Applications of Ancient DNA Research in the Field of Geobiology
-
摘要: 在地球生物学诸多分支学科中,分子古生物学融合了多学科理论和方法,在探讨地质历史时期生物的形成与演化及生物与环境的相互作用等问题时发挥了重要作用.古DNA是分子古生物研究的主要载体之一,能反映个体之间的遗传差异,为生物系统发生学、谱系地理学提供不可替代的、来自古代生物的实时遗传信息.部分灭绝物种或种群遗留在现生种群中的遗传成分,不仅反映了古代生物类群之间的基因交流历史,也为现生亲缘类群的生物保护提供借鉴.近些年来,随着古DNA提取和富集技术的进步,不依赖于生物实体遗存的沉积物古DNA成为后来居上的研究方向,在古生态系统重建及生物在气候环境变化背景下的生态适应等研究中凸显其重要性.本文重点解读了古DNA在生物系统发生学、生物谱系地理学、保护生物学及第四纪古环境古气候重建等地球生物学领域的典型应用实例及其重要意义,并对古DNA及古基因组在地球生物学领域的应用前景进行了展望.Abstract: Among the many branches of geobiology, molecular palaeontology integrates multidisciplinary theories and methods, and plays an important role in exploring the speciation and evolution of organisms as well as the interaction between organisms and the environment in the geological history. Ancient DNA is one of the main carriers of molecular palaeontology research. It can reflect the genetic differences between individuals and provide irreplaceable real-time genetic information from ancient organisms for phylogeny and phylogeography. The genetic components legacy from some extinct groups to living populations not only reflect the history of gene flow between these groups and the ancestral populations of extant species, but also provide reference for protection of their living counterparts. In recent years, with the advancement of high-fragmented and trace amount DNA extraction and enrichment technologies, ancient DNA from sediments that does not rely on biological body fossils has become a rapid developing research direction, highlighting its importance in the reconstruction of ancient ecosystems and the ecological adaptation of organisms under the pressure of climate and environmental changes. This article focuses on the typical application examples and important significance of ancient DNA in geobiological fields in terms of phylogenetics, phylogeography, conservation biology, and Quaternary paleoenvironment and paleoclimate reconstruction, and looks forward to the application prospects of ancient DNA and ancient genomes in geobiology.
-
Key words:
- geobiology /
- ancient DNA /
- phylogenetics /
- phylogeography /
- gene flow /
- ecosystem restoration /
- sedimentology /
- climate change
-
图 2 基于披毛犀完整线粒体基因组构建的贝叶斯系统发育树
图据Yuan et al.(2023)修改.以梅氏犀为外类群,分支节点处数字为分歧时间(上)及后验概率值(下)
Fig. 2. Bayesian phylogenetic tree constructed based on the complete mitochondrial genome of the woolly rhinoceros
图 4 灭绝物种基因渗入对现生物种影响示意
基于Racimo et al.(2015)修改
Fig. 4. Schematic of gene flow from extinct species to extant species
-
Ahmed, E., Parducci, L., Unneberg, P., et al., 2018. Archaeal Community Changes in Lateglacial Lake Sediments: Evidence from Ancient DNA. Quaternary Science Reviews, 181: 19-29. https://doi.org/10.1016/j.quascirev.2017.11.037 Allentoft, M. E., Sikora, M., Sjögren, K. G., et al., 2015. Population Genomics of Bronze Age Eurasia. Nature, 522: 167-172. https://doi.org/10.1038/nature14507 Baca, M., Popović, D., Stefaniak, K., et al., 2016. Retreat and Extinction of the Late Pleistocene Cave Bear (Ursus Spelaeus Sensu Lato). The Science of Nature, 103(11): 92. https://doi.org/10.1007/s00114-016-1414-8 Barlow, A., Cahill, J. A., Hartmann, S., et al., 2018. Partial Genomic Survival of Cave Bears in Living Brown Bears. Nature Ecology & Evolution, 2: 1563-1570. https://doi.org/10.1038/s41559-018-0654-8 Barnes, I., Matheus, P., Shapiro, B., et al., 2002. Dynamics of Pleistocene Population Extinctions in Beringian Brown Bears. Science, 295(5563): 2267-2270. https://doi.org/10.1126/science.1067814 Barnett, R., Shapiro, B., Barnes, I., et al., 2009. Phylogeography of Lions (Panthera Leo ssp.) Reveals Three Distinct Taxa and a Late Pleistocene Reduction in Genetic Diversity. Mol Ecol, 18(8): 