• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于XGBoost的现地PGV预测模型

    卢建旗 王雨佳 李山有 谢志南 马强 陶冬旺

    卢建旗, 王雨佳, 李山有, 谢志南, 马强, 陶冬旺, 2025. 基于XGBoost的现地PGV预测模型. 地球科学, 50(5): 1861-1874. doi: 10.3799/dqkx.2024.142
    引用本文: 卢建旗, 王雨佳, 李山有, 谢志南, 马强, 陶冬旺, 2025. 基于XGBoost的现地PGV预测模型. 地球科学, 50(5): 1861-1874. doi: 10.3799/dqkx.2024.142
    Lu Jianqi, Wang Yujia, Li Shanyou, Xie Zhinan, Ma Qiang, Tao Dongwang, 2025. An XGBoost-Based Onsite PGV Prediction Model. Earth Science, 50(5): 1861-1874. doi: 10.3799/dqkx.2024.142
    Citation: Lu Jianqi, Wang Yujia, Li Shanyou, Xie Zhinan, Ma Qiang, Tao Dongwang, 2025. An XGBoost-Based Onsite PGV Prediction Model. Earth Science, 50(5): 1861-1874. doi: 10.3799/dqkx.2024.142

    基于XGBoost的现地PGV预测模型

    doi: 10.3799/dqkx.2024.142
    基金项目: 

    中国地震局工程力学研究所基本科研业务费专项资助项目 2024C27

    详细信息
      作者简介:

      卢建旗(1974-),男,研究员,博士,主要从事地震预警及工程地震研究. ORCID:0000-0002-4305-4717. E-mail:lujq_iem@163.com

    • 中图分类号: P315

    An XGBoost-Based Onsite PGV Prediction Model

    • 摘要: 地震动峰值速度(Peak Ground Velocity,PGV)是常用于衡量地震动对建筑结构破坏潜力的参数之一,实时预测PGV大小是重大工程地震紧急处置中的关键技术.为进一步提升PGV预测准确性,提出一种基于极限梯度提升树(Extream Gradient Boosting,XGBoost)的现地PGV预测模型.该模型以台站观测到的P波前3 s的峰值加速度(Pa)、峰值速度(Pv)、峰值位移(Pd)、累计绝对速度(CAV)及卓越周期(Tpd)5种特征参数为输入,以该台站观测到的PGV为预测目标.选取日本K-NET台网记录的102次地震的6 918组加速度记录进行模型训练,89次地震的3 430组加速度记录测试模型的泛化能力.结果表明,相同数据集下,对比基于Pd的PGV预测模型和基于支持向量机的PGV预测模型,基于XGBoost的PGV预测模型的预测值与实测值更趋近1∶1比例关系,且预测误差标准差更小,预测残差均值更接近0,且在中国的实际地震震例上的运行结果良好.基于XGBoost的PGV预测模型可用于现地地震预警地震动峰值的预测.

       

    • 图  1  所选记录台站及震中分布

      a.训练集;b.测试集

      Fig.  1.  Distribution of selected stations and earthquake epicenters

      图  2  震级与震中距分布

      a.训练集;b.测试集

      Fig.  2.  Distribution of magnitude and epicentral distance

      图  3  训练集与测试集震中距分布对比

      Fig.  3.  Comparison of epicentral distance distributions between training and test sets

      图  4  XGBoost-PGV模型在数据集上的预测结果

      a.训练集;b测试集

      Fig.  4.  Predicted results of XGBoost-PGV model on the dataset

      图  5  XGBoost-PGV模型在数据集上的残差图

      a.训练集残差与震中距的关系;b.训练集残差与震级的关系;c.测试集残差与震中距的关系;d.测试集残差与震级的关系

      Fig.  5.  Residual plots of XGBoost-PGV model on the dataset

      图  6  基于SHAP值的特征全局重要性排序

      Fig.  6.  Global importance ranking of feature based on SHAP value

      图  7  PGV关于Pd的回归结果

      Fig.  7.  PGV regression results on Pd

      图  8  XGBoost-PGV模型和Pd-PGV模型在测试集上预测与实测PGV的比较

      Fig.  8.  Comparison of predicted PGV and measured PGV between XGBoost-PGV model and Pd-PGV model on the test set

