• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高产热花岗岩与锂成矿作用:以赣西地区宜丰-奉新巨型锂矿田为例

    吴俊华 龚敏 李国猛 吴赞华 季浩 周建廷 况二龙 李艳军

    吴俊华, 龚敏, 李国猛, 吴赞华, 季浩, 周建廷, 况二龙, 李艳军, 2025. 高产热花岗岩与锂成矿作用:以赣西地区宜丰-奉新巨型锂矿田为例. 地球科学, 50(7): 2643-2666. doi: 10.3799/dqkx.2024.148
    引用本文: 吴俊华, 龚敏, 李国猛, 吴赞华, 季浩, 周建廷, 况二龙, 李艳军, 2025. 高产热花岗岩与锂成矿作用:以赣西地区宜丰-奉新巨型锂矿田为例. 地球科学, 50(7): 2643-2666. doi: 10.3799/dqkx.2024.148
    Wu Junhua, Gong Min, Li Guomeng, Wu Zanhua, Ji Hao, Zhou Jianting, Kuang Erlong, Li Yanjun, 2025. High Heat Producing Granites and Related Lithium Mineralization: Insights from Giant Yifeng-Fengxin Lithium Ore Field, West Jiangxi Province. Earth Science, 50(7): 2643-2666. doi: 10.3799/dqkx.2024.148
    Citation: Wu Junhua, Gong Min, Li Guomeng, Wu Zanhua, Ji Hao, Zhou Jianting, Kuang Erlong, Li Yanjun, 2025. High Heat Producing Granites and Related Lithium Mineralization: Insights from Giant Yifeng-Fengxin Lithium Ore Field, West Jiangxi Province. Earth Science, 50(7): 2643-2666. doi: 10.3799/dqkx.2024.148

    高产热花岗岩与锂成矿作用:以赣西地区宜丰-奉新巨型锂矿田为例

    doi: 10.3799/dqkx.2024.148
    基金项目: 

    江西省“科技+地质”联合计划项目 2023KDG01004

    江西省地质局第一地质大队科技项目 2024YDDKY001

    自然资源部2024年度部省合作项目 2024ZRBSHZ127

    详细信息
      作者简介:

      吴俊华(1969-),男,博士,教授级高级工程师,主要从事矿产勘查开发与管理工作. ORCID:0000-0002-9474-5868. E-mail:875551337@qq.com

      通讯作者:

      李国猛,E-mail: liguomengcug@126.com

      李艳军,E-mail: liyj@cug.edu.cn

    • 中图分类号: P618.71;P588.12

    High Heat Producing Granites and Related Lithium Mineralization: Insights from Giant Yifeng-Fengxin Lithium Ore Field, West Jiangxi Province

    • 摘要: 花岗岩型锂矿床成矿岩体通常具有较高的放射性产热率,但高产热花岗岩与锂成矿之间的联系尚不清楚.选取赣西地区新探明的宜丰-奉新巨型花岗岩型锂矿田为主要研究对象,对不同花岗岩开展了系统的岩石学和主微量地球化学研究.结果表明,成矿花岗岩具有从边部到中心,从黑云母花岗岩、二云母花岗岩到白云母花岗岩、锂(白)云母花岗岩的明显岩性分带.这些花岗岩具有富SiO2、Al2O3、Na2O、K2O、P2O5而贫CaO、TiO2、MgO、FeO*的强过铝质高钾钙碱性特征.较低的Nb/Ta和Zr/Hf比值以及较高的10 000×Ga/Al比值指示其属于高分异的S型花岗岩.而且这些花岗岩可能经历了明显的石英、长石、云母、独居石、褐帘石和锆石的分离结晶且分异演化程度逐渐升高.黑云母花岗岩因富集U和Th而具有最高的产热率(属于高产热花岗岩),其高产热属性可能继承自幔源岩浆加入的岩浆源区.随着结晶分异程度的升高,不同岩性的产热率逐渐降低而锂含量逐渐升高.高产热岩浆岩对锂成矿的控制作用主要体现在:(1)提供成矿金属来源;(2)延长岩浆的固结时限,使得分离结晶作用和/或金属向热液中的迁移得以充分进行,促进锂的富集成矿.放射性衰变产热可能是华南高分异花岗岩成岩成矿作用的另一种热驱动机制.高产热花岗岩研究将有助于深入理解花岗岩型锂矿的形成机制及锂与钨锡、铌钽、铀等矿种的成因联系,有望为这些矿种的找矿勘查带来启示.

       

    • 图  1  赣西地区地质矿产简图(修改自Xu et al., 2023)

      Fig.  1.  Simplified geological map showing the distribution of major deposits in West Jiangxi Province (modified from Xu et al., 2023)

      图  2  宜丰‒奉新锂矿田地质简图修改自(陈祥云等, 2023)

      Fig.  2.  Simplified geological map of the Yifeng-Fengxin lithium ore field (modified from Chen et al., 2023)

      图  3  宜丰‒奉新锂矿田主要花岗岩类型野外及手标本特征

      Fig.  3.  Petrographic characteristics of the main granite types in the Yifeng-Fengxin lithium ore field from the perspective of hand specimens and outcrops

      图  4  宜丰‒奉新锂矿田主要花岗岩类型的显微镜下照片

      Ab.钠长石;Bi.黑云母;Mus.白云母;Pl.斜长石;Q.石英

      Fig.  4.  Optical microscope photos of the main granite types in the Yifeng-Fengxin lithium ore field

      图  5  (a) SiO2-(Na2O+K2O)图解;(b)SiO2-K2O图解;(c) SiO2-(Na2O+K2O-CaO)图解;(d)A/CNK-A/NK图解

      a. 底图据Middlemost,1994;b. 底图据Peccerillo and Taylor,1976Middlemost,1986;c. 底图据Frost et al.,2001;d. 底图据Maniar and Piccoli,1989. 数据来源见附表 1

      Fig.  5.  (a) SiO2-(Na2O+K2O) diagram; (b) SiO2-K2O plot; (c) SiO2-(Na2O+K2O-CaO) plot; (d) A/CNK-A/NK plot

      图  6  (a) 球粒陨石标准化稀土元素配分图;(b)原始地幔标准化微量元素蛛网图

      各类岩性的数据为此类岩石稀土、微量元素的平均值,球粒陨石和原始地幔数据均引用自Sun and McDonough(1989)

      Fig.  6.  (a) Chondrite-normalized REE pattern and (b) primitive mantle-normalized trace element spider diagram

      图  7  (a) Zr/Hf-Nb/Ta图解;(b) 10 000×Ga/Al-Zr图解

      底图据吴福元等,2017;图例和数据来源同图 5

      Fig.  7.  (a) Zr/Hf-Nb/Ta and (b) 10 000×Ga/Al-Zr diagrams

      图  8  岩浆结晶分异过程判别图解

      图例和数据来源同图 5. Allan.绿帘石;Ap.磷灰石;Bi.黑云母;Hbl.角闪石;Ilm.钛铁矿;Kfs.钾长石;Mag.磁铁矿;Mon.独居石;Mus.白云母;Pl.斜长石;Rt.金红石;Ttn.榍石;Zr.锆石

