• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    二叠纪末生物大灭绝后介形虫个体发育的差异响应

    袁爱华 万俊雨 赵奎 马雪峰 冯琴霜 喻建新 冯庆来

    袁爱华, 万俊雨, 赵奎, 马雪峰, 冯琴霜, 喻建新, 冯庆来, 2025. 二叠纪末生物大灭绝后介形虫个体发育的差异响应. 地球科学, 50(3): 1023-1036. doi: 10.3799/dqkx.2024.145
    引用本文: 袁爱华, 万俊雨, 赵奎, 马雪峰, 冯琴霜, 喻建新, 冯庆来, 2025. 二叠纪末生物大灭绝后介形虫个体发育的差异响应. 地球科学, 50(3): 1023-1036. doi: 10.3799/dqkx.2024.145
    Yuan Aihua, Wan Junyu, Zhao Kui, Ma Xuefeng, Feng Qinshuang, Yu Jianxin, Feng Qinglai, 2025. Differential Response of Ostracod Ontogeny after the End Permian Mass Extinction. Earth Science, 50(3): 1023-1036. doi: 10.3799/dqkx.2024.145
    Citation: Yuan Aihua, Wan Junyu, Zhao Kui, Ma Xuefeng, Feng Qinshuang, Yu Jianxin, Feng Qinglai, 2025. Differential Response of Ostracod Ontogeny after the End Permian Mass Extinction. Earth Science, 50(3): 1023-1036. doi: 10.3799/dqkx.2024.145

    二叠纪末生物大灭绝后介形虫个体发育的差异响应

    doi: 10.3799/dqkx.2024.145
    基金项目: 

    国家自然科学基金项目 42430209

    国家自然科学基金项目 41730320

    国家自然科学基金项目 40902002

    详细信息
      作者简介:

      袁爱华(1982—),女,副教授,博士,主要从事二叠纪‒三叠纪介形虫相关研究及教学工作.ORCID:0000-0002-0799-5368. E-mail:ahyuan@cug.edu.cn

    • 中图分类号: P52

    Differential Response of Ostracod Ontogeny after the End Permian Mass Extinction

    • 摘要: 二叠纪‒三叠纪之交发生了显生宙规模最大的生物灭绝事件,但介形虫仍有较为丰富的化石产出,为研究生物在灭绝与复苏过程中的适应性演化提供了重要载体.本研究以该时期浅海环境广泛分布的4个介形虫种为研究对象,对1 172个壳体大小进行了测量和数据分析,发现大灭绝事件后,介形虫的种群年龄结构、生长速率和体型大小均发生了一定程度的异常变化,但在不同相区、不同种和不同生长发育阶段之间的变化不尽相同,表明介形虫为应对大灭绝事件所采取的生存策略具有主动性、多样性和复杂性.

       

    • 图  1  研究剖面古地理位置(改自Scotese, 2014; Yin et al., 2014

      Fig.  1.  Paleogeographical map showing locations of the studied sections (modified from Scotese, 2014; Yin et al., 2014)

      图  2  研究剖面地层柱状图

      Fig.  2.  Stratigraphic columns of the studied sections

      图  3  Bairdia davehornei种群龄期划分及各龄期个体占比情况

      Fig.  3.  Division of ontogenic stages and proportion of individuals for each stage of Bairdia davehornei

      图  4  Bairdia? kemerensis种群龄期划分及各龄期个体占比情况

      Fig.  4.  Division of ontogenic stages and proportion of individuals for each stage of Bairdia? kemerensis

      图  5  Bairdiacypris ottomanensis种群龄期划分及各龄期个体占比情况

      Fig.  5.  Division of ontogenic stages and proportion of individuals for each stage of Bairdiacypris ottomanensis

      图  6  Liuzhinia antalyaensis种群龄期划分及各龄期个体占比情况

      Fig.  6.  Division of ontogenic stages and proportion of individuals for each stage of Liuzhinia antalyaensis

      图  7  四个种各发育阶段的生长速率变化

      Fig.  7.  Change in growth rate among ontogenic stages of the four studied species

      图  8  四个种各龄期壳体大小分布箱形图

      Fig.  8.  Box and whisker plots of body size distribution of ostracod specimens at each ontogenic stage of the four studied species

