding: An Ancient Biotic Crisis with Lessons for the Present. Earth and Planetary Science Letters, 529: 115875. https://doi.org/10.1016/j.epsl.2019.115875
      Wan, J. Y., Yuan, A. H., Crasquin, S., et al., 2019. High‒Resolution Variation in Ostracod Assemblages from Microbialites near the Permian‒Triassic Boundary at Zuodeng, Guangxi Region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 535: 109349. https://doi.org/10.1016/j.palaeo.2019.109349
      Wang, H., He, W. H., Xiao, Y. F., et al., 2023. Stagewise Collapse of Biotic Communities and Its Relations to Oxygen Depletion along the North Margin of Nanpanjiang Basin during the Permian‒Triassic Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 621: 111569. https://doi.org/10.1016/j.palaeo.2023.111569
      Wang, Q. X., Tong, J. N., Song, H. J., et al., 2009. Ecosystem Evolution at the Turn of Permian‒Triassic in Kangjiaping Section of Cili, Hunan Province. Science in China (Series D), 39(9): 1239-1247 (in Chinese with English abstract).
      Wang, X. D., Cawood, P. A., Zhao, L. S., et al., 2019. Convergent Continental Margin Volcanic Source for Ash Beds at the Permian‒Triassic Boundary, South China: Constraints from Trace Elements and Hf‒Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 154-165. https://doi.org/10.1016/j.palaeo.2018.02.011
      Wu, B. J., Luo, G. M., Joachimski, M. M., et al., 2022. Carbon and Nitrogen Isotope Evidence for Widespread Presence of Anoxic Intermediate Waters before and during the Permian‒Triassic Mass Extinction. Geological Society of America Bulletin, 134(5-6): 1397-1413. https://doi.org/10.1130/B36005.1
      Wu, Q., Ramezani, J., Zhang, H., et al., 2021. High‒Precision U‒Pb Age Constraints on the Permian Floral Turnovers, Paleoclimate Change, and Tectonics of the North China Block. Geology, 49(6): 677-681. https://doi.org/10.1130/g48051.1
      Wu, Q., Zhang, H., Ramezani, J., et al., 2024. The Terrestrial End‒Permian Mass Extinction in the Paleotropics Postdates the Marine Extinction. Science Advances, 10(5): eadi7284. https://doi.org/10.1126/sciadv.adi7284
      Xiao, Y. F., Wang, K. Y., He, W. H., et al., 2024. Changhsingian (Lopingian, Permian) Radiolarian Paleobiogeography on and around the Yangtze Platform. Palaeoworld, 33(5): 1409-1424. https://doi.org/10.1016/j.palwor.2022.07.001
      Xiong, C. H., Wang, J. S., Huang, P., et al., 2021. Plant Resilience and Extinctions through the Permian to Middle Triassic on the North China Block: A Multilevel Diversity Analysis of Macrofossil Records. Earth‒Science Reviews, 223: 103846. https://doi.org/10.1016/j.earscirev.2021.103846
      Yang, F., Sun, Y. D., Frings, P. J., et al., 2022. Collapse of Late Permian Chert Factories in the Equatorial Tethys and the Nature of the Early Triassic Chert Gap. Earth and Planetary Science Letters, 600: 117861. https://doi.org/10.1016/j.epsl.2022.117861
      Yang, L. R., Song, H. J., Tong, J. N., et al., 2013. The Extinction Pattern of Fusulinids during the Permian‒ Triassic Crisis at the Kangjiaping Section, Cili, Hunan Province. Micropalaeontologica Sinica, 30(4): 353-366 (in Chinese with English abstract).
      Yuan, D. X., Shen, S. Z., 2011. Conodont Succession across the Permian‒Triassic Boundary of the Liangfengya Section, Chongqing, South China. Acta Palaeontologica Sinica, 50(4): 420-438 (in Chinese with English abstract).