1668-1677. https://doi.org/10.1111/j.1365-294x.2009.04134.x Barnosky, A. D., Koch, P. L., Feranec, R. S., et al., 2004. Assessing the Causes of Late Pleistocene Extinctions on the Continents. Science, 306(5693): 70-75. https://doi.org/10.1126/science.1101476 Bergström, A., Stanton, D. W. G., Taron, U. H., et al., 2022. Grey Wolf Genomic History Reveals a Dual Ancestry of Dogs. Nature, 607: 313-320. https://doi.org/10.1038/s41586-022-04824-9 Boessenkool, S., McGlynn, G., Epp, L. S., et al., 2014. Use of Ancient Sedimentary DNA as a Novel Conservation Tool for High-Altitude Tropical Biodiversity. Conservation Biology, 28(2): 446-455. https://doi.org/10.1111/cobi.12195 Bos, K. I., Schuenemann, V. J., Golding, G. B., et al., 2011. A Draft Genome of Yersinia Pestis from Victims of the Black Death. Nature, 478: 506-510. https://doi.org/10.1038/nature10549 Brown, T. A., Jones, M. K., Powell, W., et al., 2009. The Complex Origins of Domesticated Crops in the Fertile Crescent. Trends in Ecology & Evolution, 24(2): 103-109. https://doi.org/10.1016/j.tree.2008.09.008 Cai, D. W., Zhu, S. Q., Gong, M., et al., 2022. Radiocarbon and Genomic Evidence for the Survival of Equus Sussemionus until the Late Holocene. eLife, 11: e73346. https://doi.org/10.7554/elife.73346 Capo, E., Giguet-Covex, C., Rouillard, A., et al., 2021. Lake Sedimentary DNA Research on Past Terrestrial and Aquatic Biodiversity: Overview and Recommendations. Quaternary, 4(1): 6. https://doi.org/10.3390/quat4010006 Coolen, M. J. L., Overmann, J., 1998. Analysis of Subfossil Molecular Remains of Purple Sulfur Bacteria in a Lake Sediment. Applied and Environmental Microbiology, 64(11): 4513-4521. https://doi.org/10.1128/aem.64.11.4513-4521.1998 Cruzan, M. B., Templeton, A. R., 2000. Paleoecology and Coalescence: Phylogeographic Analysis of Hypotheses from the Fossil Record. Trends in Ecology & Evolution, 15(12): 491-496. https://doi.org/10.1016/s0169-5347(00)01998-4 Da Fonseca, R. R., Smith, B. D., Wales, N., et al., 2015. The Origin and Evolution of Maize in the Southwestern United States. Nature Plants, 1: 14003. https://doi.org/10.1038/nplants.2014.3 Dalén, L., Heintzman, P. D., Kapp, J. D., et al., 2023. Deep-Time Paleogenomics and the Limits of DNA Survival. Science, 382(6666): 48-53. https://doi.org/10.1126/science.adh7943 Dalton, D. L., Prost, S., 2021. Rhinoceros Genomes Uncover Family Secrets. Nature, 599: 209-210. https://doi.org/10.1038/d41586-021-02777-z Dannemann, M., Kelso, J., 2017. The Contribution of Neanderthals to Phenotypic Variation in Modern Humans. The American Journal of Human Genetics, 101(4): 578-589. https://doi.org/10.1016/j.ajhg.2017.09.010 Davison, J., Ho, S. Y. W., Bray, S. C., et al., 2011. Late-Quaternary Biogeographic Scenarios for the Brown Bear (Ursus Arctos), a Wild Mammal Model Species. Quaternary Science Reviews, 30(3-4): 418-430. https://doi.org/10.1016/j.quascirev.2010.11.023 Debruyne, R., Barriel, V., Tassy, P., 2003. Mitochondrial Cytochrome B of the Lyakhov Mammoth (Proboscidea, Mammalia): New Data and Phylogenetic Analyses of Elephantidae. Molecular Phylogenetics and Evolution, 26(3): 421-434. https://doi.org/10.1016/S1055-7903(02)00292-0 Deng, T., Xue, X. X., 1997. The First Appearance of the True Horse (Genus Equus) as a Marker for the Lower Boundary of the Quaternary. Journal of Stratigraphy, 21(2): 109-116 (in Chinese with English abstract). Díez-del-Molino, D., Dehasque, M., Chacón-Duque, J. C., et al., 2023. Genomics of Adaptive Evolution in the Woolly Mammoth. Current Biology, 33(9): 1753-1764. https://doi.org/10.1016/j.cub.2023.03.084 Du, Z. C., Sheng, G. L., Hu, J. M., et al., 2024. Mitochondrial Genetic Diversity and Evolutionary