• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    贺州大理岩稳定剪切破裂时双晶的发育特征

    程毅 谢欣玥 左昌群 肖淑君

    程毅, 谢欣玥, 左昌群, 肖淑君, 2025. 贺州大理岩稳定剪切破裂时双晶的发育特征. 地球科学, 50(6): 2342-2355. doi: 10.3799/dqkx.2024.152
    引用本文: 程毅, 谢欣玥, 左昌群, 肖淑君, 2025. 贺州大理岩稳定剪切破裂时双晶的发育特征. 地球科学, 50(6): 2342-2355. doi: 10.3799/dqkx.2024.152
    Cheng Yi, Xie Xinyue, Zuo Changqun, Xiao Shujun, 2025. Characteristics of Twinning in Marble with Stable Faulting Process. Earth Science, 50(6): 2342-2355. doi: 10.3799/dqkx.2024.152
    Citation: Cheng Yi, Xie Xinyue, Zuo Changqun, Xiao Shujun, 2025. Characteristics of Twinning in Marble with Stable Faulting Process. Earth Science, 50(6): 2342-2355. doi: 10.3799/dqkx.2024.152

    贺州大理岩稳定剪切破裂时双晶的发育特征

    doi: 10.3799/dqkx.2024.152
    基金项目: 

    国家自然科学基金面上项目 42177161

    湖北省自然科学基金资助项目 2022CFB105

    详细信息
      作者简介:

      程毅(1983-),男,博士,副教授,主要从事岩石断裂力学及工程地质等方面的研究工作.ORCID:0000-0001-9370-7109. E-mail:chengyi@cug.edu.cn

    • 中图分类号: TU45

    Characteristics of Twinning in Marble with Stable Faulting Process

    • 摘要: 双晶滑移是大理岩产生塑性变形的微观机制之一.为探究剪切破裂时的双晶表现,首先在贺州大理岩试样中诱发不同发展程度的剪切破裂,接着对试样中双晶的发育特征进行了全断面观测与定量统计分析.结果显示:(1)剪切变形带范围内的双晶明显区别于外部双晶,具有局部化、扭折、增粗、分叉及尖灭的特征,具体表现受剪切方向与双晶面倾向之间的相对关系控制;(2)试样整体的双晶密度随加载略有增加,而双晶发生率则维持高位、无变化规律;(3)双晶平均宽度不受加载程度影响,而双晶最大宽度则随剪切破坏程度稳定增加约3倍.以上结果表明低围压受压条件下,贺州大理岩整体双晶增生并不明显,而是集中发育于剪切带内、主要体现为双晶宽度的增加,其表观特征受剪切方向与双晶面倾向之间的相对关系控制.

       

    • 图  1  贺州大理岩XRD矿物成分分析

      Fig.  1.  Mineral composition of Hezhou marbles by XRD analysis

      图  2  贺州大理岩原始微观结构显微图片

      ①.颗粒边界;②.双晶

      Fig.  2.  Microphotographys of Hezhou marble

      图  3  Phoenix v|tome|x s CT扫描系统

      Fig.  3.  Phoenix v|tome|x s CT scanning system

      图  4  微观试样制备及观测流程图

      蓝色面/线条示意剪切破裂带;红色线条表示切割位置;数字代表切割后小试块的序号;双晶的定量统计只对块1与块9中的绿色阴影部分进行

      Fig.  4.  Working flow of sample preparation for optical observation

      图  5  贺州大理岩5 MPa围压下应力-应变曲线特征(a)及各试样卸载位置(b)(红点)

      Fig.  5.  Stress-strain curve(a) and specimen unloading locations (b) (red dots) of Hezhou marble under pressure of 5 MPa