      Yuan, D. X., Shen, S. Z., Henderson, C. M., et al., 2014. Revised Conodont‒Based Integrated High‒Resolution Timescale for the Changhsingian Stage and End‒ Permian Extinction Interval at the Meishan Sections, South China. Lithos, 204: 220-245. https://doi.org/10.1016/j.lithos.2014.03.026
      Yuan, D. X., Shen, S. Z., Henderson, C. M., et al., 2019. Integrative Timescale for the Lopingian (Late Permian): A Review and Update from Shangsi, South China. Earth‒Science Reviews, 188: 190-209. https://doi.org/10.1016/j.earscirev.2018.11.002
      Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End‒Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390
      Zhang, L. J., Zhang, X., Buatois, L. A., et al., 2020. Periodic Fluctuations of Marine Oxygen Content during the Latest Permian. Global and Planetary Change, 195: 103326. https://doi.org/10.1016/j.gloplacha.2020.103326
      Zhang, M. H., Gu, S. Z., 2015. Latest Permian Deep‒ Water Foraminifers from Daxiakou, Hubei, South China. Journal of Paleontology, 89(3): 448-464. https://doi.org/10.1017/jpa.2015.19
      Zhang, Y., He, W. H., Shi, G. R., et al., 2015. A New Changhsingian (Late Permian) Brachiopod Fauna from the Zhongzhai Section (South China) Part 3: Productida. Alcheringa: An Australasian Journal of Palaeontology, 39(3): 295-314. https://doi.org/10.1080/03115518.2015.1001186
      Zhao, L. S., Chen, Y. L., Chen, Z. Q., et al., 2013. Uppermost Permian to Lower Triassic Conodont Zonation from Three Gorges Area, South China. Palaios, 28(8): 523-540. https://doi.org/10.2110/palo.2012.p12‒107r
      Zhao, T. Y., Algeo, T. J., Feng, Q. L., et al., 2019. Tracing the Provenance of Volcanic Ash in Permian‒Triassic Boundary Strata, South China: Constraints from Inherited and Syn‒Depositional Magmatic Zircons. Palaeogeography, Palaeoclimatology, Palaeoecology, 516: 190-202. https://doi.org/10.1016/j.palaeo.2018.12.002
      Zuchuat, V., Sleveland, A. R. N., Twitchett, R. J., et al., 2020. A New High‒Resolution Stratig11raphic and Palaeoenvironmental Record Spanning the End‒Permian Mass Extinction and Its Aftermath in Central Spitsbergen, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology, 554: 109732. https://doi.org/10.1016/j.palaeo.2020.109732
      陈军, Henderson, C. M., 沈树忠, 2008. 浙江黄芝山剖面二叠‒三叠系界线附近的牙形类序列及其地层对比. 古生物学报, 47(1): 91-114.
      方宇恒, 2021. 华南地区晚二叠世‒早三叠世海洋古氧相特征与异常生物沉积的响应(博士学位论文). 武汉: 中国地质大学.
      李国山, 2016. 中下扬子地区二叠纪与三叠纪之交不同相区古氧相演化及生态响应(博士学位论文). 武汉: 中国地质大学.
      李学刚, 宋金明, 袁华茂, 等, 2017. 深海大洋最小含氧带(OMZ)及其生态环境效应. 海洋科学, 41(12): 127-138.
      廖卫, 2020. 二叠纪‒三叠纪之交华南浅水碳酸盐岩台地环境变化过程及其成因研究(博士学位论文). 武汉: 中国地质大学.
      聂小妹, 雷勇, 冯庆来, 等, 2012. 四川广元上寺剖面长兴阶放射虫动物群演变及控制因素. 58(5): 809-815.
      沈树忠, 何锡麟, 1991. 重庆中梁山长兴组腕足动物组合层序. 地层学杂志, 15(3): 189-196.
      田力, 童金南, 宋海军, 等, 2014. 江西乐平沿沟二叠纪末有孔虫的演变及对鲕状灰岩的古环境指示意义. 地球科学, 39(11): 1573-1586. doi: 10.3799/dqkx.2014.140
      王钦贤, 童金南, 宋海军, 等, 2009. 湖南慈利康家坪剖面二叠纪‒三叠纪之交的生态系演变. 中国科学(D辑), 39(9): 1239-1247.
      杨利蓉, 宋海军, 童金南, 等, 2013. 湖南慈利康家坪剖面二叠纪末蜓类有孔虫的灭绝过程. 微体古生物学报, 30(4): 353-366.
      袁东勋, 沈树忠, 2011. 重庆中梁山凉风垭二叠‒三叠系界线附近牙形类生物地层研究. 古生物学报, 50(4): 420-438.
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  106
    • HTML全文浏览量:  88
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-11-29
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回