Microbial Silicon Cycling Promoted Shallow-Sea Chert Deposition in Mesoproterozoic Ocean
-
摘要: 为揭示中元古代浅海硅循环和硅岩形成机制,运用沉积学、矿物学、地球生物学和地球化学方法对华北~1.48 Ga雾迷山组硅岩开展了综合研究.结果表明,硅岩以微石英为主(~90%),含少量硅交代碳酸盐颗粒(~5%)和微量黄铁矿(~1%);并具高Ge/Si摩尔比(~8.83 μmol/mol)和正Eu异常(~1.41),表明其主要为原生沉淀硅,~94%的硅源自海水.硅岩中保存良好的微生物组构(菌丝、胞外聚合物(extracellular polymeric substances,简称EPS)、席碎片)和微小蓝细菌与有机矿物密切共生,表明微生物在诱发硅沉淀中有重要作用.粘硅EPS和有机硅复合体降解释放硅可增加局部溶解硅浓度,改变沉积浅层和孔隙水化学条件,促进硅沉淀.微小蓝细菌和其他可聚硅微生物在浅海的繁盛对中元古代硅循环有重要影响,并促进了浅海环境的硅岩沉积.Abstract: To reveal the silicon cycling and potential mechanism of chert deposition in Mesoproterozoic shallow seas, an integrated study of sedimentology, mineralogy, geobiology and geochemistry was conducted on the Wumishan cherts (~1.48 Ga) using multiple techniques. The results show that the cherts are predominated by microquartz (~90%) in composition, with some silica-replaced carbonate (~5%) and minor pyrite (~1%) grains, indicating that the cherts largely originated from primary silica precipitation. High Ge/Si molar ratios (~8.83 μmol/mol) and positive Eu anomalies (~1.41) in the cherts suggest silica largely deriving from seawater (~94%), with a small contribution of thermally derived Si (~6%). Diverse microbial components (e.g., microbial filaments, EPS (extracellular polymeric substances) relics, mat fragments) and picocyanobacterian fossils were closely associated with organominerals, suggesting that microbial activities played important roles in silica precipitation. The Si liberated from degraded EPS and organo-Si complexes locally increased the dissolved Si concentrations and changed the chemical conditions in shallow substrate and pore-waters, promoting silica precipitation. The flourishing picocyanobacteria and certain prokaryotes that can accumulate silica in their cells or EPS may have changed the Si-cycling in Mesoproterozoic ocean, and the biogenic silica released from the microbial biomass may have promoted the silica precipitation in the Mesoproterozoic shallow-sea environments.
-
图 3 雾迷山组硅岩的显微结构
a. 硅岩由均一的微石英颗粒组成;b. FE-SEM图像显示微石英呈近等粒状;c. 部分微石英在正交偏光下呈簇晶状(浅色);d. 半自形黄铁矿颗粒散布在微石英基质中;e. 沿微裂隙分布的黄铁矿颗粒,可见少量铁氧化物颗粒(右箭头)和硅质微球(左箭头);f. 由密集垂向排列的微生物丝或其束状体(黄箭头)形成的“栅栏构造”,其上有白云石颗粒(红箭头);g. 微石英基质中的自形白云石晶体(红箭头);h. 具核‒皮结构的微球,外层中可见纤维组分(红箭头),左侧见交代成因白云石晶体;1. 硅化的包粒(卵圆形),具核‒皮结构和同心纹层,包裹层富含有机质;j. 燧石条带中交互分布的微生物席(深色)和碳酸盐纹层(浅色),席层中见有俯卧的菌丝体(红箭头),亮纹层中有残余白云岩颗粒(黄箭头);k. 燧石条带由交互的硅化席(深色)和硅纹层(浅色)组成,席内可见残余微生物丝体(红箭头);l. 亚球形自生二氧化硅颗粒,与残余菌丝交织(红箭头);m. 高倍镜下自生二氧化硅颗粒(单偏光),硅颗粒中不具可识别的核‒皮结构,正交偏光下可见由亚微米级硅颗粒聚合而成;n. 高倍镜下硅颗粒内具细粒结构(正交偏光),与周边结晶基质明显不同.图b为FE-SEM图像;图a、c、n为正交偏光照片,其余为单偏光照片
Fig. 3. Micro-textures of the Wumishan cherts
图 4 雾迷山组硅岩中的微生物组构
a~b. 由EPS包裹的密集微球(红箭头);核‒皮结构不明显.c~d. 成群出现的微球,较大微球内可见富有机质内核和皮层,呈近六边形(图d,红箭头).e~f. 微球近照,部分微球具暗色核心和富有机物皮层(图e),偶见复合外层(图f,黄箭头);核心呈粒状结构,富有机质.g~h. 细小核心被结晶外层包裹的微球,虚线圈分别指示微球核心和外层.i~j. 微球的颗粒状核心近照,可见EPS残余(红箭头).k.微球核心内含EPS残余(红箭头)和纳米级细丝(黄箭头).l~m. 燧石中密集的纳米球(图l);最初的纳米球常沿EPS丝体(红箭头)和EPS残余(黄箭头)分布.n~o. 在EPS薄层上密集分布的纳米球(黄箭头)聚集为微球;图o为图n中标记点上的EDS分析结果(元素含量:Si=55.75%,O=37.78%,C=6.43%,S=0.04%).p. 微球(红箭头)与残留微生物丝体(黄箭头)共生.a~f和p为单偏光显微照片;g~n为FE-SEM图像
Fig. 4. Microfabrics in the Wumishan cherts
图 5 雾迷山组硅岩中的微生物组分和微组构
a~b. 鳞球(图a,箭头),其中可见与表面垂直的叶片结构(图b,红箭头). c. 鳞球叶片与纳米级EPS残余共生(箭头). d~e. 球‒亚球状微小蓝细菌化石(图d,Myxococoides cf. inornata Schopf;图e,Myxococoides sp.). 图d中可见散布于球状菌表面的微瘤突;图e中可见沿细胞边缘发育的环边构造. f~g. 链状(图f,由3个细胞连接而成)和棒状(图g)微小蓝细菌化石(Eosynechococcus cf. moorei Hofmann);可见EPS残余(图g). 这2属也见于澳大利亚西北部、加拿大和印度等地的中元古代硅岩. h~i. 球状菌化石(Myxococoides sp.),及其外模(图h)和细菌簇状体(图i).j~m. 微生物丝体残余(红箭头),硅化鞘体(图j~k,黄箭头)和丝体内隔(图k);沿丝体(图l,橙线)生长的细胞(深色),以及与残余丝体共生的纳米球(Ns;图m). n~r. 硅岩中残留的EPS化石;可见EPS丝体(图n)、丝状鞘体(图o)、管状EPS残余(图p)和折叠的EPS薄片(图r).j~l为显微照片,其余为FE-SEM图像