      图  6  贺州大理岩各阶段破坏照片及垂直破裂面的CT扫描剖面图

      照片中箭头指向试样表面破裂面;CT图中深色区为裂隙发育密集区;试样3-T-8破坏程度浅,为提高扫描精度只对中间部分进行了CT扫描

      Fig.  6.  Photos of Hezhou marble at different damage stages and CT profiles perpendicular to the faulting surfaces

      图  7  双晶分布局部化微观图

      虚线指明双晶局部化发育的范围,箭头指向上下端裂隙,T.双晶

      Fig.  7.  Microphotographs of localized twinning which developed between the dotted lines

      图  8  双晶扭折微观图

      a.扭折处已发生破裂;b.颗粒A中双晶扭折,B内双晶增宽,虚线表示颗粒A边界;c.扭折处左下端已产生微裂隙;箭头指示相对位移方向;T.双晶

      Fig.  8.  Microphotographs of kinked twins.

      图  9  双晶宽度差异及分叉现象微观图

      a~c中箭头指向上、下端裂隙;d.中箭头指向两组不同的双晶面;e.中箭头指向双晶分叉点,上分叉点无裂隙,下分叉点处发育微裂隙.a中虚线为颗粒边界,该颗粒大部分面积都被双晶占据.

      Fig.  9.  Microphotographs of thickening and bifurcation of twins

      图  10  双晶尖灭微观图像

      方框指示尖灭区域

      Fig.  10.  Microphotographs of spiking out of twins

      图  11  均匀破坏区内双晶微观图像

      Fig.  11.  Microphotographs of twins out of the localized shear zone

      图  12  双晶密度与应变关系图(各试样应变见图 5b,下同)

      Fig.  12.  Correlation between twin density and strain (refer to Fig. 5b for the strain of each specimen)

      图  13  双晶发生率与应变关系图

      Fig.  13.  Correlation between twin incidence and strain

      图  14  双晶平均宽度与应变关系图

      Fig.  14.  Correlation between the average thickness of twins and strain

      图  15  双晶最大宽度与应变关系图(a)和累计双晶最大宽度与应变关系(b)

      Fig.  15.  Correlation between the maximum thickness of twins and strain (a), and the accumulation of the maximum thickness of twins and strain (b)

      表  1  双晶抽样测量误差

      Table  1.   Errors of sampling measurement of twin

      双晶序号 宽度一(μm) 宽度二(μm) 绝对误(μm) 相对误差
      1 2.15 2.56 -0.41 -16%
      2 2.73 3.01 -0.28 -9%
      3 14.76 14.46 0.30 2%
      4 6.94 6.73 0.21 3%
      5 5.89 5.99 -0.09 -2%
      6 1.72 1.86 -0.14 -8%
      7 3.29 3.75 -0.46 -12%
      下载: 导出CSV

      表  2  双晶密度$ {\mathit{N}}_{\mathit{L}} $统计及偏应力估算

      Table  2.   Statistics of twinning density$ {\mathit{N}}_{\mathit{L}} $ and estimation of deviatoric stress

      试样 试块1
      (mm-1)
      试块9
      (mm-1)
      均值
      (mm-1)
      偏应力一(MPa)*
      $ \mathrm{\sigma }=-52.0+171.1\mathrm{l}\mathrm{g}{N}_{L} $
      偏应力二(MPa)**
      $ \mathrm{\sigma }=21.86{{N}_{L}}^{0.57} $
      偏应力三(MPa)***
      $ \mathrm{\sigma }=(19.5\pm 9.8){{N}_{L}}^{0.5} $
      3-S 3.13 5.59 4.36 / / /
      3-T-8 9.86 7.18 8.52 159.2 74.1 56.9±28.6
      3-T-7 7.18 7.63 7.40 148.7 68.4 53.0±26.7
      3-T-6 5.23 5.02 5.13 121.5 55.5 44.2±22.2
      3-T-5 5.23 6.34 5.79 130.5 59.5 46.9±23.6
      3-T-4 8.57 6.63 7.60 150.7 69.5 53.8±27.0
      注:* Rowe and Rutter (1990); ** Sakaguchi et al. (2011); *** Rybacki et al. (2013).
      下载: 导出CSV