History of Late Pleistocene Woolly Mammoths in Northeast China. Chinese Science Bulletin, 70(1): 121-133 (in Chinese). Eisenmann, V., Sergej, V., 2011. Unexpected Finding of a New Equus Species (Mammalia, Perissodactyla) Belonging to a Supposedly Extinct Subgenus in Late Pleistocene Deposits of Khakassia (Southwestern Siberia). Geodiversitas, 33(3): 519-530. https://doi.org/10.5252/g2011n3a5 Enk, J., Devault, A., Widga, C., et al., 2016. Mammuthus Population Dynamics in Late Pleistocene North America: Divergence, Phylogeography, and Introgression. Frontiers in Ecology and Evolution, 4: 42. https://doi.org/10.3389/fevo.2016.00042 Fages, A., Hanghøj, K., Khan, N., et al., 2019. Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series. Cell, 177(6): 1419-1435. https://doi.org/10.1016/j.cell.2019.03.049 Frantz, L. A. F., Haile, J., Lin, A. T., et al., 2019. Ancient Pigs Reveal a Near-Complete Genomic Turnover Following Their Introduction to Europe. Proceedings of the National Academy of Sciences, 116(35): 17231-17238. https://doi.org/10.1073/pnas.1901169116 Frei, D., De-Kayne, R., Selz, O. M., et al., 2022. Genomic Variation from an Extinct Species Is Retained in the Extant Radiation Following Speciation Reversal. Nature Ecology & Evolution, 6: 461-468. https://doi.org/10.1038/s41559-022-01665-7 Freitas, F. O., Bendel, G., Allaby, R. G., et al., 2003. DNA from Primitive Maize Landraces and Archaeological Remains: Implications for the Domestication of Maize and Its Expansion into South America. Journal of Archaeological Science, 30(7): 901-908. https://doi.org/10.1016/S0305-4403(02)00269-8 Froese, D., Stiller, M., Heintzman, P. D., et al., 2017. Fossil and Genomic Evidence Constrains the Timing of Bison Arrival in North America. Proceedings of the National Academy of Sciences, 114: 3457-3462. https://doi.org/10.1073/pnas.1620754114 Fu, Q. M., Meyer, M., Gao, X., et al., 2013. DNA Analysis of an Early Modern Human from Tianyuan Cave, China. Proceedings of the National Academy of Sciences, 110(6): 2223-2227. https://doi.org/10.1073/pnas.1221359110 Green, R. E., Krause, J., Briggs, A. W., et al., 2010. A Draft Sequence of the Neandertal Genome. Science, 328: 710-722. https://doi.org/10.1126/science.1188021 Green, R. E., Krause, J., Ptak, S. E., et al., 2006. Analysis of One Million Base Pairs of Neanderthal DNA. Nature, 444: 330-336. https://doi.org/10.1038/nature05336 Green, R. E., Malaspinas, A. S., Krause, J., et al., 2008. A Complete Neandertal Mitochondrial Genome Sequence Determined by High-Throughput Sequencing. Cell, 134(3): 416-426. https://doi.org/10.1016/j.cell.2008.06.021 Hajdinjak, M., Mafessoni, F., Skov, L., et al., 2021. Initial Upper Palaeolithic Humans in Europe Had Recent Neanderthal Ancestry. Nature, 592: 253-257. https://doi.org/10.1038/s41586-021-03335-3 Heintzman, P. D., Zazula, G. D., MacPhee, R. D., et al., 2017. A New Genus of Horse from Pleistocene North America. eLife, 6: e29944. https://doi.org/10.7554/elife.29944 Higuchi, R., Bowman, B., Freiberger, M., et al., 1984. DNA Sequences from the Quagga, an Extinct Member of the Horse Family. Nature, 312: 282-284. https://doi.org/10.1038/312282a0 Hoshino, T., Doi, H., Uramoto, G. I., et al., 2020. Global Diversity of Microbial Communities in Marine Sediment. Proceedings of the National Academy of Sciences, 117(44): 27587-27597. https://doi.org/10.1073/pnas.1919139117 Hou, X. D., Zhao, J., Zhang, H. C., et al., 2022. Paleogenomes Reveal a Complex Evolutionary History of Late Pleistocene Bison in Northeastern China. Genes (Basel), 13(10): 1684. https://doi.org/10.3390/genes13101684 Hu, J. M., Westbury, M. V., Yuan, J. X., et al., 2022. An Extinct and Deeply Divergent