Fig. 5. Microbial components and microfabrics in the Wumishan cherts
图 6 雾迷山组硅岩中的微生物相关组分
a. 硅岩中密集的富有机质微团块(红箭头).b~c. 沿席层向上生长(图b,黄箭头)、平行排列的微生物丝体及其束状体(红箭头)构成“栅栏构造”;图c中黄箭头指示丝体内残留的细胞.d. 微生物丝体(红箭头)稀疏散布于微石英基质中.e. 由密集球状菌(Myxococoides cf. inornata Schopf)外模形成的蜂窝状结构.f. 蜂窝结构近观;外模内的微凹坑(红箭头)由球状菌表面的微小瘤突形成(见图 5d).g. 由细胞脱水塌陷形成的蜂窝状结构,突脊(箭头)代表细胞间硅化的EPS.h. 蜂窝结构具强烈的自荧光,指示富集有机质.a、b、d、h为显微照片,其余为FE-SEM图像
Fig. 6. Microbial-related components in the Wumishan cherts
图 7 雾迷山组硅岩的地球化学成分及其相关性对比
a. 与高∑REE值对应的Y/Ho比值为28~46,指示海水成因.b. ∑REE与Th正相关,表明∑REE与陆源输入有相关性.c. 硅岩的REE+Y分布模式与现代海水相似,但缺乏明显的负Ce异常,有弱的正Eu异常;表明以缺氧‒亚氧化条件为主.d. 四段和一段部分样品落入负Ce/Ce*异常区;指示亚氧化条件;而二段和三段多数样品落入正Ce/Ce*异常区,指示以缺氧条件为主.图d中的灰色条带代表无异常区
Fig. 7. Geochemical compositions and their correlations in the Wumishan cherts
表 1 雾迷山组硅岩的主要化学指标
Table 1. Selected geochemical proxies of the Wumishan cherts
样品号 剖面 段 岩性 Ge/Si Fe/Al Fe/Mn P/Al Mo (μg/g) U (μg/g) V (μg/g) Cr (μg/g) MoEF UEF VEF CrEF Ce/Ce* Eu/Eu* Y/Ho PrSN/YbSN LaSN/SmSN PrSN/TbSN W1-08- 1-1 野三坡 Ⅰ a 14.46 0.02 N.A. N.A. N.A. 0.045 0.109 2.170 N.A. 5.97 0.40 8.45 0.68 N.A. 2.00 0.20 N.A. N.A. W1-08- 1-2 野三坡 Ⅰ a 13.76 0.03 N.A. N.A. 0.003 0.046 0.249 3.300 0.63 3.50 0.53 7.37 0.24 1.23 45.76 0.07 0.34 0.37 W1-h44- 1-1 野三坡 Ⅰ a 10.45 0.34 N.A. N.A. 0.015 0.069 0.170 6.800 3.13 5.87 0.40 16.99 0.20 0.44 30.00 0.82 1.53 2.60 W1-h44- 1-2 野三坡 Ⅰ a 10.38 N.A. N.A. N.A. N.A. 0.042 0.024 2.320 N.A. 14.17 0.23 22.98 N.A. N.A. 13.56 N.A. N.A. N.A. W1-h44- 1-3 野三坡 Ⅰ a 10.64 N.A. N.A. N.A. N.A. 0.057 0.026 2.380 N.A. 3.87 0.05 4.74 N.A. N.A. N.A. N.A. N.A. N.A. W1-h44- 1-4 野三坡 Ⅰ a 10.25 N.A. N.A. N.A. N.A. 0.017 0.002 0.990 N.A. 5.03 0.02 8.54 N.A. N.A. N.A. N.A. N.A. N.A. W1-h44- 1-5 野三坡 Ⅰ a 8.76 N.A. N.A. N.A. N.A. 0.026 0.024 1.720 N.A. 3.27 0.08 6.26 N.A. N.A. N.A. N.A. N.A. N.A. W2-23-1 野三坡 Ⅱ a 6.37 0.06 8.27 N.A. 0.047 0.060 1.700 86.000 2.27 1.18 0.93 49.64 N.A. 1.36 20.00 1.06 0.84 0.99 W2-23-2 野三坡 Ⅱ a 7.19 0.08 N.A. N.A. 0.057 0.108 1.700 51.000 2.66 2.05 0.90 28.46 1.49 0.59 17.89 0.98 1.33 0.88 W2-23-3 野三坡 Ⅱ a 8.91 0.08 9.30 N.A. 0.015 0.069 1.000 47.000 1.75 3.28 1.32 65.56 0.30 1.17 48.57 5.47 2.50 1.75 W2-27- 2-1 野三坡 Ⅱ b 11.85 0.01 N.A. N.A. 0.003 0.118 0.145 2.160 0.72 11.93 0.41 6.41 0.48 N.A. 17.65 0.34 N.A. N.A. W2-27- 2-2 野三坡 Ⅱ b 7.76 3.84 N.A. N.A. 0.051 0.066 1.280 6.300 22.81 12.03 6.49 33.69 0.06 1.20 4.00 0.64 0.12 0.18 W2-27- 2-3 野三坡 Ⅱ b 6.16 0.02 N.A. N.A. 0.004 0.011 0.033 3.300 1.38 1.54 0.13 13.57 0.01 0.62 1.53 0.64 0.14 0.18 W2-27- 2-4 野三坡 Ⅱ b 5.74 0.79 N.A. N.A. 0.027 0.034 0.650 6.260 3.53 1.81 0.96 9.78 N.A. 0.62 8.67 0.14 9.52 0.15 W2-27- 2-5 野三坡 Ⅱ b 9.20 0.80 N.A. N.A. 0.036 0.031 0.227 10.500 18.06 6.28 1.29 63.00 0.53 3.18 N.A. N.A. 0.29 0.16 W2-30- 1-1 野三坡 Ⅱ a 9.15 0.07 N.A. N.A. 0.026 0.811 0.063 4.500 5.33 67.73 0.15 11.03 0.26 0.52 5.67 1.27 0.30 0.08 W2-30- 1-2 野三坡 Ⅱ a 11.07 1.89 N.A. N.A. 0.313 1.360 1.110 30.000 77.42 137.05 3.11 88.72 0.07 0.13 3.67 0.80 0.63 0.05 W2-30- 1-3 野三坡 Ⅱ a 12.44 1.32 N.A. 0.02 0.146 1.190 1.140 13.400 34.01 112.94 3.01 37.32 0.04 2.96 3.16 1.39 0.17 1.17 W2-56-1 野三坡 Ⅱ a 2.36 0.09 13.22 N.A. 0.077 0.061 1.090 41.000 3.99 1.29 0.64 25.42 0.40 2.34 23.33 1.06 2.27 1.63 W2-56-2 野三坡 Ⅱ a 2.27 0.11 N.A. N.A. 0.085 0.045 0.570 36.000 4.92 1.06 0.37 24.90 1.03 1.37 44.12 1.63 1.05 0.47 W2-56-4 野三坡 Ⅱ a 2.39 0.01 N.A. N.A. 0.014 0.017 0.045 24.000 1.57 0.78 0.06 32.14 N.A. N.A. N.A. N.A. N.A. N.A. W2-72-1 野三坡 Ⅱ a 5.49 0.08 22.58 N.A. 0.118 0.118 2.500 30.000 4.24 1.73 1.02 12.88 1.72 1.73 27.62 0.69 1.76 0.93 W2-72-2 野三坡 Ⅱ a 4.14 0.09 19.18 N.A. 0.086 0.141 2.600 53.000 2.74 