      Fig.  8.  Discrimination diagrams showing the fractional crystallization process

      图  9  宜丰‒奉新锂矿田和雅山414锂矿不同类型花岗岩产热率(a、b)、Zr/Hf比值(c、d)和锂含量(e、f)箱线图(图例和数据来源同图 5)

      Fig.  9.  Box and whisker plots illustrating the RHPs (a and b), Zr/Hf ratios (c and d) and lithium contents (e and f) in different types of granites from the Yifeng-Fengxin lithium ore field and Yashan 414 Li deposit (data sources and symbols for the different rock types here are the same as in Fig. 5)

      图  10  (a) 宜丰‒奉新锂矿田不同类型花岗岩U、Th、K对RHP的贡献三角图解;(b) U、(c) Th和(d) K2O含量与RHP的二元图解(图例和数据来源同图 5)

      Fig.  10.  (a) Ternary plot of contributions of U, Th and K to RHP in different types of granites from the Yifeng-Fengxin lithium ore field and binary plots of (b) U, (c) Th, and (d) K2O contents and RHP (data sources and symbols for the different rock types here are the same as in Fig. 5)

      图  11  宜丰‒奉新锂矿田不同类型花岗岩的1/RHP与Li、Rb、Cs、Be、Ta和Nb含量之间的二元图解(图例和数据来源同图 5)

      Fig.  11.  Binary plots of 1/RHP and Li、Rb、Cs、Be、Ta and Nb contents of different types of granites in the Yifeng-Fengxin lithium ore field (data sources and symbols for the different rock types here are the same as in Fig. 5)

      表  1  宜丰‒奉新锂矿田不同类型花岗岩的主微量元素含量

      Table  1.   The major and trace element contents of different types of granites in the Yifeng-Fengxin lithium ore field