      图  9  XGBoost-PGV模型和SVM-PGV模型在测试集上预测与实测PGV的比较

      Fig.  9.  Comparison of predicted PGV and measured PGV between XGBoost-PGV model and SVM-PGV model on the test set

      图  10  积石山$ M $S6.2地震的震中和台站位置

      Fig.  10.  Epicenter and station distribution of the Jishishan $ M $S6.2 earthquake

      图  11  积石山$ M $S6.2地震的PGV预测结果

      Fig.  11.  PGV prediction of the Jishishan $ {M}_{\mathrm{S}} $6.2 earthquake

      图  12  XGBoost-PGV模型在P波S波时间间隔不足3 s数据上的预测结果

      a.训练集;b.测试集

      Fig.  12.  Predicted results of XGBoost-PGV model on the data with a P-wave to S-wave time interval of less than 3 s

      图  13  XGBoost-PGV模型在浅地壳地震和俯冲带地震数据上的预测结果

      a.浅地壳地震;b.俯冲带地震

      Fig.  13.  Predicted results of XGBoost-PGV model on the set of Shallow crustal earthquake and subduction earthquakes

      图  14  测试集7.3级地震数据上的特征参数分布

      a. Pa与震中距的关系;b. Pd与震中距的关系;c. CAV与震中距的关系;d. Pv与震中距的关系;e. Tpd与震中距的关系

      Fig.  14.  Distribution of feature parameter on the test set of the magnitude 7.3 earthquake

      表  1  模型关键超参数及其取值范围

      Table  1.   Key hyper-parameters and their value ranges in the model

      参数名称 简写 超参数取值范围 搜索步长
      决策树的深度 max_depth [3, 9] 1
      决策树的数量 n_estimators [50, 600] 1
      子节点最小权重 min_child_weight [1, 6] 1
      损失函数下降值 gamma [0, 1] 0.1
      学习率 learning_rate [0.01, 0.5] 0.05
      下载: 导出CSV

      表  2  模型超参数的取值

      Table  2.   Model hyper-parameter values

      参数名称 简写 超参数取值
      决策树的深度 max_depth 6
      决策树的数量 n_estimators 512
      子节点最小权重 min_child_weight 2
      损失函数下降值 gamma 0.5
      学习率 learning_rate 0.3
      下载: 导出CSV

