• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    二叠纪‒三叠纪之交火山活动及其环境效应和生物响应

    吴玉样 宋海军 楚道亮 宋虎跃 田力

    吴玉样, 宋海军, 楚道亮, 宋虎跃, 田力, 2025. 二叠纪‒三叠纪之交火山活动及其环境效应和生物响应. 地球科学, 50(3): 964-982. doi: 10.3799/dqkx.2024.156
    引用本文: 吴玉样, 宋海军, 楚道亮, 宋虎跃, 田力, 2025. 二叠纪‒三叠纪之交火山活动及其环境效应和生物响应. 地球科学, 50(3): 964-982. doi: 10.3799/dqkx.2024.156
    Wu Yuyang, Song Haijun, Chu Daoliang, Song Huyue, Tian Li, 2025. Environmental Impacts and Biotic Responses to Volcanism during the Permian⁃Triassic Transition. Earth Science, 50(3): 964-982. doi: 10.3799/dqkx.2024.156
    Citation: Wu Yuyang, Song Haijun, Chu Daoliang, Song Huyue, Tian Li, 2025. Environmental Impacts and Biotic Responses to Volcanism during the Permian⁃Triassic Transition. Earth Science, 50(3): 964-982. doi: 10.3799/dqkx.2024.156

    二叠纪‒三叠纪之交火山活动及其环境效应和生物响应

    doi: 10.3799/dqkx.2024.156
    基金项目: 

    国家重点研发计划项目 2023YFF0804000

    国家自然科学基金项目 42202002

    详细信息
      作者简介:

      吴玉样(1992—),男,博士后,博士,主要研究方向为三叠纪古环境和古气候数值模拟

      通讯作者:

      吴玉样,ORCID:0000-0001-8592-0305. E-mail:wuyuyang@cug.edu.cn

      宋海军,ORCID:0000-0002-2721-3626. E-mail:haijunsong@cug.edu.cn

    • 中图分类号: P52

    Environmental Impacts and Biotic Responses to Volcanism during the Permian⁃Triassic Transition

    • 摘要: 当今人类面临着大规模人为碳排放所导致的全球变暖,以及由此引发的一系列全球气候变化和生态危机.地质历史时期曾发生过多次大规模火山活动所导致的极热事件,并伴随着生物大灭绝,这为当前全球变暖问题提供了历史借鉴.约2.52亿年前的二叠纪‒三叠纪之交,发生了显生宙以来最大规模的生物灭绝事件,这一事件被广泛认为与大规模火山活动及其引发的环境变化密切相关.本文重点围绕近年来有关二叠纪‒三叠纪之交火山活动的研究进展,总结了岩浆脱气组分及其排放规模,包括二氧化碳、甲烷、二氧化硫、卤素和重金属,归纳了岩浆脱气直接引发的全球变暖、海洋酸化、火山冬天、酸雨、臭氧层破坏和重金属毒化等环境效应,评估了这些环境变化对海洋和陆地生物灭绝的具体贡献,这些讨论可加深对火山活动和生物灭绝关系的综合理解.此外,本文将二叠纪‒三叠纪之交的碳排放与现代工业碳排放进行了对比,发现现代碳排放速率和升温速率可能处于过去2.52亿年以来的最高值.

       

    • 图  1  二叠纪‒三叠纪之交火山活动的空间分布和时间模式

      a. 二叠纪‒三叠纪之交西伯利亚大火成岩省和酸性火山活动空间分布,据Svensen et al.2009、Vajda et al.2020)、Chapman et al.2022),古地理图修改自Scotese(2021);b. 华南火山灰分布,修改自Xie et al.2010);c. 数值模拟的二叠纪末两阶段火山碳排放模式,据Wu et al.2023);牙形石带据Yin et al.2014),全称见图 2;西伯利亚大火成岩省和华南酸性火山的时间分布据Burgess and Bowring(2015)、Wu et al.2024a

      Fig.  1.  The spatial distribution and temporal patterns of volcanic activity at the Permian-Triassic transition

      图  2  浙江长兴煤山剖面二叠系‒三叠系界线地层序列

      牙形石生物地层据Yin et al.2014);U-Pb测年数据据Burgess et al.2014

      Fig.  2.  Permian-Triassic boundary stratigraphy sequence at the Meishan section, Changxing, Zhejiang province

      图  3  二叠纪‒三叠纪之交火山活动的环境效应和生物响应的综合指标数据

      数据来源:全球海相碳酸盐岩碳同位素,利用C3植物有机碳同位素重建的大气CO2浓度,以及低纬度地区牙形石氧同位素数据计算的海水表层温度,据Wu et al.2021);利用腕足硼同位素计算的海水pH值,据Jurikova et al.2020);海相综合Hg/TOC数据,据Dal Corso et al.2022);黔西滇东地区陆相地层Cu/TOC和石松类孢子的四分体比例,据Chu et al.2021);物种多样性纬度梯度,据Song et al.2020);生理上无缓冲生物的占比和物种多样性记录的两幕式灭绝,据Song et al.2013

      Fig.  3.  Comprehensive proxy data on the environmental effects and biological responses to volcanic activity at the Permian-Triassic boundary.