      表  3  各试样统计数据

      Table  3.   Statistic data of each sample

      试样 测线长
      (μm)
      颗粒数 平均粒径
      (μm)
      双晶数
      3-S 53 108 80 664 226
      3-T-8 47 280 49 965 404
      3-T-7 47 541 104 457 352
      3-T-6 47 789 152 314 245
      3-T-5 50 373 107 471 290
      3-T-4 49 283 99 498 375
      总计 29 5374 591 500 1 892
      下载: 导出CSV
    • Barber, D. J., Wenk, H. R., 1979. Deformation Twinning in Calcite, Dolomite, and Other Rhombohedral Carbonates. Physics and Chemistry of Minerals, 5(2): 141-165. https://doi.org/10.1007/bf00307550
      Beyerlein, I. J., McCabe, R. J., Tomé, C. N., 2011. Effect of Microstructure on the Nucleation of Deformation Twins in Polycrystalline High-Purity Magnesium: A Multi-Scale Modeling Study. Journal of the Mechanics and Physics of Solids, 59(5): 988-1003. https://doi.org/10.1016/j.jmps.2011.02.007
      Burkhard, M., 1993. Calcite Twins, Their Geometry, Appearance and Significance as Stress-Strain Markers and Indicators of Tectonic Regime: A Review. Journal of Structural Geology, 15(3-5): 351-368. https://doi.org/10.1016/0191-8141(93)90132-t
      Carter, N. L., Kirby, S. H., 1978. Transient Creep and Semibrittle Behavior of Crystalline Rocks. Pure and Applied Geophysics, 116(4): 807-839. https://doi.org/10.1007/bf00876540
      Cheng, Y., Wong, L. N. Y., Maruvanchery, V., 2016. Transgranular Crack Nucleation in Carrara Marble of Brittle Failure. Rock Mechanics and Rock Engineering, 49(8): 3069-3082. https://doi.org/10.1007/s00603-016-0976-2
      Christian, J. W., Mahaja, S., 1995. Deformation Twinning. Progress in Materials Science, 39(1-2): 1-157.
      Covey-Crump, S. J., Schofield, P. F., Oliver, E. C., 2017. Using Neutron Diffraction to Examine the Onset of Mechanical Twinning in Calcite Rocks. Journal of Structural Geology, 100: 77-97. https://doi.org/10.1016/j.jsg.2017.05.009
      Ferrill, D. A., 1991. Calcite Twin Widths and Intensities as Metamorphic Indicators in Natural Low-Temperature Deformation of Limestone. Journal of Structural Geology, 13(6): 667-675. https://doi.org/10.1016/0191-8141(91)90029-I
      Ferrill, D. A., Morris, A. P., Evans, M. A., et al., 2004. Calcite Twin Morphology: A Low-Temperature Deformation Geothermometer. Journal of Structural Geology, 26(8): 1521-1529. https://doi.org/10.1016/j.jsg.2003.11.028
      Fredrich, J. T., Evans, B., Wong, T. F., 1990. Effect of Grain Size on Brittle and Semibrittle Strength: Implications for Micromechanical Modelling of Failure in Compression. Journal of Geophysical Research: Solid Earth, 95(B7): 10907-10920.
      González-Casado, J. M., Gumiel, P., Giner-Robles, J. L., et al., 2006. Calcite E-Twins as Markers of Recent Tectonics: Insights from Quaternary Karstic Deposits from SE Spain. Journal of Structural Geology, 28(6): 1084-1092. https://doi.org/10.1016/j.jsg.2006.03.019
      Handin, J., 1966. Section 10: STRENGTH and Ductility. In: Clark, S. P., ed., Handbook of Physical Constants. Geological Society of America, U. S. A., 223-290. https://doi.org/10.1130/mem97-p223