      序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
      样品编号 ZK6101-H25 ZK613-4 ZK1602-H59 B113-1 B113-1-R ZK24-12-H23 ZK2402-H9 ZK1602-H6 21BSD-1 21BSD-2 22BSD-1 22BSD-2 22BSD-3 22DG-1 22DG-2 22DG-3 22DG-3-R 22DG-4 21DG-1 21GK-1 ZK24-12-H65 ZK205-H140
      岩性 黑云母花岗岩 二云母花岗岩 白云母花岗岩
      主量元素(wt.%)
      SiO2 69.48 73.12 72.82 71.4 71.5 72.47 71.11 71.76 73.22 73.98 74.55 74.40 74.01 73.91 73.76 73.76 73.70 74.00 74.09 75.51 72.78 63.88
      TiO2 0.48 0.24 0.06 0.07 0.07 0.09 0.07 0.07 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.02 0.01
      Al2O3 14.71 14.12 15.26 16.1 16.2 15.24 16.45 15.97 15.93 14.91 14.99 15.34 15.16 15.20 15.22 15.47 15.54 15.22 15.50 14.66 15.85 20.42
      FeO* 3.97 1.39 0.89 0.80 0.83 0.96 0.84 1.00 0.54 0.60 0.42 0.43 0.44 0.46 0.48 0.46 0.47 0.43 0.44 0.47 0.74 0.71
      MnO 1.40 0.41 0.15 0.16 0.16 0.23 0.15 0.12 0.01 0.01 0.04 0.04 0.03 0.01 0.01 0.01 0.00 0.01 0.01 0.05 0.02 0.01
      MgO 0.07 0.07 0.09 0.05 0.05 0.08 0.04 0.12 0.09 0.13 0.11 0.11 0.11 0.12 0.13 0.12 0.12 0.12 0.12 0.13 0.09 0.14
      CaO 0.94 1.19 0.55 0.33 0.33 0.53 0.12 0.56 0.12 0.30 0.07 0.07 0.30 0.34 0.31 0.21 0.21 0.51 0.09 0.12 0.24 0.36
      Na2O 2.24 3.68 4.19 3.45 3.41 3.39 3.13 3.59 5.01 4.06 3.99 4.24 4.93 3.93 3.54 3.79 3.75 3.85 4.34 3.33 4.61 7.29
      K2O 3.94 4.23 3.60 5.10 5.04 4.77 4.94 3.84 3.28 3.77 3.78 3.46 3.28 3.49 3.61 3.54 3.60 3.33 3.42 3.10 3.76 5.05
      P2O5 0.17 0.06 0.52 0.45 0.45 0.45 0.51 0.69 0.33 0.44 0.15 0.13 0.38 0.53 0.71 0.73 0.71 0.59 0.25 0.23 0.40 0.18
      LOI 1.64 0.82 1.11 1.65 1.65 1.25 2.26 1.84 1.06 1.16 1.30 1.38 1.01 1.42 1.56 1.44 1.47 1.50 1.41 1.77 1.06 1.28
      Total 99.47 99.47 99.34 99.7 99.7 99.57 99.70 99.67 99.66 99.45 99.46 99.67 99.71 99.46 99.39 99.58 99.62 99.62 99.73 99.45 99.67 99.40
      微量元素(ppm,ppm=10-6
      Li 279 235 1 528 1 181 1 155 1 167 1 273 2 183 1 578 2 091 2 552 1 689 2 143 3 014 3 411 3 204 - - 3 616 3 522 1 446 978
      Be 4.76 5.84 58.2 60.3 52.3 48 73 129 23.2 50.8 132 444 161 166 180 161 - - 135 135 37.7 44.4
      Cr 41.4 6.06 2.11 6.2 2.2 2.4 3.1 2.0 1.38 1.02 1.11 1.73 1.13 1.33 0.99 8.66 - - 0.65 8.27 1.42 0.89
      Mn 459 542 805 419 411 668 313 1 037 688 1 039 941 913 907 1 025 1 075 1 001 - - 1 003 1 139 772 1 172
      Co 58.2 98.6 115 53.8 52.8 107.0 116.00 113.00 89.5 82.5 97 97.1 98.8 70.3 77.6 71.9 - - 71.5 88.2 122 81.2
      Ni 26.2 6.93 6.18 4.86 3.28 5.63 6.66 5.68 4.34 4.04 4.57 5.05 4.58 3.83 3.9 6.01 - - 3.42 7.1 5.98 3.82
      Cu 88.8 2.2 9.94 6.07 5.5 4.47 7.31 14.60 2.82 1.92 1.96 1.5 1.93 0.81 1.07 0.94 - - 0.68 3.51 0.69 0.87
      Zn 105 43.6 123 83 78.3 84 83 198 97.4 117 110 90.8 111 127 136 129 - - 131 165 124 80.7
      Ga 18.3 18.7 21.4 19.7 18.6 20.2 18.9 24.1 17.6 23.8 19.1 17.8 19.3 20.6 19.9 19.9 - - 20.2 21.8 21.1 36.6
      Rb 246 307 1 062 1 077 1 051 1 131 1 058 1 360 1 269 1 628 1 956 1 696 1 696 2 055 2 123 2 065 - - 2 198 2 010 1 338 1 526
      Sr 95.8 84.7 22.4 29 28.9 35 23 23 1.69 5.72 4.13 2.55 10.4 70.3 29.3 31.1 - - 1.9 5.1 7.04 3.52
      Mo 0.74 0.31 0.45 0.3 0.24 0.11 0.11 0.17 0.13 0.1 0.11 0.13 0.09 0.08 0.08 0.09 - - 0.08 0.15 0.12 0.24
      Cs 85.7 40.4 335 584 573 152 474 555 298 403 354 238 374 583 622 583 - - 564 629 360 172
      Ba 493 130 66.9 73.1 71.1 515.0 67.9 26.4 0.35 0.4 19.4 7.87 4.93 1.53 1.4 0.71 - - 0.89 6.5 4.1 40.5
      Pb 27.3 42 16.6 26.5 25.7 20.6 27.2 11.6 3.13 3.55 1.78 1.26 2.18 2.67 3.58 2.76 - - 1.63 2.49 5.01 3.57
      Th 9.6 25.5 3.16 4.43 3.63 5.0 3.5 2.8 0.25 0.3 0.15 0.23 0.33 0.35 0.23 0.23 - - 0.25 0.6 0.41 1.31
      U 5.17 11.8 18 7.65 7.09 5.2 5.7 10.2 18.1 12.4 6.33 2.5 11 4.62 4.73 5.62 - - 9.2 2.68 14.3 25
      Nb 8.79 13.3 23.6 27.8 26.7 21.9 23.2 40.3 31.2 16 54.1 59.9 48.5 59.8 51.3 59.2 - - 54.4 36.8 20.4 84.9
      Ta 1.1 3.8 8.91 24.8 23.4 15 18 16 23 22.4 14.7 18.7 33.4 24.9 25.7 28.2 - - 27.3 24.9 11.1 54.3
      Zr 158 91 35.5 45.2 38.7 43.2 40.0 40.8 14.1 13.4 17 15.3 19 17.8 15.8 21.8 - - 18 20.9 17.5 20.4
      Hf 4.32 3.16 1.52 2 1.66 1.78 1.76 2.00 1.11 1.17 1.66 1.51 1.7 1.64 1.4 1.69 - - 1.62 1.65 1.17 1.47
      Sn 22.1 12.4 105 131 127 87 130 144 73.9 101 156 203 124 88.6 95 89.7 - - 93.6 119 79.6 96.2
      Ti 2 449 1226 342 412 402 500 400 362 37 39.3 27.2 28.2 31.7 39.1 37.3 35.8 - - 38.5 142 84.3 61.5
      As 15.7 1.12 2.01 0.41 0.3 0.39 1.05 0.86 0.15 0.24 0.11 0.05 0.08 0.3 0.26 0.22 - - 0.28 0.12 0.51 1.11
      V 61.9 16.4 3.66 4.51 4.2 5.2 4.0 3.9 0.41 0.59 1.02 1.15 1.2 0.57 0.51 0.77 - - 0.66 1.11 0.61 1.63
      La 22.7 27.3 4.78 5.51 4.83 6.31 4.20 3.65 0.08 0.04 0.05 0.11 0.08 0.26 0.16 0.12 - - 0.13 0.44 0.22 0.48
      Ce 48.2 59.7 11 12.3 10.9 14.5 10.0 9.0 0.44 0.51 0.26 0.35 0.39 0.81 0.57 0.44 - - 0.68 1.18 0.97 1.02
      Pr 5.63 6.86 1.11 1.25 1.11 1.49 0.88 0.88 0.02 0.01 0.01 0.02 0.02 0.07 0.05 0.03 - - 0.03 0.09 0.05 0.11
      Nd 21.8 25.2 3.96 4.4 3.87 5.43 3.02 3.18 0.06 0.04 0.03 0.05 0.06 0.19 0.14 0.08 - - 0.09 0.31 0.18 0.33
      Sm 4.85 5.92 1.03 1.06 0.95 1.34 0.72 0.83 0.03 0.03 0.02 0.03 0.03 0.1 0.07 0.06 - - 0.05 0.07 0.07 0.11
      Eu 1.11 0.53 0.11 0.14 0.14 0.14 0.09 0.07 - - - - - - - - - - - - - -
      Gd 4.8 5.94 0.91 0.99 0.91 1.26 0.61 0.76 0.03 0.04 0.02 0.04 0.05 0.1 0.08 0.08 - - 0.05 0.06 0.08 0.11
      Tb 0.74 1.1 0.16 0.16 0.15 0.21 0.10 0.14 0.01 0.01 0.01 0.01 0.01 0.03 0.02 0.02 - - 0.01 0.01 0.02 0.03
      Dy 4.36 7.46 0.86 0.89 0.83 1.14 0.45 0.74 0.04 0.06 0.04 0.06 0.07 0.14 0.11 0.13 - - 0.07 0.06 0.11 0.2