1.83 0.94 20.16 1.23 2.01 39.44 1.17 1.06 0.79 W2-72-3 野三坡 Ⅱ a 3.82 0.08 26.89 N.A. 0.104 0.195 3.600 36.000 2.31 1.77 0.91 9.57 1.07 1.21 29.68 0.94 1.06 0.82 W2-93-1 野三坡 Ⅱ a 7.02 0.09 N.A. N.A. 0.023 0.125 1.040 8.600 1.53 3.40 0.79 6.86 1.07 0.74 37.00 0.56 1.45 1.00 W2-93-2 野三坡 Ⅱ a 15.73 0.08 N.A. N.A. 0.023 0.113 1.140 4.800 1.46 2.93 0.82 3.65 1.24 1.78 25.38 3.11 1.68 0.90 W2-93-3 野三坡 Ⅱ a 5.44 0.08 33.78 0.00 0.125 0.193 4.100 7.900 2.43 1.53 0.90 1.84 1.39 1.62 29.43 0.91 1.16 0.97 W3-35-4-2 野三坡 Ⅲ a 8.81 0.79 N.A. N.A. N.A. 0.099 0.440 14.100 N.A. 9.67 1.20 40.41 0.71 N.A. 1.63 N.A. 0.66 N.A. W3-35-4-3 野三坡 Ⅲ a 15.17 3.38 N.A. N.A. 0.030 0.072 0.560 8.400 25.00 24.44 5.29 83.70 N.A. N.A. N.A. N.A. N.A. N.A. W3-35-4-4 野三坡 Ⅲ a 7.70 0.76 96.14 N.A. 0.025 0.026 0.610 14.300 3.04 1.29 0.84 20.81 0.49 0.97 45.00 0.07 0.52 0.30 W3-35-4-5 野三坡 Ⅲ a 6.56 0.25 38.71 0.01 0.054 0.216 0.840 28.000 2.36 3.85 0.42 14.65 1.16 0.92 43.91 0.58 0.85 0.51 W4-58- 2S-1-1 野三坡 Ⅳ c 0.79 0.24 32.35 0.01 0.460 0.890 4.700 900.00 4.77 3.76 0.55 111.59 1.20 0.94 31.50 0.66 1.03 0.72 W4-58- 2S-1-2 野三坡 Ⅳ c 0.71 0.23 40.88 0.01 0.137 0.660 5.500 630.00 1.05 2.06 0.48 57.63 1.12 0.78 42.39 0.49 1.04 0.61 W4-58- 2S-2 野三坡 Ⅳ c 0.93 0.13 18.06 0.01 0.119 0.780 2.640 12.000 1.16 3.09 0.29 1.39 0.92 1.05 29.93 0.76 1.05 0.80 W4-58- 2S-3 野三坡 Ⅳ c 1.08 0.13 17.81 0.01 0.134 0.910 2.560 12.000 1.31 3.62 0.28 1.40 1.16 1.06 40.47 0.72 1.09 0.77 W4-58- 2S-4 野三坡 Ⅳ c 6.41 0.12 21.56 0.01 0.058 0.376 1.910 6.200 1.02 2.68 0.38 1.30 0.97 1.24 44.57 0.71 1.22 0.75 W4-58- 2S-5 野三坡 Ⅳ c 5.15 0.18 29.81 0.01 0.077 0.514 2.320 9.000 1.09 2.96 0.37 1.52 0.88 1.10 41.83 0.73 1.00 0.65 W4-94-1-1 野三坡 Ⅳ a 19.10 0.02 18.76 N.A. 0.330 0.260 5.900 67.000 2.43 0.78 0.49 5.90 3.54 N.A. 2.06 0.06 1.31 0.06 W4-94-1-2 野三坡 Ⅳ a 18.72 0.81 N.A. N.A. 0.052 0.207 0.138 4.000 24.68 40.02 0.74 22.70 0.01 0.51 7.94 0.77 0.22 0.21 W4-94-1-3 野三坡 Ⅳ a 17.10 0.06 N.A. N.A. 0.006 0.090 0.040 0.530 5.21 31.30 0.39 5.41 0.09 0.22 19.55 0.38 1.45 0.04 W4-110- 2-1 野三坡 Ⅳ a 11.55 0.47 N.A. N.A. 0.013 0.065 0.088 1.570 14.21 28.72 1.08 20.36 N.A. N.A. N.A. N.A. N.A. N.A. W4-110- 2-2-1 野三坡 Ⅳ a 14.05 0.56 N.A. N.A. 0.029 0.153 0.250 5.800 14.00 30.09 1.37 33.48 0.27 4.17 26.15 1.04 0.49 3.93 W4-110- 2-3-2 野三坡 Ⅳ a 10.25 0.19 27.20 0.01 0.028 0.148 0.560 6.000 2.31 4.97 0.52 5.91 0.98 0.29 29.17 3.37 1.03 0.52 W4-110- 2-4 野三坡 Ⅳ a 12.02 0.86 105.16 0.02 0.175 0.236 1.310 10.100 9.42 5.18 0.80 6.50 0.59 1.53 41.25 0.90 0.61 1.03 1707ZW-105-1 珠窝 Ⅲ a 3.91 0.08 33.00 0.00 0.084 0.192 3.400 6.800 1.90 1.77 0.87 1.84 1.07 1.61 27.58 0.91 1.02 0.88 1707ZW-105-2 珠窝 Ⅲ a 4.28 0.02 N.A. N.A. 0.002 0.114 0.029 4.000 0.20 6.19 0.04 6.38 N.A. N.A. N.A. 0.09 N.A. N.A. 1707ZW-116-1 珠窝 Ⅲ a 6.13 0.18 N.A. N.A. 0.012 0.034 0.390 4.500 1.45 1.67 0.53 6.49 N.A. 1.60 39.34 1.55 4.06 1.75 1707ZW-116-2 珠窝 Ⅲ a 15.40 0.16 19.38 N.A. 0.049 0.230 2.300 11.100 1.72 3.28 0.91 4.65 1.10 2.02 23.45 1.28 1.29 0.96 1707ZW-116-3 珠窝 Ⅲ a 6.41 0.09 31.50 0.00 0.134 0.180 3.900 8.900 2.80 1.53 0.92 2.22 1.07 1.66 26.67 1.00 1.35 0.97 1707ZW-116-4 珠窝 Ⅲ a 10.58 0.09 35.71 0.00 0.158 0.130 4.200 6.100 4.51 1.51 1.36 2.08 1.44 1.76 32.38 1.12 2.28 1.23 ZHW4- 59-1-1 珠窝 Ⅳ a 11.15 0.55 N.A. N.A. 0.005 0.050 0.095 11.700 2.33 9.51 0.50 65.28 0.14 5.09 15.00 0.35 0.48 1.69 ZHW4- 59-1-2 珠窝 Ⅳ a 13.10 0.72 N.A. N.A. N.A. 0.032 0.091 2.900 N.A. 21.83 1.71 57.52 0.28 1.49 N.A. N.A. N.A. 0.09 ZHW4- 59-1-3 珠窝 Ⅳ a 12.40 N.A. N.A. N.A. 0.002 0.019 0.081 5.800 5.02 20.88 2.43 183.18 N.A. N.A. N.A. N.A. N.A. N.A. ZHW4- 59-1-4 珠窝 Ⅳ a 14.03 0.17 N.A. N.A. N.A. 0.031 0.091 