      图  4  火山活动环境效应的时间尺度

      修改自Wignall(2001),时间尺度数据更新自数值模拟实验,据Hönisch et al.(2012)、Black et al.2014)、Black et al.2018)、Grasby et al.2020

      Fig.  4.  The time scale of environmental effects of volcanism

      图  5  二叠纪‒三叠纪之交火山脱气产物、环境和生物灭绝之间的关系

      修改自Grasby and Bond(2023

      Fig.  5.  The relationship between volcanic degassing, the environment, and mass extinction at the Permian-Triassic boundary

      图  6  现代人为和二叠纪‒三叠纪之交火山的碳排放对比

      a. 累计碳排放量和碳排放速率;b. 大气CO2浓度变化和温度变化速率;c. 二叠纪‒三叠纪之交和未来预测的升温趋势

      Fig.  6.  A comparison of modern anthropogenic carbon emissions with volcanic carbon emissions during the Permian-Triassic crisis

      表  1  二叠纪‒三叠纪之交的碳排放数值模拟结果总结

      Table  1.   Summary of modeling results of carbon emissions at the Permian-Triassic transition

      文献 模型 碳源 碳释放总量和速率
      Payne et al., 2010 质量平衡公式 幔源CO2(-6‰) 13 200~43 000 Gt C
      Schneebeli-Hermann et al., 2013 有机质(-25‰) 15 000~20 000 Gt C
      Wu et al., 2021 有机质(-25‰)
      热变质成因CH4 (-40‰)
      生物成因CH4 (-60‰)
      3 900 Gt C
      6 000 Gt C
      12 000 Gt C
      Berner, 2002 箱式模型 生物成因CH4(-65‰),幔源CO2(-6‰)和生产力下降 2 000 Gt CH4
      Grard et al., 2005 箱式模型和能量平衡模型 幔源CO2(-5‰)和生产力下降 /
      Komar and Zeebe, 2016 箱式模型(LOSCAR) 幔源CO2 (-5‰) 和生产力下降 12 000 Gt C
      Payne and Kump, 2007 箱式模型 热变质成因碳(-25‰) 12 000 Gt C
      Clarkson et al., 2015 箱式模型 阶段1: 甲烷(-50‰) 或有机质(-25‰)或混合(-12.5‰)
      阶段2: 幔源CO2和碳酸盐岩(0‰)
      阶段1:3 840~15 600 Gt C
      阶段2:24 000 Gt C
      Jurikova et al., 2020 箱式模型 阶段1: 幔源CO2 (-6‰)
      阶段2: 热变质成因碳(-18‰)
      9 600 Gt C
      96 000 Gt C
      Dal Corso et al., 2020 C-Hg耦合箱式模型 幔源CO2 (-5‰) 和陆相有机质氧化(-25‰) /
      Cui et al., 2013 cGENIE模型 有机质(-25‰) 22 400 Gt C
      热变质成因CH4 (-40‰) 11 500 Gt C
      生物成因CH4 (-60‰) 7 000 Gt C
      Cui et al., 2021 幔源CO2和热变质成因碳(-15‰) 36 200 Gt C;5 Gt C/a
      Wu et al., 2023 阶段1: 幔源CO2 (-9‰)
      阶段2: 热变质成因CO2和CH4 (-16‰)
      5 000 Gt C;0.2 Gt C/a
      21 000 Gt C;0.7 Gt C/a
      下载: 导出CSV
    • Beerling, D. J., Harfoot, M., Lomax, B., et al., 2007. The Stability of the Stratospheric Ozone Layer during the End⁃Permian Eruption of the Siberian Traps. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 365(1856): 1843-1866. https://doi.org/10.1098/rsta.2007.2046
      Benca, J. P., Duijnstee, I. A. P., Looy, C. V., 2018. UV⁃B⁃Induced Forest Sterility: Implications of Ozone Shield Failure in Earth's Largest Extinction. Science Advances, 4(2): e1700618. https://doi.org/10.1126/sciadv.1700618
      Benton, M. J., 2003. When Life nearly Died: The Greatest Mass Extinction of All Time. Thames & Hudson, London.
      Benton, M. J., 2018. Hyperthermal⁃Driven Mass Extinctions: Killing Models during the Permian⁃Triassic Mass Extinction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 376(2130): 20170076. https://doi.org/10.1098/rsta.2017.0076
      Berner, R. A., 2002. Examination of Hypotheses for the Permo⁃Triassic Boundary Extinction by Carbon Cycle Modeling. Proceedings of the National Academy of Sciences, 99(7): 4172-4177. https://doi.org/10.1073/pnas.032095199
      Black, B. A., Elkins⁃Tanton, L. T., Rowe, M. C., et al., 2012. Magnitude and Consequences of Volatile Release from the Siberian Traps. Earth and Planetary Science Letters, 317-318: 363-373. https://doi.org/10.1016/j.epsl.2011.12.001
      Black, B. A., Lamarque, J. F., Shields, C. A., et al., 2014. Acid Rain and Ozone Depletion from Pulsed Siberian Traps Magmatism. Geology, 42(1): 67-70. https://doi.org/10.1130/g34875.1
      Black, B. A., Neely, R. R., Lamarque, J. F., et al., 2018. Systemic Swings in End⁃Permian Climate from Siberian Traps Carbon and Sulfur Outgassing. Nature Geoscience, 11: 949-954. https://doi.org/10.1038/s41561⁃018⁃0261⁃y