      表  3  潜在地震破坏和PGV之间的关系

      Table  3.   The relationship between potential earthquake damage and PGV

      潜在破坏类别 非常轻微 轻微 中等 中等/严重 严重 非常严重
      PGV(cm/s) 0~3.4 3.4~8.1 8.1~16 16~31 31~60 60~116 > 116
      下载: 导出CSV
    • Allen, R. M., Gasparini, P., Kamigaichi, O., et al., 2009. The Status of Earthquake Early Warning around the World: An Introductory Overview. Seismological Research Letters, 80(5): 682-693. https://doi.org/10.1785/gssrl.80.5.682
      Brondi, P., Picozzi, M., Emolo, A., et al., 2015. Predicting the Macroseismic Intensity from Early Radiated P Wave Energy for On-Site Earthquake Early Warning in Italy. Journal of Geophysical Research: Solid Earth, 120(10): 7174-7189. https://doi.org/10.1002/2015jb012367
      Chen, T. Q., Guestrin, C., Chen, T. Q., et al., 2016. XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 785-794. https://doi.org/10.1145/2939672.2939785
      Colombelli, S., Caruso, A., Zollo, A., et al., 2015. A P Wave-Based, On-Site Method for Earthquake Early Warning. Geophysical Research Letters, 42(5): 1390-1398. https://doi.org/10.1002/2014gl063002
      Faenza, L., Michelini, A., 2011. Regression Analysis of MCS Intensity and Ground Motion Spectral Accelerations (SAs) in Italy. Geophysical Journal International, 186(3): 1415-1430. https://doi.org/10.1111/j.1365-246X.2011.05125.x
      Hildyard, M. W., Rietbrock, A., 2010. TPD, a Damped Predominant Period Function with Improvements for Magnitude Estimation. Bulletin of the Seismological Society of America, 100(2): 684-698. https://doi.org/10.1785/0120080368
      Hoshiba, M., Kamigaichi, O., Saito, M., et al., 2008. Earthquake Early Warning Starts Nationwide in Japan. EOS, Transactions American Geophysical Union, 89(8): 73-74. https://doi.org/10.1029/2008eo080001
      Hoshiba, M., Ohtake, K., Iwakiri, K., et al., 2010. How Precisely can We Anticipate Seismic Intensities? A Study of Uncertainty of Anticipated Seismic Intensities for the Earthquake Early Warning Method in Japan. Earth, Planets and Space, 62(8): 611-620. https://doi.org/10.5047/eps.2010.07.013
      Hua, S. B., Xu, C. Y., Zhou, J. C., et al., 2024. Source Characteristics and Disaster Mechanisms of the 2023 Gansu Jishishan Mw6.0 Earthquake. Chinese Journal of Geophysics, 67(7): 2625-2636 (in Chinese with English abstract).
      Huang, F. M., Ouyang, W. P., Jiang, S. H., et al., 2024. Landslide Susceptibility Prediction Considering Spatio-Temporal Division Principle of Training/Testing Datasets in Machine Learning Models. Earth Science, 49(5): 1607-1618 (in Chinese with English abstract).
      Huang, X. H., Li, Z. H., Deng, T., et al., 2023. Uranium Potential Evaluation of Zhuguangshan Granitic Pluton in South China Based on Machine Learning. Earth Science, 48(12): 4427-4440 (in Chinese with English abstract).
      Iervolino, I., Giorgio, M., Galasso, C., et al., 2009. Uncertainty in Early Warning Predictions of Engineering Ground Motion Parameters: What Really Matters?. Geophysical Research Letters, 36(5): 2008GL036644. https://doi.org/10.1029/2008gl036644
      Jin, X., Zhang, H. C., Li, J., et al., 2012. Research on Continuous Location Method Used in Earthquake Early Warning System. Chinese Journal of Geophysics, 55(3): 925-936 (in Chinese with English abstract).
      Kanamori, H., 2015. Earthquake Hazard Mitigation and Real-Time Warnings of Tsunamis and Earthquakes. Pure and Applied Geophysics, 172(9): 2335-2341. https://doi.org/10.1007/s00024-014-0964-y