      Ho 0.86 1.54 0.13 0.14 0.13 0.2 0.1 0.1 0.01 0.01 0 0.01 0.01 0.01 0.01 0.01 - - 0.01 0.01 0.01 0.03
      Er 2.49 4.67 0.31 0.31 0.29 0.41 0.14 0.28 0.01 0.02 0.01 0.02 0.02 0.03 0.03 0.03 - - 0.01 0.03 0.04 0.1
      Tm 0.36 0.72 0.04 0.04 0.04 0.05 0.02 0.04 - - - - - - - - - - - - 0.01 0.02
      Yb 2.33 4.7 0.25 0.21 0.21 0.31 0.11 0.24 0.02 0.03 0.01 0.02 0.02 0.02 0.02 0.02 - - 0.02 0.03 0.04 0.15
      Lu 0.35 0.67 0.03 0.03 0.03 0.04 0.01 0.03 - - - - - - - - - - - 0.01 0.01 0.02
      Sc 9.31 4.85 0.77 0.87 0.88 1.18 0.68 0.72 0.1 0.07 0.13 0.11 0.14 0.12 0.13 0.14 - - 0.13 0.29 0.16 0.34
      Y 24.4 45.7 4.05 4.14 3.95 5.32 1.41 4.03 0.21 0.37 0.26 0.33 0.37 0.72 0.6 0.72 - - 0.37 0.34 0.6 1.43
      特征参数
      Na2O+K2O (wt.%) 6.18 7.91 7.79 8.55 8.45 8.16 8.07 7.43 8.29 7.83 7.77 7.70 8.21 7.42 7.15 7.33 7.35 7.18 7.76 6.43 8.37 12.34
      Na2O+K2O-CaO(wt.%) 5.24 6.72 7.24 8.22 8.12 7.63 7.95 6.87 8.17 7.53 7.70 7.63 7.91 7.08 6.84 7.12 7.14 6.67 7.67 6.31 8.13 11.98
      (K2O+Na2O)/
      CaO
      6.57 6.65 14.16 25.9 25.6 15.40 67.25 13.27 69.08 26.10 111.00 110.00 27.37 21.82 23.06 34.90 - - 86.22 53.58 34.88 34.28
      A/
      CNK
      1.52 1.10 1.29 1.36 1.38 1.30 1.53 1.44 1.33 1.32 1.39 1.41 1.24 1.40 1.48 1.48 1.49 1.40 1.41 1.62 1.31 1.13
      A/NK 1.85 1.33 1.41 1.44 1.46 1.42 1.57 1.59 1.35 1.38 1.41 1.43 1.30 1.48 1.56 1.54 1.54 1.53 1.43 1.66 1.36 1.17
      ΣREE
      (ppm)
      120.58 152.31 24.68 27.4 24.4 32.80 20.41 19.98 - - - - - - - - - - - - - -
      LREE/
      HREE
      6.40 4.68 8.17 8.90 8.42 8.14 12.61 7.54 - - - - - - - - - - - - - -
      (La/Yb)N 6.99 4.17 13.71 18.8 16.5 14.60 27.39 10.91 - - - - - - - - - - - - - -
      Eu/Eu* 0.70 0.27 0.34 0.41 0.45 0.32 0.40 0.26 - - - - - - - - - - - - - -
      10 000×Ga/
      Al
      2.36 2.51 2.66 2.32 2.19 2.52 2.18 2.86 2.10 3.03 2.42 2.20 2.42 2.57 2.48 2.44 - - 2.47 2.82 2.53 3.40
      K/Rb 132.90 114.33 28.13 39.3 39.8 35.00 38.74 23.43 21.45 19.22 16.04 16.93 16.05 14.09 14.11 14.22 - - 12.91 12.80 23.32 27.46
      Zr/Hf 36.57 28.80 23.36 22.6 23.3 24.27 22.73 20.40 12.70 11.45 10.24 10.13 11.18 10.85 11.29 12.90 - - 11.11 12.67 14.96 13.88
      Nb/Ta 7.99 3.50 2.65 1.12 1.14 1.51 1.33 2.53 1.36 0.71 3.68 3.20 1.45 2.40 2.00 2.10 - - 1.99 1.48 1.84 1.56
      Rb/Sr 2.57 3.62 47.41 37.1 36.4 32.31 45.21 59.39 750.89 284.62 473.61 665.10 163.08 29.23 72.46 66.40 - - 1156 394.1 190.1 433.5
      Zr+Nb+Ce+Y (ppm) 239 210 74 89 80 85 75 94 46 30 72 76 68 79 68 82 - - 73 59 39 108
      RHP
      (μWm-3)
      2.30 5.13 5.13 2.67 2.47 2.06 2.08 3.12 4.93 3.50 1.93 0.93 3.11 1.48 1.51 1.74 - - 2.65 0.97 4.00 6.91
      RHP_K
      (μWm-3)
      0.31 0.33 0.28 0.40 0.39 0.37 0.39 0.30 0.26 0.29 0.29 0.27 0.26 0.27 0.28 0.28 0.28 0.26 0.27 0.24 0.29 0.39
      RHP_U
      (μWm-3)
      1.33 3.03 4.63 1.97 1.82 1.34 1.46 2.62 4.65 3.19 1.63 0.64 2.83 1.19 1.22 1.44 - - 2.36 0.69 3.68 6.43
      RHP_Th
      (μWm-3)
      0.66 1.76 0.22 0.31 0.25 0.35 0.24 0.19 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 - - 0.02 0.04 0.03 0.09
      下载: 导出CSV
    • Artemieva, I. M., Thybo, H., Jakobsen, K., et al., 2017. Heat Production in Granitic Rocks: Global Analysis Based on a New Data Compilation GRANITE 2017. Earth-Science Reviews, 172: 1-26. https://doi.org/10.1016/j.earscirev.2017.07.003
      Audétat, A., Günther, D., Heinrich, C. A., 2000. Causes for Large-Scale Metal Zonation around Mineralized Plutons: Fluid Inclusion LA-ICP-MS Evidence from the Mole Granite, Australia. Economic Geology, 95(8): 1563-1581. https://doi.org/10.2113/gsecongeo.95.8.1563
      Bastos Neto, A. C., Pereira, V. P., Ronchi, L. H., et al., 2009. The World-Class Sn, Nb, Ta, F (Y, REE, Li) Deposit and the Massive Cryolite Associated with the Albite-Enriched Facies of the Madeira A-Type Granite, Pitinga Mining District, Amazonas State, Brazil. The Canadian Mineralogist, 47(6): 1329-1357. https://doi.org/10.3749/canmin.47.6.1329
      Bea, F., 2012. The Sources of Energy for Crustal Melting and the Geochemistry of Heat-Producing Elements. Lithos, 153: 278-291. https://doi.org/10.1016/j.lithos.2012.01.017
      Benson, T. R., Coble, M. A., Dilles, J. H., 2023. Hydrothermal Enrichment of Lithium in Intracaldera Illite-Bearing Claystones. Science Advances, 9(35): eadh8183. https://doi.org/10.1126/sciadv.adh8183
      Bowell, R. J., Lagos, L., de los Hoyos, C. R., et al., 2020. Classification and Characteristics of Natural Lithium Resources. Elements, 16(4): 259-264. https://doi.org/10.2138/gselements.16.4.259
      Cabello, J., 2021. Lithium Brine Production, Reserves, Resources and Exploration in Chile: An Updated Review. Ore Geology Reviews, 128: 103883. https://doi.org/10.1016/j.oregeorev.2020.103883
      Chappell, B., White, A., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173-174.
      Chen, H. W., Liu, Z. J., Wang, G., et al., 2023. Geochemical Characteristics and Petrogenesis of Jinningian Metallogenic Granite in Huashandong Tungsten Deposit, Jiangxi Province. China Tungsten Industry, 38(3): 1-11, 38 (in Chinese with English abstract).
      Chen, X. Y., Wu, J. H., Tang, W. X., et al., 2023. Newly Found Giant Granite-Associated Lithium Resources in the Western Jiangxi Province, South China. Earth Science, 48(10): 3957-3960 (in Chinese with English abstract).