      表  1  四个种各幼年期生长速率

      Table  1.   Growth rate for each ontogenic stage of the four studied species

      生长阶段 灭绝前 残存期 生长阶段 灭绝前 残存期
      微生物岩相 非微生物岩相 微生物岩相 非微生物岩相
      Bairdia davehornei Bairdiacypris ottomanensis
      A-1~A 1.18 1.21 - A-1~A 1.27 1.20 1.25
      A-2~A-1 1.17 1.24 - A-2~A-1 1.24 1.30 1.22
      A-3~A-2 1.25 1.22 - A-3~A-2 1.27 1.28 1.24
      A-4~A-3 1.16 1.32 - A-4~A-3 1.23 1.25 1.31
      A-5~A-4 1.24 - - A-5~A-4 1.31 - 1.42
      A-4~A平均 1.19 1.25 - A-4~A平均 1.26 1.26 1.25
      A-2~A平均 1.17 1.22 - A-2~A平均 1.26 1.25 1.23
      Bairdia? kemerensis Liuzhinia antalyaensis
      A-1~A 1.23 1.18 1.17 A-1~A 1.17 1.15 1.14
      A-2~A-1 1.16 1.11 1.13 A-2~A-1 1.22 1.17 1.09
      A-3~A-2 1.28 - 1.13 A-3~A-2 1.28 1.25 1.25
      A-4~A-3 - - 1.21 A-4~A-3 1.28 1.21 1.23
      A-4~A平均 - - 1.16 A-4~A平均 1.24 1.20 1.18
      A-2~A平均 1.19 1.15 1.15 A-2~A平均 1.19 1.16 1.12
      下载: 导出CSV
    • Anderson⁃Teixeira, K. J., Savage, V. M., Allen, A. P., et al., 2009. Allometry and Metabolic Scaling in Ecology. John Wiley & Sons, Chichester. https://doi.org/10.1002/9780470015902.a0021222
      Baud, A., Richoz, S., Pruss, S., 2007. The Lower Triassic Anachronistic Carbonate Facies in Space and Time. Global and Planetary Change, 55(1-3): 81-89. https://doi.org/10.1016/j.gloplacha.2006.06.008
      Bertholon, L., 1997. Les Hétérochronies du Développement chez les Ostracodes, Indicateurs de Stratégies Adaptatives. Geobios, 30: 277-285. https://doi.org/10.1016/S0016⁃6995(97)80103⁃9
      Brayard, A., Meier, M., Escarguel, G., et al., 2015. Early Triassic Gulliver Gastropods: Spatio⁃Temporal Distribution and Significance for Biotic Recovery after the End⁃Permian Mass Extinction. Earth⁃Science Reviews, 146: 31-64. https://doi.org/10.1016/j.earscirev.2015.03.005
      Brooks, W. K., 1886. Report on the Stomatopoda Collected by H. M. S. Challenger during the Years 1873-1876. W. K. Brooks, London. https://doi.org/10.5962/bhl.title.9891
      Cantine, M. D., Fournier, G. P., 2018. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor. Origins of Life and Evolution of the Biosphere, 48(1): 35-54. https://doi.org/10.1007/s11084⁃017⁃9542⁃5
      Chen, J., Song, H. J., He, W. H., et al., 2019. Size Variation of Brachiopods from the Late Permian through the Middle Triassic in South China: Evidence for the Lilliput Effect Following the Permian⁃Triassic Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 248-257. https://doi.org/10.1016/j.palaeo.2018.07.013
      Chu, D. L., Tong, J. N., Song, H. J., et al., 2015. Lilliput Effect in Freshwater Ostracods during the Permian⁃Triassic Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 435: 38-52. https://doi.org/10.1016/j.palaeo.2015.06.003
      Cohen, A. C., Morin, J. G., 1990. Patterns of Reproduction in Ostracodes: A Review. Journal of Crustacean Biology, 10(2): 184-212. https://doi.org/10.1163/193724090X00023
      D'Ambrosio, D. S., García, A., Díaz, A. R., et al., 2017. Distribution of Ostracods in West⁃Central Argentina Related to Host⁃Water Chemistry and Climate: Implications for Paleolimnology. Journal of Paleolimnology, 58(2): 101-117. https://doi.org/10.1007/s10933⁃017⁃9963⁃1
      Danielopol, D. L., Baltanás, A., Namiotko, T., et al., 2008. Developmental Trajectories in Geographically Separated Populations of Non⁃Marine Ostracods: Morphometric Applications for Palaeoecological Studies. Senckenbergiana Lethaea, 88(1): 183-193. https://doi.org/10.1007/BF03043988