      Kohler, M. D., Cochran, E. S., Given, D., et al., 2018. Earthquake Early Warning ShakeAlert System: West Coast Wide Production Prototype. Seismological Research Letters, 89(1): 99-107. https://doi.org/10.1785/0220170140
      Li, T. L., Jiang, P., Jin, Y. X., et al., 2024. Construction and Application of China Earthquake Early Warning Technology Testing Platform. Earthquake Research in China, 40(1): 69-84 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-4683.2024.01.006
      Li, Y. Z., Yang, C., 2024. Overall Design of Customized Software for the National Seismic about the National Seismic Intensity Rapid Reporting and Early Warning Project. Earthquake Research in China, 40(1): 85-96 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-4683.2024.01.007
      Liu, C., Li, X. J., Jing, B. B., et al., 2019. The Distance Segmentation Characters of PGV-Pd Relationship Parameters for Earthquake Early Warning. Chinese Journal of Geophysics, 62(4): 1413-1426 (in Chinese with English abstract).
      Liu, L., Shen, J. K., Zhang, L. X., 2023. A Machine Learning-Based Method for Rapid Prediction of Earthquake Damage in Brick Masonry Houses. Earth Science, 48(5): 1769-1779 (in Chinese with English abstract).
      Liu, Y. Q., Zhao, Q. X., Wang, Y. W., 2024. Peak Ground Acceleration Prediction for On-Site Earthquake Early Warning with Deep Learning. Scientific Reports, 14(1): 5485. https://doi.org/10.1038/s41598-024-56004-6
      Lu, J. Q., Li, S. Y., Xie, Z. N., et al., 2021. Real-Time Evolutionary Earthquake Location Method and Its Uncertainty Analysis. Journal of Natural Disasters, 30(3): 52-62 (in Chinese with English abstract).
      Lundberg, S. M., Lee, S. I., 2017. A Unified Approach to Interpreting Model Predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems, New York, 21889700. https://doi.org/10.48550/arXiv.1705.07874
      Luo, H. Y., Xu, Q., Jiang, Y. N., et al., 2024. The Prediction Method of Large-Scale Land Subsidence Based on Multi-Temporal InSAR and Machine Learning. Earth Science, 49(5): 1736-1745 (in Chinese with English abstract).
      Ma, Q., 2008. Study and Application on Earthquake Early Warning (Dissertation). Institute of Engineering Mechanics, China Earthquake Administration, Harbin (in Chinese with English abstract).
      Murphy, S., Nielsen, S., 2009. Estimating Earthquake Magnitude with Early Arrivals: A Test Using Dynamic and Kinematic Models. Bulletin of the Seismological Society of America, 99(1): 1-23. https://doi.org/10.1785/0120070246
      Nielsen, D., 2016. Tree Boosting with XGBoost-Why does XGBoost Win "Every" Machine Learning Competition? (Dissertation). Norwegian University of Science and Technology, Norway.
      Olson, E. L., Allen, R. M., 2005. The Deterministic Nature of Earthquake Rupture. Nature, 438(7065): 212-215. https://doi.org/10.1038/nature04214
      Ouyang, L. B., Su, Z. J., Liu, J., et al., 2024. Construction of Decision-Making Platform Fused in China Earthquake Early Warning Network. Earthquake Research in China, 40(1): 24-39 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-4683.2024.01.003
      Peng, C. Y., Ma, Q., Jiang, P., et al., 2020. Performance of a Hybrid Demonstration Earthquake Early Warning System in the Sichuan-Yunnan Border Region. Seismological Research Letters, 91(2A): 835-846. https://doi.org/10.1785/0220190101
      Picozzi, M., Zollo, A., Brondi, P., et al., 2015. Exploring the Feasibility of a Nationwide Earthquake Early Warning System in Italy. Journal of Geophysical Research: Solid Earth, 120(4): 2446-2465. https://doi.org/10.1002/2014jb011669