      Cuney, M., 2014. Felsic Magmatism and Uranium Deposits. Bulletin de la Société Géologique de France, 185(2): 75-92. https://doi.org/10.2113/gssgfbull.185.2.75
      Cuney, M., Marignac, C., Weisbrod, A., 1992. The Beauvoir Topaz-Lepidolite Albite Granite (Massif Central, France): The Disseminated Magmatic Sn-Li-Ta-Nb-Be Mineralization. Economic Geology, 87(7): 1766-1794. https://doi.org/10.2113/gsecongeo.87.7.1766
      Dill, H. G., 2015. Pegmatites and Aplites: Their Genetic and Applied Ore Geology. Ore Geology Reviews, 69: 417-561. https://doi.org/10.1016/j.oregeorev.2015.02.022
      Duan, Z., Liao, S. B., Chu, P. L., et al., 2019. Zircon U-Pb Ages of the Neoproterozoic Jiuling Complex Granitoid in the Eastern Segment of the Jiangnan Orogen and Its Tectonic Significance. Geology in China, 46(3): 493-516 (in Chinese with English abstract).
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Gelman, S. E., Deering, C. D., Bachmann, O., et al., 2014. Identifying the Crystal Graveyards Remaining after Large Silicic Eruptions. Earth and Planetary Science Letters, 403: 299-306. https://doi.org/10.1016/j.epsl.2014.07.005
      Gong, M., Wu, J. H., Ji, H., et al., 2023. Occurrence of Lithium and Geochronology of Magmatism and Mineralization in Dagang Granite-Associated Lithium Deposit, West Jiangxi Province. Earth Science, 48(12): 4370-4386 (in Chinese with English abstract).
      Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-X
      Guo, C. L., Zhang, B. W., Zheng, Y., et al., 2024. Granite-Type Lithium Deposits in China: Important Characteristics, Metallogenic Conditions, and Genetic Mechanism. Acta Petrologica Sinica, 40(2): 347-403 (in Chinese with English abstract).
      Halliday, A. N., Davidson, J. P., Hildreth, W., et al., 1991. Modelling the Petrogenesis of High Rb/Sr Silicic Magmas. Chemical Geology, 92(1-3): 107-114. https://doi.org/10.1016/0009-2541(91)90051-R
      Huang, L. C., Jiang, S. Y., 2012. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Porphyric-Like Muscovite Granite in the Dahutang Tungsten Deposit, Jiangxi Province. Acta Petrologica Sinica, 28(12): 3887-3900 (in Chinese with English abstract).
      Huang, X. L., Wang, R. C., Chen, X. M., et al., 2002. Vertical Variations in the Mineralogy of the Yichun Topaz-Lepidolite Granite, Jiangxi Province, Southern China. The Canadian Mineralogist, 40(4): 1047-1068. https://doi.org/10.2113/gscanmin.40.4.1047
      Jiang, B. L., Zhao, J., Lin, M. H., et al., 2022. Zircon U-Pb Age of Ore-Forming Magmatic Rocks in Baishuidong Lithium Niobium Tantalum Deposit, Yifeng County, Jiangxi Province and Its Significance. World Nonferrous Metals, (19): 73-75 (in Chinese with English abstract).
      Jiang, J. S., Guo, X. R., Xu, J., et al., 2024. Genesis of Rb Mineralization of the Dongshang Rare Metal Granite in Jiangxi Province. Geological Bulletin of China, 43(1): 86-100 (in Chinese with English abstract).
      Jiang, S. Y., Wang, W., 2022. How does the Strategic Key Metal Produce Super-Rich Integrated Ore? Earth Science, 47(10): 3869-3871 (in Chinese with English abstract).
      Jiang, S. Y., Zhao, K. D., Jiang, Y. H., et al., 2008. Characteristics and Genesis of Mesozoic A-Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi-Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.04.004
      Kovalenko, V. I., Kovalenko, N. I., 1984. Problems of the Origin, Ore-bearing and Evolution of Rare-Metal Granitoids. Physics of the Earth and Planetary Interiors, 35(1-3): 51-62. https://doi.org/10.1016/0031-9201(84)90033-5
      Kromkhun, K., Foden, J., Hore, S., et al., 2013. Geochronology and Hf Isotopes of the Bimodal Mafic- Felsic High Heat Producing Igneous Suite from Mt Painter Province, South Australia. Gondwana Research, 24(3-4): 1067-1079. https://doi.org/10.1016/j.gr.2013.01.011
      Li, J., Huang, X. L., 2013. Mechanism of Ta-Nb Enrichment and Magmatic Evolution in the Yashan Granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29(12): 4311-4322 (in Chinese with English abstract).
      Li, J., Huang, X. L., He, P. L., et al., 2015. In Situ Analyses of Micas in the Yashan Granite, South China: Constraints on Magmatic and Hydrothermal Evolutions of W and Ta-Nb Bearing Granites. Ore Geology Reviews, 65: 793-810. https://doi.org/10.1016/j.oregeorev.2014.09.028
      Li, P., Li, J. K., Liu, X., et al., 2020. Geochronology and Source of the Rare-Metal Pegmatite in the Mufushan Area of the Jiangnan Orogenic Belt: A Case Study of the Giant Renli Nb-Ta Deposit in Hunan, China. Ore Geology Reviews, 116: 103237. https://doi.org/10.1016/j.oregeorev.2019.103237
      Li, R. Z., Zhou, Z. B., Peng, B., et al., 2020. A Discussion on Geological Characteristics and Genetic Mechanism of Dagang Superlarge Lithium-Bearing Porcelain Stone Deposit in Yifeng County, Jiangxi Province. Mineral Deposits, 39(6): 1015-1029 (in Chinese with English abstract).
      Li, S. H., Li, J. K., Chou, I. M., et al., 2017. The Formation of the Yichun Ta-Nb Deposit, South China, through Fractional Crystallization of Magma Indicated by Fluid and Silicate Melt Inclusions. Journal of Asian Earth Sciences, 137: 180-193. https://doi.org/10.1016/j.jseaes.2016.11.016
      Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1-2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018
      Li, X. H., Li, W. X., Li, Z. X., 2007. Re-Discussion on Genetic Types and Tectonic Significance of Early Yanshanian Granite in Nanling. Chinese Science Bulletin, 52(9): 981-991 (in Chinese).