Tiger Lineage from Northeastern China Recognized through Palaeogenomics. Proceedings of the Royal Society B: Biological Sciences, 289(1979): 20220617. https://doi.org/10.1098/rspb.2022.0617 Hu, J., Westbury, M. V., Yuan, J. X., et al., 2021. Ancient Mitochondrial Genomes from Chinese Cave Hyenas Provide Insights into the Evolutionary History of the Genus Crocuta. Crocuta. Proceedings of the Royal Society B, 288(1943): 20202934. https://doi.org/10.1098/rspb.2020.2934 Hublin, J. J., Sirakov, N., Aldeias, V., et al., 2020. Initial Upper Palaeolithic Homo Sapiens from Bacho Kiro Cave, Bulgaria. Nature, 581: 299-302. https://doi.org/10.1038/s41586-020-2259-z Jaenicke-Després, V., Buckler, E. S., Smith, B. D., et al., 2003. Early Allelic Selection in Maize as Revealed by Ancient DNA. Science, 302(5648): 1206-1208. https://doi.org/10.1126/science.1089056 Kato, S., Arakaki, S., Nagano, A. J., et al., 2024. Genomic Landscape of Introgression from the Ghost Lineage in a Gobiid Fish Uncovers the Generality of Forces Shaping Hybrid Genomes. Molecular Ecology, 33(20): e17216. https://doi.org/10.1111/mec.17216 Kirillova, I. V., Chernova, O. F., van der Made, J., et al., 2017. Discovery of the Skull of Stephanorhinus Kirchbergensis (Jäger, 1839) Above the Arctic Circle. Quaternary Research, 88: 537-550. https://doi.org/10.1017/qua.2017.53 Kjær, K. H., Winther Pedersen, M., De Sanctis, B., et al., 2022. A 2-Million-Year-Old Ecosystem in Greenland Uncovered by Environmental DNA. Nature, 612: 283-291. https://doi.org/10.1038/s41586-022-05453-y Ko, A. M., Zhang, Y. Q., Yang, M. A., et al., 2018. Mitochondrial Genome of a 22 000-Year-Old Giant Panda from Southern China Reveals a New Panda Lineage. Current Biology, 28(12): R693-R694. https://doi.org/10.1016/j.cub.2018.05.008 Koch, P. L., Barnosky, A. D., 2006. Late Quaternary Extinctions: State of the Debate. Annual Review of Ecology, Evolution, and Systematics, 37: 215-250. https://doi.org/10.1146/annurev.ecolsys.34.011802.132415 Kosintsev, P., Mitchell, K. J., Devièse, T., et al., 2019. Evolution and Extinction of the Giant Rhinoceros Elasmotherium Sibiricum Sheds Light on Late Quaternary Megafaunal Extinctions. Nature Ecology & Evolution, 3: 31-38. https://doi.org/10.1038/s41559-018-0722-0 Krings, M., Stone, A., Schmitz, R. W., et al., 1997. Neandertal DNA Sequences and the Origin of Modern Humans. Cell, 90(1): 19-30. https://doi.org/10.1016/S0092-8674(00)80310-4 Kuhlwilm, M., de Manuel, M., Nater, A., et al., 2016. Evolution and Demography of the Great Apes. Current Opinion in Genetics & Development, 41: 124-129. https://doi.org/10.1016/j.gde.2016.09.005 Kumar, V., Lammers, F., Bidon, T., et al., 2017. The Evolutionary History of Bears Is Characterized by Gene Flow across Species. Scientific Reports, 7: 46487. https://doi.org/10.1038/srep46487 Larson, G., Cucchi, T., Fujita, M., et al., 2007. Phylogeny and Ancient DNA of Sus Provides Insights into Neolithic Expansion in Island Southeast Asia and Oceania. Proceedings of the National Academy of Sciences, 104: 4834-4839. https://doi.org/10.1073/pnas.0607753104 Larson, G., Dobney, K., Albarella, U., et al., 2005. Worldwide Phylogeography of Wild Boar Reveals Multiple Centers of Pig Domestication. Science, 307(5715): 1618-1621. https://doi.org/10.1126/science.1106927 Li, T., Lai, X. L., Wang, W., et al., 2004. Taxonomy and Evolution of Giant Panda. Bulletin of Geological Science and Technology, 23(3): 40-46 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2004.03.008 Librado, P., Gamba, C., Gaunitz, C., et al., 2017. Ancient Genomic Changes Associated with Domestication of the Horse. Science, 356(6336): 442-445. https://doi.org/10.1126/science.aam5298 