      Bond, D. P. G., Grasby, S. E., 2017. On the Causes of Mass Extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3-29. https://doi.org/10.1016/j.palaeo.2016.11.005
      Bowring, S. A., Erwin, D. H., Jin, Y. G., et al., 1998. U/Pb Zircon Geochronology and Tempo of the End⁃Permian Mass Extinction. Science, 280(5366): 1039-1045. https://doi.org/10.1126/science.280.5366.1039
      Broadley, M. W., Barry, P. H., Ballentine, C. J., et al., 2018. End⁃Permian Extinction Amplified by Plume⁃Induced Release of Recycled Lithospheric Volatiles. Nature Geoscience, 11: 682-687. https://doi.org/10.1038/s41561⁃018⁃0215⁃4
      Burgess, S. D., Bowring, S. A., 2015. High⁃Precision Geochronology Confirms Voluminous Magmatism before, during, and after Earth's Most Severe Extinction. Science Advances, 1(7): e1500470. https://doi.org/10.1126/sciadv.1500470
      Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High⁃Precision Timeline for Earth's Most Severe Extinction. Proceedings of the National Academy of Sciences, 111(9): 3316-3321. https://doi.org/10.1073/pnas.1317692111
      Burgess, S. D., Muirhead, J. D., Bowring, S. A., 2017. Initial Pulse of Siberian Traps Sills as the Trigger of the End⁃Permian Mass Extinction. Nature Communications, 8(1): 164. https://doi.org/10.1038/s41467⁃017⁃00083⁃9
      Cai, Y. F., Zhang, H., Cao, C. Q., et al., 2021. Wildfires and Deforestation during the Permian⁃Triassic Transition in the Southern Junggar Basin, Northwest China. Earth⁃Science Reviews, 218: 103670. https://doi.org/10.1016/j.earscirev.2021.103670
      Chapman, T., Milan, L. A., Metcalfe, I., et al., 2022. Pulses in Silicic Arc Magmatism Initiate End⁃Permian Climate Instability and Extinction. Nature Geoscience, 15: 411-416. https://doi.org/10.1038/s41561⁃022⁃00934⁃1
      Chen, B., Joachimski, M. M., Shen, S. Z., et al., 2013. Permian Ice Volume and Palaeoclimate History: Oxygen Isotope Proxies Revisited. Gondwana Research, 24(1): 77-89. https://doi.org/10.1016/j.gr.2012.07.007
      Chen, J. B., Zhou, Y. L., Liu, W. J., et al., 2024. Spatiotemporal Disparity of Volcanogenic Mercury Records in the Southwestern Neo⁃Tethys Ocean during the Permian⁃Triassic Transition. Global and Planetary Change, 240: 104534. https://doi.org/10.1016/j.gloplacha.2024.104534
      Chen, J., Shen, S. Z., Li, X. H., et al., 2016. High⁃Resolution SIMS Oxygen Isotope Analysis on Conodont Apatite from South China and Implications for the End⁃Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 26-38. https://doi.org/10.1016/j.palaeo.2015.11.025
      Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5: 375-383. https://doi.org/10.1038/ngeo1475
      Chu, D. L., Corso, J. D., Shu, W. C., et al., 2021. Metal⁃Induced Stress in Survivor Plants Following the End⁃Permian Collapse of Land Ecosystems. Geology, 49(6): 657-661. https://doi.org/10.1130/g48333.1
      Chu, D. L., Grasby, S. E., Song, H. J., et al., 2020. Ecological Disturbance in Tropical Peatlands Prior to Marine Permian⁃Triassic Mass Extinction. Geology, 48(3): 288-292. https://doi.org/10.1130/g46631.1
      Chu, D. L., Song, H. J., Dal Corso, J., et al., 2025. Diachronous End⁃Permian Terrestrial Crises in North and South China. Geology, 53(1): 55-60. https://doi.org/10.1130/g52655.1
      Clapham, M. E., Payne, J. L., 2011. Acidification, Anoxia, and Extinction: A Multiple Logistic Regression Analysis of Extinction Selectivity during the Middle and Late Permian. Geology, 39(11): 1059-1062. https://doi.org/10.1130/G32230.1