      Hu, L., Liu, J. L., Ji, M., et al., 2009. Identification Manual of Deformation Microstructure. Geological Publishing House, Beijing(in Chinese).
      Kirby, S. H., Kronenberg, A. K., 1984. Deformation of Clinopyroxenite: Evidence for a Transition in Flow Mechanisms and Semibrittle Behavior. Journal of Geophysical Research: Solid Earth, 89(B5): 3177-3192. https://doi.org/10.1029/jb089ib05p03177
      Liu, H. L., Li, Z. Q., Yuan, S. H., et al., 2020. Microstructural Characteristics of Shuipuzi-Lishugou Ductile Shear Zone on the West Side of Miyun Reservoir in Beijing, China. Journal of Chengdu University of Technology (Science & Technology Edition), 47(4): 395-410, 442(in Chinese with English abstract).
      Menéndez, B., Zhu, W. L., Wong, T. F., 1996. Micromechanics of Brittle Faulting and Cataclastic Flow in Berea Sandstone. Journal of Structural Geology, 18(1): 1-16. https://doi.org/10.1016/0191-8141(95)00076-p
      Niu, L., 2021. Experimental Study on Unsteady Rheology of Marble and Granite (Dissertation). Institute of Geology, China Earthquake Administration, Beijing(in Chinese with English abstract).
      Olsson, W. A., Peng, S. S., 1976. Microcrack Nucleation in Marble. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(2): 53-59. https://doi.org/10.1016/0148-9062(76)90704-x
      Paterson, M. S., Wong, T. F., 2005. Experimental Rock Deformation—The Brittle Field. Springer, Netherlands.
      Rowe, K. J., Rutter, E. H., 1990. Palaeostress Estimation Using Calcite Twinning: Experimental Calibration and Application to Nature. Journal of Structural Geology, 12(1): 1-17. https://doi.org/10.1016/0191-8141(90)90044-Y
      Rybacki, E., Evans, B., Janssen, C., et al., 2013. Influence of Stress, Temperature, and Strain on Calcite Twins Constrained by Deformation Experiments. Tectonophysics, 601: 20-36. https://doi.org/10.1016/j.tecto.2013.04.021
      Rybacki, E., Niu, L., Evans, B., 2021. Semi-Brittle Deformation of Carrara Marble: Hardening and Twinning Induced Plasticity. Journal of Geophysical Research: Solid Earth, 126(12): e2021JB022573. https://doi.org/10.1029/2021jb022573
      Sakaguchi, A., Sakaguchi, H., Nishiura, D., et al., 2011. Elastic Stress Indication in Elastically Rebounded Rock. Geophysical Research Letters, 38(9): L09316. https://doi.org/10.1029/2011gl047055
      Sari, M., Sarout, J., Poulet, T., et al., 2022. The Brittle-Ductile Transition and the Formation of Compaction Bands in the Savonnières Limestone: Impact of the Stress and Pore Fluid. Rock Mechanics and Rock Engineering, 55(11): 6541-6553. https://doi.org/10.1007/s00603-022-02963-z
      Tullis, J., Yund, R., 1992. Chapter 4 The Brittle-Ductile Transition in Feldspar Aggregates: An Experimental Study. Fault Mechanics and Transport Properties of Rocks: A Festschrift in Honor of W. F. Brace. Elsevier, Amsterdam, 89-117. https://doi.org/10.1016/s0074-6142(08)62816-8