1.170 N.A. 39.09 3.25 44.01 N.A. N.A. N.A. N.A. 0.76 N.A. W4-110- 2-2-2 野三坡 Ⅳ a 16.02 26.43 927.87 0.11 0.790 0.239 6.700 5.500 147.47 18.18 14.18 12.28 0.93 1.22 32.00 1.02 0.61 0.70 W4-110- 2-3-1 野三坡 Ⅳ a 14.14 192.96 1 402.74 0.64 2.400 0.350 24.000 10.300 672.00 39.93 76.21 34.48 0.41 1.20 29.49 0.67 0.78 0.61 平均值 8.83 0.48 31.78 0.01 0.14 0.22 1.82 41.59 7.21 13.36 1.02 26.45 0.80 1.42 25.35 0.99 1.29 0.84 标准偏差 4.70 0.76 24.09 0.01 0.36 0.30 3.46 143.93 13.02 25.67 1.21 33.41 0.65 1.01 14.81 0.97 1.50 0.75 注:元素含量在中国地质大学(北京)使用LA-ICP-MS测量,并以同一薄片的多测点平均值列出.N.A.为未检出;Ge/Si单位为μmol/mol;Fe/Al、Fe/Mn、P/Al为质量分数比值.岩性:a. 硅岩条带;b. 纹层状硅岩;c. 硅岩结核. -
Algeo, T. J., Li, C., 2020. Redox Classification and Calibration of Redox Thresholds in Sedimentary Systems. Geochimica et Cosmochimica Acta, 287: 8-26. https://doi.org/10.1016/j.gca.2020.01.055 Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3-4): 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001 Alibert, C., Kinsley, L., 2016. Ge/Si in Hamersley BIF as Tracer of Hydrothermal Si and Ge Inputs to the Paleoproterozoic Ocean. Geochimica et Cosmochimica Acta, 184: 329-343. https://doi.org/10.1016/j.gca.2016.03.027 Andrade, C. N., Lapen, T. J., Chafetz, H. S., 2023. Silicon Isotopic Compositions of Dissolved Silicic Acid in Pre- and Post-Diatom Oceans. Geochimica et Cosmochimica Acta, 343: 264-271. https://doi.org/10.1016/j.gca.2022.11.021 Baines, S. B., Twining, B. S., Brzezinski, M. A., et al., 2012. Significant Silicon Accumulation by Marine Picocyanobacteria. Nature Geoscience, 5: 886-891. https://doi.org/10.1038/ngeo1641 Benning, L. G., Phoenix, V. R., Yee, N., et al., 2004. Molecular Characterization of Cyanobacterial Silicification Using Synchrotron Infrared Micro-Spectroscopy. Geochimica et Cosmochimica Acta, 68(4): 729-741. https://doi.org/10.1016/s0016-7037(03)00489-7 Brzezinski, M. A., Krause, J. W., Baines, S. B., et al., 2017. Patterns and Regulation of Silicon Accumulation in Synechococcus Spp. Journal of Phycology, 53(4): 746-761. https://doi.org/10.1111/jpy.12545 Buick, R., Knoll, A. H., 1999. Acritarchs and Microfossils from the Mesoproterozoic Bangemall Group, Northwestern Australia. Journal of Paleontology, 73(5): 744-764. https://doi.org/10.1017/s0022336000040634 Cermeño, P., Falkowski, P. G., Romero, O. E., et al., 2015. Continental Erosion and the Cenozoic Rise of Marine Diatoms. Proceedings of the National Academy of Sciences, 112(14): 4239-4244. https://doi.org/10.1073/pnas.1412883112 Conley, D. J., Frings, P. J., Fontorbe, G., et al., 2017. Biosilicification Drives a Decline of Dissolved Si in the Oceans through Geologic Time. Frontiers in Marine Science, 4: 397. https://doi.org/10.3389/fmars.2017.00397 Cui, Y. X., Lang, X. G., Li, F. B., et al., 2019. Germanium/Silica Ratio and Rare Earth Element Composition of Silica-Filling in Sheet Cracks of the Doushantuo Cap Carbonates, South China: Constraining Hydrothermal Activity during the Marinoan Snowball Earth Glaciation. Precambrian Research, 332: 105407. https://doi.org/10.1016/j.precamres.2019.105407 Delvigne, C., Cardinal, D., Hofmann, A., et al., 2012. Stratigraphic Changes of Ge/Si, REE+Y and Silicon Isotopes as Insights into the Deposition of a Mesoarchaean Banded Iron Formation. Earth and Planetary Science Letters, 355: 109-118. https://doi.org/10.1016/j.epsl.2012.07.035 Ding, T. P., Gao, J. F., Tian, S. H., et al., 2017. The δ30Si Peak Value Discovered in Middle Proterozoic Chert and Its Implication for Environmental Variations in the Ancient Ocean. Scientific Reports, 7: 44000. https://doi.org/10.1038/srep44000 