Lin, H. F., Hu, J. M., Baleka, S., et al., 2023. A Genetic Glimpse of the Chinese Straight-Tusked Elephants. Biology Letters, 19(7): 20230078. https://doi.org/10.1098/rsbl.2023.0078 Lippold, S., Knapp, M., Kuznetsova, T., et al., 2011. Discovery of Lost Diversity of Paternal Horse Lineages Using Ancient DNA. Nature Communications, 2: 450. https://doi.org/10.1038/ncomms1447 Liu, S. L., Westbury, M. V., Dussex, N., et al., 2021a. Ancient and Modern Genomes Unravel the Evolutionary History of the Rhinoceros Family. Cell, 184(19): 4874-4885. https://doi.org/10.1016/j.cell.2021.07.032 Liu, S. S., Kruse, S., Scherler, D., et al., 2021b. Sedimentary Ancient DNA Reveals a Threat of Warming-Induced Alpine Habitat Loss to Tibetan Plateau Plant Diversity. Nature Communications, 12: 2995. https://doi.org/10.1038/s41467-021-22986-4 Lord, E., Dussex, N., Kierczak, M., et al., 2020. Pre-Extinction Demographic Stability and Genomic Signatures of Adaptation in the Woolly Rhinoceros. Current Biology, 30(19): 3871-3879. https://doi.org/10.1016/j.cub.2020.07.046 Lorenzen, E. D., Nogués-Bravo, D., Orlando, L., et al., 2011. Species-Specific Responses of Late Quaternary Megafauna to Climate and Humans. Nature, 479: 359-364. https://doi.org/10.1038/nature10574 Lucena-Perez, M., Paijmans, J. L. A., Nocete, F., et al., 2024. Recent Increase in Species-Wide Diversity after Interspecies Introgression in the Highly Endangered Iberian Lynx. Nature Ecology & Evolution, 8: 282-292. https://doi.org/10.1038/s41559-023-02267-7 Mascher, M., Schuenemann, V. J., Davidovich, U., et al., 2016. Genomic Analysis of 6 000-Year-Old Cultivated Grain Illuminates the Domestication History of Barley. Nature Genetics, 48(9): 1089-1093. https://doi.org/10.1038/ng.3611 McManus, K. F., Kelley, J. L., Song, S., et al., 2015. Inference of Gorilla Demographic and Selective History from Whole-Genome Sequence Data. Molecular Biology and Evolution, 32(3): 600-612. https://doi.org/10.1093/molbev/msu394 Meyer, M., Arsuaga, J. L., de Filippo, C., et al., 2016. Nuclear DNA Sequences from the Middle Pleistocene Sima de Los Huesos Hominins. Nature, 531: 504-507. https://doi.org/10.1038/nature17405 Meyer, M., Kircher, M., Gansauge, M. T., et al., 2012. A High-Coverage Genome Sequence from an Archaic Denisovan Individual. Science, 338(6104): 222-226. https://doi.org/10.1126/science.1224344 Meyer, M., Palkopoulou, E., Baleka, S., et al., 2017. Palaeogenomes of Eurasian Straight-Tusked Elephants Challenge the Current View of Elephant Evolution. eLife, 6: e25413. https://doi.org/10.7554/elife.25413 Miller, W., Drautz, D. I., Ratan, A., et al., 2008. Sequencing the Nuclear Genome of the Extinct Woolly Mammoth. Nature, 456: 387-390. https://doi.org/10.1038/nature07446 Miller, W., Schuster, S. C., Welch, A. J., et al., 2012. Polar and Brown Bear Genomes Reveal Ancient Admixture and Demographic Footprints of Past Climate Change. Proceedings of the National Academy of Sciences, 109(36): E2382-E2390. https://doi.org/10.1073/pnas.1210506109 Murchie, T. J., Monteath, A. J., Mahony, M. E., et al., 2021. Collapse of the Mammoth-Steppe in Central Yukon as Revealed by Ancient Environmental DNA. Nature Communications, 12: 7120. https://doi.org/10.1038/s41467-021-27439-6 Noonan, J. P., Coop, G., Kudaravalli, S., et al., 2006. Sequencing and Analysis of Neanderthal Genomic DNA. Science, 314(5802): 1113-1118. https://doi.org/10.1126/science.1131412 Noro, M., Masuda, R., Dubrovo, I. A., et al., 1998. Molecular Phylogenetic Inference of the Woolly Mammoth Mammuthus Primigenius, Based on Complete Sequences of Mitochondrial Cytochrome B and 12S Ribosomal RNA Genes. Journal of Molecular Evolution, 46(3): 