      Turner, F. J., 1953. Nature and Dynamic Interpretation of Deformation Lamellae in Calcite of Three Marbles. American Journal of Science, 251(4): 276-298. https://doi.org/10.2475/ajs.251.4.276
      Wang, Z. C., Wang, S. Z., 1990. Experimental Study on Semi-Brittle Behavior of Rocks at Temperature and Pressure Corresponding to Middle-Lower Crust. Seismology and Geology, 12(4): 335-342, 390(in Chinese with English abstract).
      Weiss, L. E., 1954. A Study of Tectonic Style Structural Investigation of a Marble Quartzite Complex in Southern California. University of California Publications in Geological Science, 30(1): 79-80.
      Wong, T. F., David, C., Zhu, W. L., 1997. The Transition from Brittle Faulting to Cataclastic Flow in Porous Sandstones: Mechanical Deformation. Journal of Geophysical Research: Solid Earth, 102(B2): 3009-3025. https://doi.org/10.1029/96jb03281
      Xie, X. Y., Cheng, Y., Li, S. L., et al., 2024. Influence of Mineral Composition and Grain Size on Mechanical Properties of Marble. Chinese Journal of Rock Mechanics and Engineering, 43(Suppl. 1): 3280-3295(in Chinese with English abstract).
      Zhang, C. S., Chen, X. R., Hou, J., et al., 2010. Study of Mechanical Behavior of Deep-Buried Marble at Jinping Ⅱ Hydropower Station. Chinese Journal of Rock Mechanics and Engineering, 29(10): 1999-2009(in Chinese with English abstract).
      Zhang, G. N., Song, M. S., Li, J. F., et al., 2018. Microstructural Characteristics and Deformation Mechanism of Carrara Marble in Axial Compression Experiments. Geotectonica et Metallogenia, 42(5): 786-797(in Chinese with English abstract).
      Zhang, X. Y., Sun, W. Y., Fan, J. P., et al., 2021. Geological Characteristics and Genesis of the Shuijingshan Marble Deposit in the Pinggui District, Hezhou City, Guangxi. Geology and Exploration, 57(5): 1087-1098(in Chinese with English abstract).
      Zhao, X. P., Zuo, J. P., Pei, J. L., 2012. Meso-Experimental Study of Fracture Mechanism of Bedded Marble in Jinping. Chinese Journal of Rock Mechanics and Engineering, 31(3): 534-542(in Chinese with English abstract).
      胡玲, 刘俊来, 纪沫, 等, 2009. 变形显微构造识别手册. 北京: 地质出版社.
      刘恒麟, 李忠权, 袁四化, 等, 2020. 北京市密云水库西水堡子-梨树沟韧性剪切带显微构造特征. 成都理工大学学报(自然科学版), 47(4): 395-410, 442.
      牛露, 2021. 大理岩和花岗岩的非稳态流变实验研究(博士学位论文). 北京: 中国地震局地质研究所.
      王子潮, 王绳祖, 1990. 中下地壳温度压力条件下岩石半脆性蠕变的实验研究. 地震地质, 12(4): 335-342, 390.
      谢欣玥, 程毅, 李松龄, 等, 2024. 大理岩矿物成分及粒径对力学性质的影响. 岩石力学与工程学报, 43(增刊1): 3280-3295.
      张春生, 陈祥荣, 侯靖, 等, 2010. 锦屏二级水电站深埋大理岩力学特性研究. 岩石力学与工程学报, 29(10): 1999-2009.
      张桂男, 宋茂双, 李建峰, 等, 2018. Carrara大理岩在轴向压缩实验过程中的显微构造特征及变形机制研究. 大地构造与成矿学, 42(5): 786-797.
      张学义, 孙文燕, 樊晋鹏, 等, 2021. 广西贺州平桂区水井山矿区大理石矿床地质特征及成因. 地质与勘探, 57(5): 1087-1098.
      赵小平, 左建平, 裴建良, 2012. 锦屏层状大理岩断裂机制的细观试验研究. 岩石力学与工程学报, 31(3): 534-542.
    • 加载中
    图(15) / 表(3)
    计量
    • 文章访问数:  11
    • HTML全文浏览量:  4
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-09-12
    • 网络出版日期:  2025-07-11
    • 刊出日期:  2025-06-25

    目录

      /

      返回文章
      返回