      Li, Y. J., Wu, J. H., Gong, M., et al., 2023. Multi-Phase Diagenetic Mineralization of Giant Lithium at the Southern Edge of the Jiuling Area in the Jiangnan Orogen. The 10th National Symposium on Mineralisation Theory and Search Methods. Chinese Society for Mineralogy, Petrology and Geochemistry, Xi'an, 2 (in Chinese).
      Liao, Y. Z., 2019. The Qianlishan Granite Genetically Related to the Zoning of Shizhuyuan Ore-Field (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Liao, Y. Z., Zhang, D. H., Danyushevsky, L. V., et al., 2021a. Protracted Lifespan of the Late Mesozoic Multistage Qianlishan Granite Complex, Nanling Range, SE China: Implications for Its Genetic Relationship with Mineralization in the Dongpo Ore Field. Ore Geology Reviews, 139: 104445. https://doi.org/10.1016/j.oregeorev.2021.104445
      Liao, Y. Z., Zhao, B., Zhang, D. H., et al., 2021b. Evidence for Temporal Relationship between the Late Mesozoic Multistage Qianlishan Granite Complex and the Shizhuyuan W-Sn-Mo-Bi Deposit, SE China. Scientific Reports, 11(1): 5828. https://doi.org/10.1038/s41598-021-84902-6
      Lin, W. J., Wang, G. L., Gan, H. N., 2024. Differential Crustal Thermal Structure and Geothermal Significance in the Igneous Region of Southeastern China. Acta Geologica Sinica, 98(2): 544-557 (in Chinese with English abstract).
      Liu, J. Y., Wang, C. H., Liu, S. B., et al., 2024. Petrogenesis and Rare Metal Mineralization of Shiziling Granite-Type Lithium Deposit in Northwestern Jiangxi Province: Constraints from Petrogeochemistry and Zircon U-Pb Geochronology. Mineral Deposits, 43(1): 195-214 (in Chinese with English abstract).
      Liu, T., Jiang, S. Y., Su, H. M., et al., 2022. Petrogenesis of Ta-Nb Mineralization Related Early Cretaceous Lingshan Granite Complex, Jiangxi Province, Southeast China: Constraints from Geochronology, Whole-Rock and In-Situ Mineral Geochemistry, and Nd-Hf Isotopic Compositions. Ore Geology Reviews, 143: 104788. https://doi.org/10.1016/j.oregeorev.2022.104788
      Liu, X. C., Zhang, D. H., Yang, J. W., et al., 2023. High Heat Producing Granites and Prolonged Extraction of Tungsten and Tin from Melts. Geochimica et Cosmochimica Acta, 348: 340-354. https://doi.org/10.1016/j.gca.2023.03.012
      Liu, Z., Chen, Z. Y., Wang, C. H., 2023. Mineralogical Characteristics and Metallogenic Mechanism of Shiziling Li-Ta Deposit in Northwest Jiangxi. Acta Petrologica Sinica, 39(7): 2045-2062 (in Chinese with English abstract).
      Lou, F. S., Xu, Z., Huang, H., et al., 2023. Geological Characteristics and Prospecting Significance of Low Grade Super Large Granite Mica-Type Lithium Deposits in Jiangxi Province. Journal of East China University of Technology (Natural Science), 46(5): 425-436 (in Chinese with English abstract).
      Magyarosi, Z., 2022. Late-Magmatic Processes in the St. Lawrence Granite: Implications for Fluorite Mineralization. Journal of Geochemical Exploration, 239: 107014. https://doi.org/10.1016/j.gexplo.2022.107014
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      Mao, J. W., Yuan, S. D., Xie, G. Q., et al., 2019. New Advances on Metallogenic Studies and Exploration on Critical Minerals of China in 21st Century. Mineral Deposits, 38(5): 935-969 (in Chinese with English abstract).
      McLaren, S., Sandiford, M., Hand, M., 1999. High Radiogenic Heat-Producing Granites and Metamorphism—An Example from the Western Mount Isa Inlier, Australia. Geology, 27(8): 679-682. https://doi.org/10.1130/0091-7613(1999)0270679:HRHPGA>2.3.CO;2 doi: 10.1130/0091-7613(1999)0270679:HRHPGA>2.3.CO;2
      Middlemost, E. A., 1986. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. Longman, London.
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Mohammadi, N., McFarlane, C. R. M., Lentz, D. R., 2019. U-Pb Geochronology of Hydrothermal Monazite from Uraniferous Greisen Veins Associated with the High Heat Production Mount Douglas Granite, New Brunswick, Canada. Geosciences, 9(5): 224. https://doi.org/10.3390/geosciences9050224
      Nie, X. L., Wang, S. L., Liu, S., et al., 2022. Geological and Geochemical Characteristics of the Xikeng Lithium Deposit and the 40Ar/39Ar Chronology of Lepidolite of the Deposit in Jiangxi Province, China. Acta Mineralogica Sinica, 42(3): 285-294 (in Chinese with English abstract).
      Ouyang, Y. P., Zeng, R. L., Meng, D. L., et al., 2023. Geochronology and Geochemistry Characteristics of Dongcao Muscovite Granite in the Yifeng Area, Jiangxi Province, China: Implications for Petrogenesis and Mineralization. Minerals, 13(4): 503. https://doi.org/10.3390/min13040503.
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
      Pollard, P. J., 2021. The Yichun Ta-Sn-Li Deposit, South China: Evidence for Extreme Chemical Fractionation in F-Li-P-Rich Magma. Economic Geology, 116(2): 453-469. https://doi.org/10.5382/econgeo.4801
      Putzolu, F., Seltmann, R., Dolgopolova, A., et al., 2024. Influence of Magmatic and Magmatic-Hydrothermal Processes on the Lithium Endowment of Micas in the Cornubian Batholith (SW England). Mineralium Deposita, 59(6): 1067-1088. https://doi.org/10.1007/s00126-024-01248-5
      Qiao, S. L., John, T., Loges, A., 2024. Formation of Topaz-Greisen by a Boiling Fluid: A Case Study from the Sn-W-Li Deposit, Zinnwald/Cínovec. Economic Geology, 119(4): 805-828. https://doi.org/10.5382/econgeo.5074