314-326. https://doi.org/10.1007/pl00006308 O'Brien, S. J., Pan, W., Lu, Z., 1994. Pandas, People and Policy. Nature, 369: 179-180. https://doi.org/10.1038/369179a0 Orlando, L., 2020. Ancient Genomes Reveal Unexpected Horse Domestication and Management Dynamics. BioEssays, 42(1): e1900164. https://doi.org/10.1002/bies.201900164 Orlando, L., Ginolhac, A., Zhang, G. J., et al., 2013. Recalibrating Equus Evolution Using the Genome Sequence of an Early Middle Pleistocene Horse. Nature, 499(7456): 74-78. https://doi.org/10.1038/nature12323 Orlando, L., Leonard, J. A., Thenot, A., et al., 2003. Ancient DNA Analysis Reveals Woolly Rhino Evolutionary Relationships. Molecular Phylogenetics and Evolution, 28(3): 485-499. https://doi.org/10.1016/S1055-7903(03)00023-X Orlando, L., Metcalf, J. L., Alberdi, M. T., et al., 2009. Revising the Recent Evolutionary History of Equids Using Ancient DNA. Proceedings of the National Academy of Sciences, 106(51): 21754-21759. https://doi.org/10.1073/pnas.0903672106 Ozawa, T., Hayashi, S., Mikhelson, V. M., 1997. Phylogenetic Position of Mammoth and Steller's Sea Cow within Tethytheria Demonstrated by Mitochondrial DNA Sequences. Journal of Molecular Evolution, 44(4): 406-413. https://doi.org/10.1007/pl00006160 Parducci, L., Jørgensen, T., Tollefsrud, M. M., et al., 2012. Glacial Survival of Boreal Trees in Northern Scandinavia. Science, 335(6072): 1083-1086. https://doi.org/10.1126/science.1216043 Pawar, H., Rymbekova, A., Cuadros-Espinoza, S., et al., 2023. Ghost Admixture in Eastern Gorillas. Nature Ecology & Evolution, 7(9): 1503-1514. https://doi.org/10.1038/s41559-023-02145-2 Poinar, H. N., Schwarz, C., Qi, J., et al., 2006. Metagenomics to Paleogenomics: Large-Scale Sequencing of Mammoth DNA. Science, 311(5759): 392-394. https://doi.org/10.1126/science.1123360 Price, M., Hongo, H., 2020. The Archaeology of Pig Domestication in Eurasia. Journal of Archaeological Research, 28(4): 557-615. https://doi.org/10.1007/s10814-019-09142-9 Prüfer, K., Racimo, F., Patterson, N., et al., 2014. The Complete Genome Sequence of a Neanderthal from the Altai Mountains. Nature, 505(7481): 43-49. https://doi.org/10.1038/nature12886 Racimo, F., Sankararaman, S., Nielsen, R., et al., 2015. Evidence for Archaic Adaptive Introgression in Humans. Nature Reviews Genetics, 16(6): 359-371. https://doi.org/10.1038/nrg3936 Reich, D., Green, R. E., Kircher, M., et al., 2010. Genetic History of an Archaic Hominin Group from Denisova Cave in Siberia. Nature, 468(7327): 1053-1060. https://doi.org/10.1038/nature09710 Rohland, N., Pollack, J. L., Nagel, D., et al., 2005. The Population History of Extant and Extinct Hyenas. Molecular Biology and Evolution, 22(12): 2435-2443. https://doi.org/10.1093/molbev/msi244 Salis, A. T., Bray, S. C. E., Lee, M. S. Y., et al., 2022. Lions and Brown Bears Colonized North America in Multiple Synchronous Waves of Dispersal across the Bering Land Bridge. Molecular Ecology, 31(24): 6407-6421. https://doi.org/10.1111/mec.16267 Sandoval-Velasco, M., Dudchenko, O., Rodríguez, J. A., et al., 2024. Three-Dimensional Genome Architecture Persists in a 52 000-Year-Old Woolly Mammoth Skin Sample. Cell, 187: 3541-3562. https://doi.org/10.1101/2023.06.30.547175 Sheng, G. L., Barlow, A., Cooper, A., et al., 2018. Ancient DNA from Giant Panda (Ailuropoda Melanoleuca) of South-Western China Reveals Genetic Diversity Loss during the Holocene. Genes, 9(4): 198. https://doi.org/10.3390/genes9040198 Sheng, G. L., Basler, N., Ji, X. P., et al., 2019. Paleogenome Reveals Genetic Contribution of Extinct Giant Panda to Extant Populations. Current Biology, 29(10): 1695-1700. https://doi.org/10.1016/j.cub.2019.04.021 Sheng, G. L., Soubrier, J., Liu, J. Y., et