      Forel, M. B., 2015. Heterochronic Growth of Ostracods (Crustacea) from Microbial Deposits in the Aftermath of the End⁃Permian Extinction. Journal of Systematic Palaeontology, 13(4): 315-349. https://doi.org/10.1080/14772019.2014.902400
      Forel, M. B., Crasquin, S., 2015. Comment on the Chu et al., Paper "Lilliput Effect in Freshwater Ostracods during the Permian⁃Triassic Extinction" [Palaeogeography, Palaeoclimatology, Palaeoecology 435 (2015): 38-52. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 860-862. https://doi.org/10.1016/j.palaeo.2015.07.051
      Forel, M. B., Crasquin, S., Chitnarin, A., et al., 2015. Precocious Sexual Dimorphism and the Lilliput Effect in Neo⁃Tethyan Ostracoda (Crustacea) through the Permian⁃Triassic Boundary. Palaeontology, 58(3): 409-454. https://doi.org/10.1111/pala.12151
      Foster, W. J., Ayzel, G., Münchmeyer, J., et al., 2022. Machine Learning Identifies Ecological Selectivity Patterns across the End⁃Permian Mass Extinction. Paleobiology, 48(3): 357-371. https://doi.org/10.1017/pab.2022.1
      Fox, C. W., Czesak, M. E., 2000. Evolutionary Ecology of Progeny Size in Arthropods. Annual Review of Entomology, 45(1): 341-369. https://doi.org/10.1146/annurev.ento.45.1.341
      Fraiser, M. L., Twitchett, R. J., Frederickson, J. A., et al., 2011. Gastropod Evidence Against the Early Triassic Lilliput Effect: Comment. Geology, 39(1): e232. https://doi.org/10.1130/G31614C.1
      Gliwa, J., Forel, M. B., Crasquin, S., et al., 2021. Ostracods from the End⁃Permian Mass Extinction in the Aras Valley Section (North⁃West Iran). Papers in Palaeontology, 7(2): 1003-1042. https://doi.org/10.1002/spp2.1330
      Gliwa, J., Ghaderi, A., Leda, L., et al., 2020. Aras Valley (Northwest Iran): High⁃Resolution Stratigraphy of a Continuous Central Tethyan Permian⁃Triassic Boundary Section. Fossil Record, 23(1): 33-69. https://doi.org/10.5194/fr⁃23⁃33⁃2020
      Harries, P. J., Kauffman, E. G., Hansen, T. A., 1997. Models for Biotic Survival Following Mass Extinction. Geological Society, London, Special Publications, 102(1): 41-60. https://doi.org/10.1144/gsl.sp.1996.001.01.03
      Horne, D. J., Martens, K., 2000. Evolutionary Biology and Ecology of Ostracoda. In: Dumont, H. J., ed., Developments in Hydrobiology 148. Springer, Berlin.
      Jablonski, D., 1986. Evolutionary Consequences of Mass Extinctions. In: Raup, D. M., Jablonski, D., eds., Patterns and Processes in the History of Life. Springer, Berlin. https://doi.org/10.1007/978⁃3⁃642⁃70831⁃2_17
      Jablonski, D., 1996. Body Size and Macroevolution. In: Jablonski, D., Erwin, D. H., Lipps, J. H., eds., Evolutionary Paleobiology. The University of Chicago Press, Chicago.
      Kershaw, S., Guo, L., Swift, A., et al., 2002. Microbialites in the Permian⁃Triassic Boundary Interval in Central China: Structure, Age and Distribution. Facies, 47: 83-89. https://doi.org/10.1007/BF02667707
      Lehrmann, D. J., 1999. Early Triassic Calcimicrobial Mounds and Biostromes of the Nanpanjiang Basin, South China. Geology, 27(4): 359-362. https://doi.org/10.1130/ 0091⁃7613(1999)027<0359: etcmab>2.3.co;2 doi: 10.1130/0091⁃7613(1999)027<0359:etcmab>2.3.co;2
      Lika, K., Kooijman, S. A. L. M., 2003. Life History Implications of Allocation to Growth Versus Reproduction in Dynamic Energy Budgets. Bulletin of Mathematical Biology, 65(5): 809-834. https://doi.org/10.1016/S0092⁃8240(03)00039⁃9