      Rybach, L., 1988. Determination of Heat Production Rate. In: Haenel, R., Stegena, L., Rybach, L., eds., Handbook of Terrestrial Heat-Flow Density Determination. Springer Netherlands, Amsterdam, 125-142.
      Somarin, A. K., Mumin, A. H., 2012. The Paleo-Proterozoic High Heat Production Richardson Granite, Great Bear Magmatic Zone, Northwest Territories, Canada: Source of U for Port Radium? Resource Geology, 62(3): 227-242. https://doi.org/10.1111/j.1751-3928.2012.00192.x
      Stepanov, A., Mavrogenes, J., Meffre, S., et al., 2014. The Key Role of Mica during Igneous Concentration of Tantalum. Contributions to Mineralogy and Petrology, 167(6): 1-8. https://doi.org/10.1007/s00410-014-1009-3
      Su, Y. P., Tang, H. F., 2005. Trace Element Geochemistry of A-Type Granites. Bulletin of Mineralogy, Petrology and Geochemistry, 24(3): 245-251 (in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, of London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Wang, C. H., Wang, D. H., Chen, C., et al., 2019. Progress of Research on the Shiziling Rare Meatals Mineralization from Jiuling-Type Rock and Its Significance for Prospecting. Acta Geologica Sinica, 93(6): 1359-1373 (in Chinese with English abstract).
      Wang, D., Wang, X. L., Cai, Y., et al., 2017. Heterogeneous Conservation of Zircon Xenocrysts in Late Jurassic Granitic Intrusions within the Neoproterozoic Jiuling Batholith, South China: A Magma Chamber Growth Model in Deep Crustal Hot Zones. Journal of Petrology, 58(9): 1781-1810. https://doi.org/10.1093/petrology/egx074
      Wang, D. H., Dai, H. Z., Liu, S. B., et al., 2022. New Progress and Trend in Ten Aspects of Lithium Exploration Practice and Theoretical Research in China in the Past Decade. Journal of Geomechanics, 28(5): 743-764 (in Chinese with English abstract).
      Wang, Q., Sun, Y., Zhang, X. H., et al., 2012. Zircon LA-ICP-MS U-Pb Age of Plagiogranite Porphyry in the Cunqian Copper Polymetallic Deposit of Jiangxi Province and Its Geological Implications. Geology in China, 39(5): 1143-1150 (in Chinese with English abstract).
      Wang, X. L., Zhou, J. C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735, 696 (in Chinese with English abstract).
      Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2014. Geochemical Zonation across a Neoproterozoic Orogenic Belt: Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China. Precambrian Research, 242: 154-171. https://doi.org/10.1016/j.precamres.2013.12.023
      Wang, Y., Ma, C. Q., Wang, L. X., et al., 2018. Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of the Neoproterozoic Granites on the Southeastern Margin of the Yangtze Block: Constraint on Crustal Growth. Earth Science, 43(3): 635-654 (in Chinese with English abstract).
      Wu, F. Y., Guo, C. L., Hu, F. Y., et al., 2023. Petrogenesis of the Highly Fractionated Granites and Their Mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39(1): 1-36 (in Chinese with English abstract).
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia SinicaTerrae, 47(7): 745-765 (in Chinese).
      Wu, M. Q., Samson, I. M., Zhang, D. H., 2018. Textural Features and Chemical Evolution in Ta-Nb Oxides: Implications for Deuteric Rare-Metal Mineralization in the Yichun Granite-Marginal Pegmatite, Southeastern China. Economic Geology, 113(4): 937-960. https://doi.org/10.5382/econgeo.2018.4577
      Xie, L., Liu, Y., Wang, R. C., et al., 2019. Li-Nb-Ta Mineralization in the Jurassic Yifeng Granite-Aplite Intrusion within the Neoproterozoic Jiuling Batholith, South China: A Fluid-Rich and Quenching Ore-Forming Process. Journal of Asian Earth Sciences, 185: 104047. https://doi.org/10.1016/j.jseaes.2019.104047
      Xu, J., Hou, W. D., Wang, L. Y., et al., 2023. Rb Mineralization during Magmatic Differentiation: Insight from Mineralogical Study on the Ganfang Rare Metal Granite, Jiangxi Province. Acta Geologica Sinica, 97(11): 3766-3792 (in Chinese with English abstract).
      Xu, Z., Zhang, Y., Pan, J. Y., et al., 2023. In Situ LA- ICP-MS Analyses of Muscovite: Constraints on Granite-Type Li Mineralization in Northwestern Jiangxi, South China. Ore Geology Reviews, 156: 105402. https://doi.org/10.1016/j.oregeorev.2023.105402
      Yang, Z. L., Qiu, J. S., Xing, G. F., et al., 2014. Petrogenesis and Magmatic Evolution of the Yashan Granite Pluton in Yichun, Jiangxi Province, and Their Constraints on Mineralization. Acta Geologica Sinica, 88(5): 850-868 (in Chinese with English abstract).
      Yin, R., Huang, X. L., Wang, R. C., et al., 2022. Rare-Metal Enrichment and Nb-Ta Fractionation during Magmatic-Hydrothermal Processes in Rare-Metal Granites: Evidence from Zoned Micas from the Yashan Pluton, South China. Journal of Petrology, 63(10): egac093. https://doi.org/10.1093/petrology/egac093
      Zeng, R. L., Zhang, J. R., He, L., et al., 2023. Chronology and Genesis of the Tong'an Granitic Aplite in Yifeng, Jiangxi Province. Acta Geologica Sinica, 97(11): 3750-3765 (in Chinese with English abstract).
      Zhang, D. H., Zhang, W. H., Xu, G. J., 2004. The Ore Fluid Geochemistry of F-Rich Silicate Melt-Hydrous Fluid System and Its Metallogeny-The Current Status and Problems. Earth Science Frontiers, 11(2): 479-490 (in Chinese with English abstract).
      Zhang, F. S., Xu, J., Zhang, J., et al., 2020. Geochemical Characteristics, Zircon U-Pb Age and Geological Significance of New Proterozoic Granites in Jiuling Area, Jiangxi Province. Journal of East China University of Technology (Natural Science), 43(1): 12-20 (in Chinese with English abstract).