      Song, J. D., Yu, C., Li, S. Y., 2021. Continuous Prediction of Onsite PGV for Earthquake Early Warning Based on Least Squares Support Vector Machine. Chinese Journal of Geophysics, 64(2): 555-568 (in Chinese with English abstract).
      Wald, D. J., Quitoriano, V., Heaton, T. H., et al., 1999. Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthquake Spectra, 15(3): 557-564. https://doi.org/10.1193/1.1586058
      Wu, Y. M., Kanamori, H., 2005. Experiment on an Onsite Early Warning Method for the Taiwan Early Warning System. Bulletin of the Seismological Society of America, 95(1): 347-353. https://doi.org/10.1785/0120040097
      Zhang, H. F., 2023. A Study of Real-Time PGV Prediction Method with Regional and Onsite Integration (Dissertation). Institute of Engineering Mechanics China Earthquake Administration, Harbin (in Chinese with English abstract).
      Zhang, J. Y., Xi, N., Xu, T. R., et al., 2024. The Center Technology Platform for National Earthquake Intensity Quick Reporting and Early Warning. Earthquake Research in China, 40(1): 54-68 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-4683.2024.01.005
      Zhang, Y. Y., Miao, C. L., Chen, J. L., et al., 2024. Design and Construction of the Earthquake Waveform Comprehensive Analysis System for National Seismic Intensity Rapid Reporting and Early Warning Project. Earthquake Research in China, 40(1): 40-53 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-4683.2024.01.004
      Zhao, J. X., Zhou, S. L., Gao, P. J., et al., 2015. An Earthquake Classification Scheme Adapted for Japan Determined by the Goodness of Fit for Ground-Motion Prediction Equations. The Bulletin of the Seismological Society of America, 105(5): 2750-2763. https://doi.org/10.1785/0120150013
      Zhu, J. B., Song, J. D., Li, S. Y., 2021. Rapid Magnitude Estimation for Earthquake Early Warning Based on SVM. Journal of Vibration and Shock, 40(7): 126-134 (in Chinese with English abstract).
      华思博, 徐晨雨, 周江诚, 等, 2024.2023年甘肃积石山MW6.0地震震源特征与灾害机理. 地球物理学报, 67(7): 2625-2636.
      黄发明, 欧阳慰平, 蒋水华, 等, 2024. 考虑机器学习建模中训练/测试集时空划分原则的滑坡易发性预测建模. 地球科学, 49(5): 1607-1618. doi: 10.3799/dqkx.2022.357
      黄鑫怀, 李增华, 邓腾, 等, 2023. 基于机器学习的华南诸广山花岗岩体铀矿潜力评价. 地球科学, 48(12): 4427-4440. doi: 10.3799/dqkx.2022.006
      金星, 张红才, 李军, 等, 2012. 地震预警连续定位方法研究. 地球物理学报, 55(3): 925-936.
      李同林, 江鹏, 晋云霞, 等, 2024. 中国地震预警技术测试平台建设与应用. 中国地震, 40(1): 69-84.
      李雨泽, 杨陈, 2024. 国家地震烈度速报与预警工程定制软件总体设计. 中国地震, 40(1): 85-96.
      刘辰, 李小军, 景冰冰, 等, 2019. 地震预警PGV-Pd关系参数的距离分段特征. 地球物理学报, 62(4): 1413-1426.
      刘丽, 沈俊凯, 张令心, 2023. 基于机器学习的砖砌体房屋震害快速预测方法. 地球科学, 48(5): 1769-1779. doi: 10.3799/dqkx.2022.481
      卢建旗, 李山有, 谢志南, 等, 2021. 实时演化地震定位方法及其不确定性分析. 自然灾害学报, 30(3): 52-62.
      罗袆沅, 许强, 蒋亚楠, 等, 2024. 基于时序InSAR与机器学习的大范围地面沉降预测方法. 地球科学, 49(5): 1736-1745. doi: 10.3799/dqkx.2023.048
      马强, 2008. 地震预警技术研究及应用(博士学位论文). 哈尔滨: 中国地震局工程力学研究所.
      欧阳龙斌, 苏柱金, 刘军, 等, 2024. 国家地震烈度速报与预警工程融合决策平台建设. 中国地震, 40(1): 24-39.
      宋晋东, 余聪, 李山有, 2021. 地震预警现地PGV连续预测的最小二乘支持向量机模型. 地球物理学报, 64(2): 555-568.
      张海峰, 2023. 区域与现地融合的PGV实时预测方法研究(硕士学位论文). 哈尔滨: 中国地震局工程力学研究所.
      张建勇, 席楠, 徐泰然, 等, 2024. 国家中心地震烈度速报与预警技术平台. 中国地震, 40(1): 54-68.
      张莹莹, 苗春兰, 陈经纶, 等. 2024. 国家预警工程综合地震波形分析系统设计与实现. 中国地震, 40(1): 40-53.
      朱景宝, 宋晋东, 李山有, 2021. 基于支持向量机的地震预警震级快速估算研究. 振动与冲击, 40(7): 126-134.
    • 加载中
    图(14) / 表(3)
    计量
    • 文章访问数:  28
    • HTML全文浏览量:  6
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-08-17
    • 网络出版日期:  2025-06-06
    • 刊出日期:  2025-05-25

    目录

      /

      返回文章
      返回