      Luo, G. M., Lai, X. L., Jiang, H. S., et al., 2006. Size Variation of the End Permian Conodont Neogondolella at Meishan Section, Changxing, Zhejiang and Its Significance. Science in China Series D, 49(4): 337-347. https://doi.org/10.1007/s11430⁃006⁃0337⁃1
      Mezquita, F., Roca, J. R., Reed, J. M., et al., 2005. Quantifying Species⁃Environment Relationships in Non⁃Marine Ostracoda for Ecological and Palaeoecological Studies: Examples Using Iberian Data. Palaeogeography, Palaeoclimatology, Palaeoecology, 225(1-4): 93-117. https://doi.org/10.1016/j.palaeo.2004.02.052
      Morales⁃Ramírez, A., Jakob, J., 2008. Seasonal Vertical Distribution, Abundance, Biomass, and Biometrical Relationships of Ostracods in Golfo Dulce, Pacific Coast of Costa Rica. Revista de Biología Tropical, 56(Suppl. 4): 125-147. https://doi.org/10.15517/RBT.V56I4.27217
      Nätscher, P. S., Gliwa, J., De Baets, K., et al., 2023. Exceptions to the Temperature⁃Size Rule: No Lilliput Effect in End⁃Permian Ostracods (Crustacea) from Aras Valley (Northwest Iran). Palaeontology, 66(4): e12667. https://doi.org/10.1111/pala.12667
      Orcutt, J. D. Jr, Porter, K. G., 1983. Diel Vertical Migration by Zooplankton: Constant and Fluctuating Temperature Effects on Life History Parameters of Daphnia1. Limnology and Oceanography, 28(4): 720-730. https://doi.org/10.4319/lo.1983.28.4.0720
      Ozawa, H., Kamiya, T., 2005. The Effects of Glacio⁃Eustatic Sea⁃Level Change on Pleistocene Cold⁃Water Ostracod Assemblages from the Japan Sea. Marine Micropaleontology, 54(3-4): 167-189. https://doi.org/10.1016/j.marmicro.2004.10.002
      Pereira, J. D., Schneider, D. I. D., da Rocha, C. E. F., et al., 2017. Carapace Ontogeny of the Bromeliad Dwelling Ostracod Elpidium bromeliarum Müller, 1880 (Crustacea: Ostracoda). Journal of Natural History, 51(35-36): 2185-2196. https://doi.org/10.1080/00222933.2017.1360529
      Reilly, S. M., Wiley, E. O., Meinhardt, D. J., 1997. An Integrative Approach to Heterochrony: The Distinction between Interspecific and Intraspecific Phenomena. Biological Journal of the Linnean Society, 60(1): 119-143. https://doi.org/10.1111/j.1095⁃8312.1997.tb01487.x
      Scotese, C. R., 2014. Atlas of Permo⁃Triassic Paleogeographic Maps (Mollweide Projection), Maps 43⁃52, Volumes 3 & 4 of the PALEOMAP Atlas for ArcGIS. PALEOMAP Project, Evanston. https://doi.org/10.13140/2.1.2609.9209
      Sentis, A., Bazin, S., Boukal, D. S., et al., 2024. Ecological Consequences of Body Size Reduction under Warming. Proceedings Biological Sciences, 291(2029): 20241250. https://doi.org/10.1098/rspb.2024.1250
      Shen, S. Z., Zhang, H., 2017. What Caused the Five Mass Extinctions? Chinese Science Bulletin, 62(11): 1119-1135 (in Chinese with English abstract). doi: 10.1360/N972017-00013
      Song, H. J., Kemp, D. B., Tian, L., et al., 2021. Thresholds of Temperature Change for Mass Extinctions. Nature Communications, 12: 4694. https://doi.org/10.1038/s41467⁃021⁃25019⁃2
      Song, H. J., Tong, J. N., Chen, Z. Q., 2011. Evolutionary Dynamics of the Permian⁃Triassic Foraminifer Size: Evidence for Lilliput Effect in the End⁃Permian Mass Extinction and Its Aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 98-110. https://doi.org/10.1016/j.palaeo.2010.10.036