      Zhang, T., Zhang, D. H., Danyushevsky, L. V., et al., 2020. Timing of Multiple Magma Events and Duration of the Hydrothermal System at the Yu'erya Gold Deposit, Eastern Hebei Province, China: Constraints from U-Pb and Ar-Ar Dating. Ore Geology Reviews, 127: 103804. https://doi.org/10.1016/j.oregeorev.2020.103804
      Zhang, T., Zhang, D. H., Liu, X. C., et al., 2023a. Petrogenesis of High Heat Production Granite in Eastern Hebei Province, China: Constraints from Geochronology, Geochemistry and Sr-Nd-Hf-O Isotopes. Lithos, 436-437: 106974. https://doi.org/10.1016/j.lithos.2022.106974
      Zhang, Z. Y., Hou, Z. Q., Lü, Q. T., et al., 2023b. Crustal Architectural Controls on Critical Metal Ore Systems in South China Based on Hf Isotopic Mapping. Geology, 51(8): 738-742. https://doi.org/10.1130/G51203.1
      Zhao, B., Bao, B., Yu, L., et al., 2014. Further Discussion on the Metallogenic Effect of F-Rich Silicate Melt- Solution Fluid System. Geological Science and Technology Information, 33(4): 123-134, 142 (in Chinese with English abstract).
      Zhao, W., Zhang, H. J., 2022. Geochemical Characteristics of Skarn Minerals and Causative Granites of the Xianglushan Tungsten Skarn Deposit, Jiangxi, South China. Acta Petrologica Sinica, 38(2): 483-494 (in Chinese with English abstract).
      Zhou, G. Q., Shu, L. S., Wu, H. L., 1989. The High Temperature and Pressure Metamorphic Rocks Relatied to Ophiolite in Northeastern Jiangxi and a Discussion on the Superimposition Metamorphism. Acta Petrologica et Mineralogica, 8(3): 220-231, 219 (in Chinese with English abstract).
      Zhou, J. T., Wang, G. B., He, S. F., et al., 2011. Diagenesis and Mineralization of Ganfang Rock in Yifeng, Jiangxi Province. Journal of East China Institute of Technology (Natural Science), 34(4): 345-351, 358 (in Chinese with English abstract).
      陈浩文, 刘志军, 王高, 等, 2023. 江西花山洞钨矿床晋宁期岩体地球化学特征及其成因探讨. 中国钨业, 38(3): 1-11, 38.
      陈祥云, 吴俊华, 唐维新, 等, 2023. 赣西地区新探明巨量花岗岩型锂矿资源. 地球科学, 48(10): 3957-3960. doi: 10.3799/dqkx.2023.189
      段政, 廖圣兵, 褚平利, 等, 2019. 江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义. 中国地质, 46(3): 493-516.
      龚敏, 吴俊华, 季浩, 等, 2023. 赣西大港花岗岩型锂矿床锂赋存状态及成岩成矿年代学. 地球科学, 48(12): 4370-4386. doi: 10.3799/dqkx.2023.193
      郭春丽, 张斌武, 郑义, 等, 2024. 中国花岗岩型锂矿床: 重要特征、成矿条件及形成机制. 岩石学报, 40(2): 347-403.
      黄兰椿, 蒋少涌, 2012. 江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究. 岩石学报, 28(12): 3887-3900.
      姜宝亮, 赵劲, 林梅花, 等, 2022. 江西省宜丰县白水洞锂铌钽矿床成矿岩浆岩锆石U-Pb年龄及意义. 世界有色金属(19): 73-75.
      姜军胜, 郭欣然, 徐净, 等, 2024. 江西甘坊洞上稀有金属花岗岩中铷矿化特征及成因机制. 地质通报, 43(1): 86-100.
      蒋少涌, 王微, 2022. 战略性关键金属是如何发生超常富集成矿的? 地球科学, 47(10): 3869-3871. doi: 10.3799/dqkx.2022.844
      蒋少涌, 赵葵东, 姜耀辉, 等, 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496-509. doi: 10.3969/j.issn.1006-7493.2008.04.004
      李洁, 黄小龙, 2013. 江西雅山花岗岩岩浆演化及其Ta-Nb富集机制. 岩石学报, 29(12): 4311-4322.
      李仁泽, 周正兵, 彭波, 等, 2020. 江西宜丰县大港超大型含锂瓷石矿床地质特征及成因机制探讨. 矿床地质, 39(6): 1015-1029.
      李献华, 李武显, 李正祥, 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52(9): 981-991.
      李艳军, 吴俊华, 龚敏, 等, 2023. 江南造山带九岭南缘巨量锂多期成岩成矿作用. 第十届全国成矿理论与找矿方法学术讨论会. 西安: 中国矿物岩石地球化学学会, 2.
      廖煜钟, 2019. 千里山花岗岩及其与柿竹园矿田矿化分带的成因联系(博士学位论文). 北京: 中国地质大学.
      蔺文静, 王贵玲, 甘浩男, 2024. 华南陆缘火成岩区差异性地壳热结构及地热意义. 地质学报, 98(2): 544-557.
      刘金宇, 王成辉, 刘善宝, 等, 2024. 赣西北狮子岭花岗岩型锂矿床成因: 来自岩石地球化学和锆石U-Pb年代学的约束. 矿床地质, 43(1): 195-214.
      刘泽, 陈振宇, 王成辉, 2023. 赣西北狮子岭花岗岩型锂-钽矿床的矿物学特征及成矿机制. 岩石学报, 39(7): 2045-2062.
      楼法生, 徐喆, 黄贺, 等, 2023. 江西低品位超大型花岗岩云母型锂矿地质特征及找矿意义. 东华理工大学学报(自然科学版), 46(5): 425-436.
      毛景文, 袁顺达, 谢桂青, 等, 2019.21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质, 38(5): 935-969.
      聂晓亮, 王水龙, 刘爽, 等, 2022. 江西茜坑锂矿床地质地球化学特征与锂云母40Ar/39Ar年代学研究. 矿物学报, 42(3): 285-294.
      苏玉平, 唐红峰, 2005. A型花岗岩的微量元素地球化学. 矿物岩石地球化学通报, 24(3): 245-251.
      王成辉, 王登红, 陈晨, 等, 2019. 九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义. 地质学报, 93(6): 1359-1373.
      王登红, 代鸿章, 刘善宝, 等, 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势. 地质力学学报, 28(5): 743-764.
      王强, 孙燕, 张雪辉, 等, 2012. 江西省村前铜多金属矿床斜长花岗斑岩LA-ICP-MS锆石U-Pb年龄及地质意义. 中国地质, 39(5): 1143-1150.
      王孝磊, 周金城, 陈昕, 等, 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714-735, 696.
      王艳, 马昌前, 王连训, 等, 2018. 扬子东南缘新元古代花岗岩的锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素: 对地壳生长的约束. 地球科学, 43(3): 635-654. doi: 10.3799/dqkx.2018.900
      吴福元, 郭春丽, 胡方泱, 等, 2023. 南岭高分异花岗岩成岩与成矿. 岩石学报, 39(1): 1-36.
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
      徐净, 侯文达, 王力圆, 等, 2023. 稀有金属花岗岩结晶分异过程中铷的富集与成矿: 来自江西甘坊岩体的矿物学证据. 地质学报, 97(11): 3766-3792.
      杨泽黎, 邱检生, 邢光福, 等, 2014. 江西宜春雅山花岗岩体的成因与演化及其对成矿的制约. 地质学报, 88(5): 850-868.
      曾闰灵, 章敬若, 贺玲, 等, 2023. 江西宜丰同安花岗细晶岩年代学及其成因研究. 地质学报, 97(11): 3750-3765.
      张德会, 张文淮, 许国建, 2004. 富F熔体溶液体系流体地球化学及其成矿效应——研究现状及存在问题. 地学前缘, 11(2): 479-490.
      张福神, 徐进, 张娟, 等, 2020. 江西九岭地区新元古代花岗岩地球化学特征、锆石U-Pb年龄及地质意义. 东华理工大学学报(自然科学版), 43(1): 12-20.
      赵博, 鲍波, 于蕾, 等, 2014. 再论富F熔体-溶液流体体系的成矿效应. 地质科技情报, 33(4): 123-134, 142.
      赵文, 张怀瑾, 2022. 江西香炉山钨矿床矽卡岩矿物和成矿花岗岩地球化学特征及其指示意义. 岩石学报, 38(2): 483-494.
      周国庆, 舒良树, 吴洪亮, 1989. 与赣东北元古代蛇绿岩有关的高温、高压变质岩和重变质作用机制的讨论. 岩石矿物学杂志, 8(3): 220-231, 219.
      周建廷, 王国斌, 何淑芳, 等, 2011. 江西宜丰地区甘坊岩体成岩成矿作用分析. 东华理工大学学报(自然科学版), 34(4): 345-351, 358.
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  32
    • HTML全文浏览量:  12
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-07-14
    • 网络出版日期:  2025-07-29
    • 刊出日期:  2025-07-25

    目录

      /

      返回文章
      返回