Dong, L., Shen, B., Lee, C. A., et al., 2015. Germanium/Silicon of the Ediacaran-Cambrian Laobao Cherts: Implications for the Bedded Chert Formation and Paleoenvironment Interpretations. Geochemistry, Geophysics, Geosystems, 16(3): 751-763. https://doi.org/10.1002/2014GC005595 Egan, K. E., Rickaby, R. E. M., Hendry, K. R., et al., 2013. Opening the Gateways for Diatoms Primes Earth for Antarctic Glaciation. Earth and Planetary Science Letters, 375: 34-43. https://doi.org/10.1016/j.epsl.2013.04.030 Escario, S., Nightingale, M., Humez, P., et al., 2020. The Contribution of Aqueous Catechol-Silica Complexes to Silicification during Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 280: 185-201. https://doi.org/10.1016/j.gca.2020.04.016 Escoube, R., Rouxel, O. J., Edwards, K., et al., 2015. Coupled Ge/Si and Ge Isotope Ratios as Geochemical Tracers of Seafloor Hydrothermal Systems: Case Studies at Loihi Seamount and East Pacific Rise 9°50'N. Geochimica et Cosmochimica Acta, 167: 93-112. https://doi.org/10.1016/j.gca.2015.06.025 Froelich, P. N., Blanc, V., Mortlock, R. A., et al., 1992. River Fluxes of Dissolved Silica to the Ocean Were Higher during Glacials: Ge/Si in Diatoms, Rivers, and Oceans. Paleoceanography, 7(6): 739-767. https://doi.org/10.1029/92PA02090 Gao, P., He, Z. L., Lash, G. G., et al., 2020. Mixed Seawater and Hydrothermal Sources of Nodular Chert in Middle Permian Limestone on the Eastern Paleo-Tethys Margin (South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 551: 109740. https://doi.org/10.1016/j.palaeo.2020.109740 Geilert, S., Vroon, P. Z., van Bergen, M. J., 2014. Silicon Isotopes and Trace Elements in Chert Record Early Archean Basin Evolution. Chemical Geology, 386: 133-142. https://doi.org/10.1016/j.chemgeo.2014.07.027 Gong, J., Myers, K. D., Munoz-Saez, C., et al., 2020. Formation and Preservation of Microbial Palisade Fabric in Silica Deposits from El Tatio, Chile. Astrobiology, 20(4): 500-524. https://doi.org/10.1089/ast.2019.2025 Hamade, T., Konhauser, K. O., Raiswell, R., et al., 2003. Using Ge/Si Ratios to Decouple Iron and Silica Fluxes in Precambrian Banded Iron Formations. Geology, 31(1): 35. https://doi.org/10.1130/0091-7613(2003)031<0035: UGSRTD>2.0.CO;2 doi: 10.1130/0091-7613(2003)031<0035:UGSRTD>2.0.CO;2 Handley, K. M., Turner, S. J., Campbell, K. A., et al., 2008. Silicifying Biofilm Exopolymers on a Hot-Spring Microstromatolite: Templating Nanometer-Thick Laminae. Astrobiology, 8(4): 747-770. https://doi.org/10.1089/ast.2007.0172 Herdianita, N. R., Browne, P. R. L., Rodgers, K. A., et al., 2000. Mineralogical and Textural Changes Accompanying Ageing of Silica Sinter. Mineralium Deposita, 35(1): 48-62. https://doi.org/10.1007/s001260050005 Hofmann, H. J., Jackson, G. D., 1991. Shelf-Facies Microfossils from the Uluksan Group (Proterozoic Bylot Supergroup), Baffin Island, Canada. Journal of Paleontology, 65(3): 361-382. https://doi.org/10.1017/S0022336000030353 Isson, T. T., Planavsky, N. J., Coogan, L. A., et al., 2020. Evolution of the Global Carbon Cycle and Climate Regulation on Earth. Global Biogeochemical Cycles, 34(2): e2018GB006061. https://doi.org/10.1029/2018gb006061 Jones, B., Renaut, R. W., 2007. Microstructural Changes Accompanying the Opal-A to Opal-CT Transition: New Evidence from the Siliceous Sinters of Geysir, Haukadalur, Iceland. Sedimentology, 54(4): 921-948. https://doi.org/10.1111/j.1365-3091.2007.00866.x Jurkowska, A., Świerczewska-Gładysz, E., 2020. New Model of Si Balance in the Late Cretaceous Epicontinental European Basin. Global and Planetary