al., 2014. Pleistocene Chinese Cave Hyenas and the Recent Eurasian History of the Spotted Hyena, Crocuta Crocuta. Molecular Ecology, 23: 522-533. https://doi.org/10.1111/mec.12576 Sheng, G. L., Yuan, J. X., Yi, J., et al., 2009. Ancient DNA Analyses of the Spotted Hyena (Crocuta Crocuta) from Lingxian Cave, Qinhuangdao, Hebei Province. Earth Science, 34(6): 877-883 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2009.06.001 Simonti, C. N., Vernot, B., Bastarache, L., et al., 2016. The Phenotypic Legacy of Admixture between Modern Humans and Neandertals. Science, 351(6274): 737-741. https://doi.org/10.1126/science.aad2149 Sjögren, P., Edwards, M. E., Gielly, L., et al., 2017. Lake Sedimentary DNA Accurately Records 20th Century Introductions of Exotic Conifers in Scotland. The New Phytologist, 213(2): 929-941. https://doi.org/10.1111/nph.14199 Skoglund, P., Mathieson, I., 2018. Ancient Genomics of Modern Humans: The First Decade. Annual Review of Genomics and Human Genetics, 19: 381-404. https://doi.org/10.1146/annurev-genom-083117-021749 Slon, V., Hopfe, C., Weiß, C. L., et al., 2017. Neandertal and Denisovan DNA from Pleistocene Sediments. Science, 356(6338): 605-608. https://doi.org/10.1126/science.aam9695 Slon, V., Mafessoni, F., Vernot, B., et al., 2018. The Genome of the Offspring of a Neanderthal Mother and a Denisovan Father. Nature, 561(7721): 113-116. https://doi.org/10.1038/s41586-018-0455-x Sommer, R. S., Benecke, N., Lõugas, L., et al., 2011. Holocene Survival of the Wild Horse in Europe: A Matter of Open Landscape? Journal of Quaternary Science, 26(8): 805-812. https://doi.org/10.1002/jqs.1509 Stuart, A. J., 2015. Late Quaternary Megafaunal Extinctions on the Continents: A Short Review. Geological Journal, 50(3): 338-363. https://doi.org/10.1002/gj.2633 Sun, X., Liu, Y. C., Tiunov, M. P., et al., 2023. Ancient DNA Reveals Genetic Admixture in China during Tiger Evolution. Nature Ecology & Evolution, 7(11): 1914-1929. https://doi.org/10.1038/s41559-023-02185-8 van der Valk, T., Pečnerová, P., Díez-Del-Molino, D., et al., 2021. Million-Year-Old DNA Sheds Light on the Genomic History of Mammoths. Nature, 591(7849): 265-269. https://doi.org/10.1038/s41586-021-03224-9 Vernot, B., Zavala, E. I., Gómez-Olivencia, A., et al., 2021. Unearthing Neanderthal Population History Using Nuclear and Mitochondrial DNA from Cave Sediments. Science, 372(6542): eabf1667. https://doi.org/10.1126/science.abf1667 Wang, J., Xia, H., Yao, J. T., et al., 2020. Subsistence Strategies of Prehistoric Hunter-Gatherers on the Tibetan Plateau during the Last Deglaciation. Science China Earth Sciences, 50(3): 380-390 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/zgkx-ed202003005 Wang, Y. C., Pedersen, M. W., Alsos, I. G., et al., 2021. Late Quaternary Dynamics of Arctic Biota from Ancient Environmental Genomics. Nature, 600(7887): 86-92. https://doi.org/10.1038/s41586-021-04016-x Wei, F., 2022. Population History of the Giant Panda. Springer, New York. Weinstock, J., Willerslev, E., Sher, A., et al., 2005. Evolution, Systematics, and Phylogeography of Pleistocene Horses in the New World: A Molecular Perspective. PLoS Biology, 3(8): e241. https://doi.org/10.1371/journal.pbio.0030241 Westbury, M. V., Hartmann, S., Barlow, A., et al., 2020. Hyena Paleogenomes Reveal a Complex Evolutionary History of Cross-Continental Gene Flow between Spotted and Cave Hyena. Science Advances, 6(11): eaay0456. https://doi.org/10.1126/sciadv.aay0456 Willerslev, E., Davison, J., Moora, M., et al., 2014. Fifty Thousand Years of Arctic Vegetation and Megafaunal Diet. Nature, 506(7486): 47-51. https://doi.org/10.1038/nature12921 