      Urbanek, A., 1993. Biotic Crises in the History of Upper Silurian Graptoloids: A Palaeobiological Model. Historical Biology, 7(1): 29-50. https://doi.org/10.1080/10292389309380442
      Wan, J. Y., Yuan, A. H., Crasquin, S., et al., 2019. High⁃Resolution Variation in Ostracod Assemblages from Microbialites near the Permian⁃Triassic Boundary at Zuodeng, Guangxi Region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 535: 109349. https://doi.org/10.1016/j.palaeo.2019.109349
      Wan, J. Y., Yuan, A. H., Ye, Q., et al., 2023. Ostracod Fauna and Its Palaeoecological Significance from the Permian⁃Triassic Microbialites in Pojue, Guangxi. Acta Micropalaeontologica Sinica, 40(2): 107-119 (in Chinese with English abstract).
      Wang, C., 2019. The Research of Living Species Life Cycle and Environmental Significance on the Ostracod Limnocythere inopinata in Tibetan Plateau (Dissertation). Chinese Academy of Geological Science, Beijing (in Chinese with English abstract).
      Wang, Y. B., Tong, J. N., Wang, J. S., et al., 2005. Calcimicrobialite after End⁃Permian Mass Extinction in South China and Its Palaeoenvironmental Significance. Chinese Science Bulletin, 50(6): 552-558 (in Chinese). doi: 10.1360/972004-323
      Watabe, K., Kaesler, R. L., 2004. Ontogeny of a New Species of Paraparchites (Ostracoda) from the Lower Permian Speiser Shale in Kansas. Journal of Paleontology, 78(3): 603-611. https://doi.org/10.1666/0022⁃3360(2004)0780603: ooanso>2.0.co;2 doi: 10.1666/0022⁃3360(2004)0780603:ooanso>2.0.co;2
      Wickstrom, C. E., Castenholz, R. W., 1985. Dynamics of Cyanobacterial and Ostracod Interactions in an Oregon Hot Spring. Ecology, 66(3): 1024-1041. https://doi.org/10.2307/1940563
      Wootton, R. J., 1993. The Evolution of Life Histories: Theory and Analysis. Reviews in Fish Biology and Fisheries, 3(4): 384-385. https://doi.org/10.1007/BF00043394
      Worner, S. P., 1992. Performance of Phenological Models under Variable Temperature Regimes: Consequences of the Kaufmann or Rate Summation Effect. Environmental Entomology, 21(4): 689-699. https://doi.org/10.1093/ee/21.4.689
      Wu, Y. S., Jiang, H. X., Yang, W., et al., 2007. Microbialite of Anoxic Condition from Permian⁃Triassic Transition in Guizhou, China. Science in China (Series D), 37(5): 618-628 (in Chinese).
      Yin, H. F., Jiang, H. S., Xia, W. C., et al., 2014. The End⁃Permian Regression in South China and Its Implication on Mass Extinction. Earth⁃Science Reviews, 137: 19-33. https://doi.org/10.1016/j.earscirev.2013.06.003
      Yin, H. F., Wu, S. B., Du, Y. S., et al., 1999. South China Defined as Part of Tethyan Archipelagic Ocean System. Earth Science, 24(1): 1-12 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx199901001
      沈树忠, 张华, 2017. 什么引起五次生物大灭绝? 科学通报, 62(11): 1119-1135.
      万俊雨, 袁爱华, 叶茜, 等, 2023. 广西坡决二叠纪‒三叠纪之交含微生物岩剖面介形虫及其古生态意义. 微体古生物学报, 40(2): 107-119.
      王灿, 2019. 青藏高原现生意外湖花介属种生命周期和环境指示意义研究(硕士学位论文). 北京: 中国地质科学院.
      王永标, 童金南, 王家生, 等, 2005. 华南二叠纪末大绝灭后的钙质微生物岩及古环境意义. 科学通报, 50(6): 552-558.
      吴亚生, 姜红霞, Yang, W., 等, 2007. 二叠纪‒三叠纪之交缺氧环境的微生物和微生物岩. 中国科学(D辑), 37(5): 618-628.
      殷鸿福, 吴顺宝, 杜远生, 等, 1999. 华南是特提斯多岛洋体系的一部分. 地球科学, 24(1): 1-12. http://www.earth-science.net/article/id/749
    • dqkxzx-50-3-1023-附表1.xlsx
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  115
    • HTML全文浏览量:  74
    • PDF下载量:  26
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-11-27
    • 网络出版日期:  2025-03-19
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回