Change, 186: 103108. https://doi.org/10.1016/j.gloplacha.2019.103108 Jurkowska, A., Świerczewska-Gładysz, E., 2024. The Evolution of the Marine Si Cycle in the Archean-Palaeozoic: An Overlooked Si Source? Earth-Science Reviews, 248: 104629. https://doi.org/10.1016/j.earscirev.2023.104629 Kastner, M., Siever, R., 1983. Siliceous Sediments of the Guaymas Basin: The Effect of High Thermal Gradients on Diagenesis. The Journal of Geology, 91(6): 629-641. https://doi.org/10.1086/628816 Kent, A. G., Baer, S. E., Mouginot, C., et al., 2019. Parallel Phylogeography of Prochlorococcus and Synechococcus. The ISME Journal, 13: 430-441. https://doi.org/10.1038/s41396-018-0287-6 Knauth, L. P., 1994. Petrogenesis of Chert. Reviews in Mineralogy & Geochemistry, 29: 233-258. https://doi.org/10.1515/9781501509698-012 Knoll, A. H., 1982. Microfossils from the Late Precambrian Draken Conglomerate, Ny Friesland, Svalbard. Journal of Paleontology, 56: 755-790. Knoll, A. H., Nowak, M. A., 2017. The Timetable of Evolution. Science Advances, 3(5): e1603076. https://doi.org/10.1126/sciadv.1603076 Konhauser, K. O., Phoenix, V. R., Bottrell, S. H., et al., 2001. Microbial-Silica Interactions in Icelandic Hot Spring Sinter: Possible Analogues for Some Precambrian Siliceous Stromatolites. Sedimentology, 48(2): 415-433. https://doi.org/10.1046/j.1365-3091.2001.00372.x Krause, J. W., Brzezinski, M. A., Baines, S. B., et al., 2017. Picoplankton Contribution to Biogenic Silica Stocks and Production Rates in the Sargasso Sea. Global Biogeochemical Cycles, 31(5): 762-774. https://doi.org/10.1002/2017GB005619 Kremer, B., 2020. Entrapment and Transformation of Post-Bloom Radiolarians in Cyanobacterial Mats as a Factor Enhancing the Formation of Black Cherts in the Early Silurian Sea. Journal of Sedimentary Research, 90(2): 151-164. https://doi.org/10.2110/jsr.2020.7 Li, C. Q., Dong, L., Ma, H. R., et al., 2022b. Formation of the Massive Bedded Chert and Coupled Silicon and Iron Cycles during the Ediacaran-Cambrian Transition. Earth and Planetary Science Letters, 594: 117721. https://doi.org/10.1016/j.epsl.2022.117721 Li, J., Liu, P., Menguy, N., et al., 2022a. Intracellular Silicification by Early-Branching Magnetotactic Bacteria. Science Advances, 8(19): eabn6045. https://doi.org/10.1126/sciadv.abn6045 Maliva, R. G., Knoll, A. H., Simonson, B. M., 2005. Secular Change in the Precambrian Silica Cycle: Insights from Chert Petrology. Geological Society of America Bulletin, 117(7): 835. https://doi.org/10.1130/b25555.1 Manning-Berg, A. R., Kah, L. C., 2017. Proterozoic Microbial Mats and Their Constraints on Environments of Silicification. Geobiology, 15(4): 469-483. https://doi.org/10.1111/gbi.12238 Marron, A. O., Ratcliffe, S., Wheeler, G. L., et al., 2016. The Evolution of Silicon Transport in Eukaryotes. Molecular Biology and Evolution, 33(12): 3226-3248. https://doi.org/10.1093/molbev/msw209 Miao, L. Y., Moczydłowska, M., Zhu, S. X., et al., 2019. New Record of Organic-Walled, Morphologically Distinct Microfossils from the Late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Research, 321: 172-198. https://doi.org/10.1016/j.precamres.2018.11.019 Moore, K. R., Gong, J., Pajusalu, M., et al., 2021. A New Model for Silicification of Cyanobacteria in Proterozoic Tidal Flats. Geobiology, 19(5): 438-449. https://doi.org/10.1111/gbi.12447 Mortlock, R. A., Froelich, P. N., Feely, R. A., et al., 1993. Silica and Germanium in Pacific Ocean Hydrothermal Vents and Plumes. Earth and Planetary Science Letters, 119(3): 365-378. https://doi.org/10.1016/0012-821X(93)90144-X