Willerslev, E., Gilbert, M. T. P., Binladen, J., et al., 2009. Analysis of Complete Mitochondrial Genomes from Extinct and Extant Rhinoceroses Reveals Lack of Phylogenetic Resolution. BMC Evolutionary Biology, 9: 95. https://doi.org/10.1186/1471-2148-9-95 Willerslev, E., Hansen, A. J., Binladen, J., et al., 2003. Diverse Plant and Animal Genetic Records from Holocene and Pleistocene Sediments. Science, 300(5620): 791-795. https://doi.org/10.1126/science.1084114 Xiao, B., Wang, T. J., Lister, A. M., et al., 2023. Ancient and Modern Mitogenomes of Red Deer Reveal Its Evolutionary History in Northern China. Quaternary Science Reviews, 301: 107924. https://doi.org/10.1016/j.quascirev.2022.107924 Xie, S. C., 2023. Geobiology. Higher Education Press, Beijing (in Chinese). Yang, H., Golenberg, E. M., Shoshani, J., 1996. Phylogenetic Resolution within the Elephantidae Using Fossil DNA Sequence from the American Mastodon (Mammut Americanum) as an Outgroup. Proceedings of the National Academy of Sciences, 93(3): 1190-1194. https://doi.org/10.1073/pnas.93.3.1190 Yang, M. A., Gao, X., Theunert, C., et al., 2017. 40, 000-Year-Old Individual from Asia Provides Insight into Early Population Structure in Eurasia. Current Biology, 27(20): 3202-3208. https://doi.org/10.1016/j.cub.2017.09.030 Yin, H. F., Xie, S. C., Tong, J. N., et al., 2009. On the Significance of Geobiology. Acta Palaeontologica Sinica, 48(3): 293-301 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX200903001.htm Yuan, J. X., Hou, X. D., Barlow, A., et al., 2019. Molecular Identification of Late and Terminal Pleistocene Equus Ovodovi from Northeastern China. PLoS One, 14(5): e0216883. https://doi.org/10.1371/journal.pone.0216883 Yuan, J. X., Hu, J. M., Liu, W. H., et al., 2024. Camelus Knoblochi Genome Reveals the Complex Evolutionary History of Old World Camels. Current Biology, 34(11): 2502-2508. https://doi.org/10.1016/j.cub.2024.04.050 Yuan, J. X., Sheng, G. L., Preick, M., et al., 2020. Mitochondrial Genomes of Late Pleistocene Caballine Horses from China Belong to a Separate Clade. Quaternary Science Reviews, 250: 106691. https://doi.org/10.1016/j.quascirev.2020.106691 Yuan, J. X., Sun, G. J., Xiao, B., et al., 2023. Ancient Mitogenomes Reveal a High Maternal Genetic Diversity of Pleistocene Woolly Rhinoceros in Northern China. BMC Ecology and Evolution, 23(1): 56. https://doi.org/10.1186/s12862-023-02168-0 Zavala, E. I., Jacobs, Z., Vernot, B., et al., 2021. Pleistocene Sediment DNA Reveals Hominin and Faunal Turnovers at Denisova Cave. Nature, 595(7867): 399-403. https://doi.org/10.1038/s41586-021-03675-0 Zhang, D. J., Xia, H. A., Chen F. H., et al., 2020. Denisovan DNA in Late Pleistocene Sediments from Baishiya Karst Cave on the Tibetan Plateau. Science, 370: 584-587. https://doi.org/10.1126/science.abb6320 Zhang, M., Liu, Y. C., Li, Z. P., et al., 2022. Ancient DNA Reveals the Maternal Genetic History of East Asian Domestic Pigs. Journal of Genetics and Genomics, 49(6): 537-546. https://doi.org/10.1016/j.jgg.2021.11.014 Zhang, N. F., Shao, X. Y., Guo, Y. Q., et al., 2023. Ancient Mitochondrial Genomes Provide New Clues to the Origin of Domestic Cattle in China. Genes, 14(7): 1313. https://doi.org/10.3390/genes14071313 邓涛, 薛祥煦, 1997. 重论真马(Equus属)首次出现可作为第四纪下限的标志. 地层学杂志, 21(2): 109-116. 杜至诚, 盛桂莲, 胡家铭, 等, 2025. 中国东北晚更新世真猛犸象的线粒体遗传多样性及其演化历史. 科学通报, 70(1): 121-133. 李涛, 赖旭龙, 王頠, 等, 2004. 大熊猫的分类与演化综述. 地质科技情报, 23(3): 40-46. 盛桂莲, 袁俊霞, 伊剑, 等, 2009. 河北秦皇岛灵仙洞斑鬣狗化石的古DNA初步分析. 地球科学, 34(6): 877-883. http://www.earth-science.net/article/id/1902 王建, 夏欢, 姚娟婷, 等, 2020. 青藏高原末次冰消期狩猎采集人群的生存策略研究. 中国科学: 地球科学, 50(3): 380-390. 谢树成, 2023. 地球生物学. 北京: 高等教育出版社. 殷鸿福, 谢树成, 童金南, 等, 2009. 谈地球生物学的重要意义. 古生物学报, 48(3): 293-301. -