Ohnemus, D. C., Krause, J. W., Brzezinski, M. A., et al., 2018. The Chemical Form of Silicon in Marine Synechococcus. Marine Chemistry, 206: 44-51. https://doi.org/10.1016/j.marchem.2018.08.004 Perri, E., Tucker, M. E., Słowakiewicz, M., et al., 2018. Carbonate and Silicate Biomineralization in a Hypersaline Microbial Mat (Mesaieed Sabkha, Qatar): Roles of Bacteria, Extracellular Polymeric Substances and Viruses. Sedimentology, 65(4): 1213-1245. https://doi.org/10.1111/sed.12419 Planavsky, N. J., Rouxel, O. J., Bekker, A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090. https://doi.org/10.1038/nature09485 Rodgers, K. A., Browne, P. R. L., Buddle, T. F., et al., 2004. Silica Phases in Sinters and Residues from Geothermal Fields of New Zealand. Earth-Science Reviews, 66(1-2): 1-61. https://doi.org/10.1016/j.earscirev.2003.10.001 Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D., et al., 2022. Cyanobacteria and Biogeochemical Cycles through Earth History. Trends in Microbiology, 30(2): 143-157. https://doi.org/10.1016/j.tim.2021.05.008 Shen, B., Ma, H. R., Ye, H. Q., et al., 2018. Hydrothermal Origin of Syndepositional Chert Bands and Nodules in the Mesoproterozoic Wumishan Formation: Implications for the Evolution of Mesoproterozoic Cratonic Basin, North China. Precambrian Research, 310: 213-228. https://doi.org/10.1016/j.precamres.2018.03.007 Shi, M., Feng, Q. L., Khan, M. Z., et al., 2017. An Eukaryote-Bearing Microbiota from the Early Mesoproterozoic Gaoyuzhuang Formation, Tianjin, China and Its Significance. Precambrian Research, 303: 709-726. https://doi.org/10.1016/j.precamres.2017.09.013 Shi, Q., Shi, X. Y., Tang, D. J., et al., 2021. Heterogeneous Oxygenation Coupled with Low Phosphorus Bio-Availability Delayed Eukaryotic Diversification in Mesoproterozoic Oceans: Evidence from the Ca 1.46 Ga Hongshuizhuang Formation of North China. Precambrian Research, 354: 106050. https://doi.org/10.1016/j.precamres.2020.106050 Siever, R., 1992. The Silica Cycle in the Precambrian. Geochimica et Cosmochimica Acta, 56(8): 3265-3272. https://doi.org/10.1016/0016-7037(92)90303-Z Stefurak, E. J. T., Lowe, D. R., Zentner, D., et al., 2015. Sedimentology and Geochemistry of Archean Silica Granules. Geological Society of America Bulletin, : B31181.1. https://doi.org/10.1130/b31181.1 Stolper, D. A., Love, G. D., Bates, S., et al., 2017. Paleoecology and Paleoceanography of the Athel Silicilyte, Ediacaran-Cambrian Boundary, Sultanate of Oman. Geobiology, 15(3): 401-426. https://doi.org/10.1111/gbi.12236 Su, W. B., Li, H. K., Huff, W. D., et al., 2010. SHRIMP U-Pb Dating for a K-Bentonite Bed in the Tieling Formation, North China. Chinese Science Bulletin, 55(29): 3312-3323. https://doi.org/10.1007/s11434-010-4007-5 Tang, D. J., Shi, X. Y., Jiang, G. Q., et al., 2018. Stratiform Siderites from the Mesoproterozoic Xiamaling Formation in North China: Genesis and Environmental Implications. Gondwana Research, 58: 1-15. https://doi.org/10.1016/j.gr.2018.01.013 Tang, D. J., Shi, X. Y., Shi, Q., et al., 2015. Organomineralization in Mesoproterozoic Giant Ooids. Journal of Asian Earth Sciences, 107: 195-211. https://doi.org/10.1016/j.jseaes.2015.04.034 Tang, T. T., Kisslinger, K., Lee, C., 2014. Silicate Deposition during Decomposition of Cyanobacteria may Promote Export of Picophytoplankton to the Deep Ocean. Nature Communications, 5: 4143. https://doi.org/10.1038/ncomms5143 Tostevin, R., Snow, J. T., Zhang, Q., et al., 2021. The Influence of Elevated SiO2 (Aq) on Intracellular Silica Uptake and Microbial Metabolism. Geobiology, 19(4): 421-433. https://doi.org/10.1111/gbi.12442 Tostevin, R., Wood, R. A., Shields, G. A., et al., 2016. Low-Oxygen Waters Limited Habitable Space for Early Animals. Nature Communications, 7: 12818. https://doi.org/10.1038/ncomms12818 Tréguer, P. J., Sutton, J. N., Brzezinski, M., et al., 2021. Reviews and Syntheses: The Biogeochemical Cycle of Silicon in the Modern Ocean. Biogeosciences, 18(4): 1269-1289. https://doi.org/10.5194/bg-18-1269-2021 Tribovillard, N., Algeo, T. J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based Onmolybdenum-Uranium Covariation—Applications to Mesozoic Paleoceanography. Chemical Geology, 324: 46-58. https://doi.org/10.1016/j.chemgeo.2011.09.009 Trower, E. J., Strauss, J. V., Sperling, E. A., et al., 2021. Isotopic Analyses of Ordovician-Silurian Siliceous Skeletons Indicate Silica-Depleted Paleozoic Oceans. Geobiology, 19(5): 460-472. https://doi.org/10.1111/gbi.12449 Wallace, M. W., Hood, A. V., Shuster, A., et al., 2017. Oxygenation History of the Neoproterozoic to Early Phanerozoic and the Rise of Land Plants. Earth and Planetary Science Letters, 466: 12-19. https://doi.org/10.1016/j.epsl.2017.02.046 Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. https://doi.org/10.1016/S0016-7037(99)00400-7 Wen, H. J., Fan, H. F., Tian, S. H., et al., 2016. The Formation Conditions of the Early Ediacaran Cherts, South China. Chemical Geology, 430: 45-69. https://doi.org/10.1016/j.chemgeo.2016.03.005 Wheat, C. G., McManus, J., 2005. The Potential Role of Ridge-Flank Hydrothermal Systems on Oceanic Germanium and Silicon Balances. Geochimica et Cosmochimica Acta, 69(8): 2021-2029. https://doi.org/10.1016/j.gca.2004.05.046 Wignall, P. B., Twitchett, R. J., 1996. Oceanic Anoxia and the End Permian Mass Extinction. Sensors (Basel, Switzerland), 272(5265): 1155-1158. https://doi.org/10.1126/science.272.5265.1155 Williams, L. A., Pasts, G. A., Crerrar, D. A., 1985. Silica Diagenesis, Ⅰ. Solubility Controls. SEPM Journal of Sedimentary Research, Vol. 55: 301-311. https://doi.org/10.1306/212f86ac-2b24-11d7-8648000102c1865d Xing, C. C., Liu, P. J., Wang, R. M., et al., 2022. Tracing the Evolution of Dissolved Organic Carbon (DOC) Pool in the Ediacaran Ocean by Germanium/Silica (Ge/Si) Ratios of Diagenetic Chert Nodules from the Doushantuo Formation, South China. Precambrian Research, 374: 106639. https://doi.org/10.1016/j.precamres.2022.106639 Ye, Y., Frings, P. J., von Blanckenburg, F., et al., 2021. Silicon Isotopes Reveal a Decline in Oceanic Dissolved Silicon Driven by Biosilicification: A Prerequisite for the Cambrian Explosion? Earth and Planetary Science Letters, 566: 116959. https://doi.org/10.1016/j.epsl.2021.116959 Yuan, Y. L., Shi, X. Y., Tang, D. J., et al., 2022. Microfabrics and Organominerals as Indicator of Microbial Dolomite in Deep Time: An Example from the Mesoproterozoic of North China. Precambrian Research, 382: 106881. https://doi.org/10.1016/j.precamres.2022.106881 Zhang, S. H., Zhao, Y., Li, X. H., et al., 2017. The 1.33-1.30 Ga Yanliao Large Igneous Province in the North China Craton: Implications for Reconstruction of the Nuna (Columbia) Supercontinent, and Specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112-125. https://doi.org/10.1016/j.epsl.2017.02.034 Zheng, X. Y., Beard, B. L., Reddy, T. R., et al., 2016. Abiologic Silicon Isotope Fractionation between Aqueous Si and Fe(Ⅲ)-Si Gel in Simulated Archean Seawater: Implications for Si Isotope Records in Precambrian Sedimentary Rocks. Geochimica et Cosmochimica Acta, 187: 102-122. https://doi.org/10.1016/j.gca.2016.05.012 -