      Clapham, M. E., Renne, P. R., 2019. Flood Basalts and Mass Extinctions. Annual Review of Earth and Planetary Sciences, 47: 275-303. https://doi.org/10.1146/annurev⁃earth⁃053018⁃060136
      Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo⁃Triassic Mass Extinction. Science, 348(6231): 229-232. https://doi.org/10.1126/science.aaa0193
      Cui, Y., Kump, L. R., Ridgwell, A., 2013. Initial Assessment of the Carbon Emission Rate and Climatic Consequences during the End⁃Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 389: 128-136. https://doi.org/10.1016/j.palaeo.2013.09.001
      Cui, Y., Li, M. S., van Soelen, E. E., et al., 2021. Massive and Rapid Predominantly Volcanic CO2 Emission during the End⁃Permian Mass Extinction. Proceedings of the National Academy of Sciences, 118(37): e2014701118. https://doi.org/10.1073/pnas.2014701118
      Dal Corso, J., Mills, B. J. W., Chu, D. L., et al., 2020. Permo⁃Triassic Boundary Carbon and Mercury Cycling Linked to Terrestrial Ecosystem Collapse. Nature Communications, 11(1): 2962. https://doi.org/10.1038/s41467⁃020⁃16725⁃4
      Dal Corso, J., Newton, R. J., Zerkle, A. L., et al., 2024. Repeated Pulses of Volcanism Drove the End⁃Permian Terrestrial Crisis in Northwest China. Nature Communications, 15(1): 7628. https://doi.org/10.1038/s41467⁃024⁃51671⁃5
      Dal Corso, J., Song, H. J., Callegaro, S., et al., 2022. Environmental Crises at the Permian⁃Triassic Mass Extinction. Nature Reviews Earth & Environment, 3: 197-214. https://doi.org/10.1038/s43017⁃021⁃00259⁃4
      Damon Matthews, H., Wynes, S., 2022. Current Global Efforts Are Insufficient to Limit Warming to 1.5 ℃. Science, 376(6600): 1404-1409. https://doi.org/10.1126/science.abo3378
      Davydov, V. I., 2021. Tunguska Сoals, Siberian Sills and the Permian⁃Triassic Extinction. Earth⁃Science Reviews, 212: 103438. https://doi.org/10.1016/j.earscirev.2020.103438
      Davydov, V. I., Karasev, E. V., 2021. The Influence of the Permian⁃Triassic Magmatism in the Tunguska Basin, Siberia on the Regional Floristic Biota of the Permian⁃Triassic Transition in the Region. Frontiers in Earth Science, 9: 635179. https://doi.org/10.3389/feart.2021.635179
      Ekart, D. D., Cerling, T. E., Montanez, I. P., 1999. A 400 Million Year Carbon Isotope Record of Pedogenic Carbonate; Implications for Paleoatomospheric Carbon Dioxide. American Journal of Science, 299(10): 805-827. https://doi.org/10.2475/ajs.299.10.805
      Elkins⁃Tanton, L. T., Grasby, S. E., Black, B. A., et al., 2020. Field Evidence for Coal Combustion Links the 252 Ma Siberian Traps with Global Carbon Disruption. Geology, 48(10): 986-991. https://doi.org/10.1130/g47365.1
      Ernst, R. E., Youbi, N., 2017. How Large Igneous Provinces Affect Global Climate, Sometimes Cause Mass Extinctions, and Represent Natural Markers in the Geological Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 30-52. https://doi.org/10.1016/j.palaeo.2017.03.014
      Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High⁃Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953
      Fielding, C. R., Frank, T. D., McLoughlin, S., et al., 2019. Age and Pattern of the Southern High⁃Latitude Continental End⁃Permian Extinction Constrained by Multiproxy Analysis. Nature Communications, 10(1): 385. https://doi.org/10.1038/s41467⁃018⁃07934⁃z
      Foster, G. L., Royer, D. L., Lunt, D. J., 2017. Future Climate Forcing Potentially without Precedent in the Last 420 Million Years. Nature Communications, 8: 14845. https://doi.org/10.1038/ncomms14845
      Foster, W. J., Hirtz, J. A., Farrell, C., et al., 2022. Bioindicators of Severe Ocean Acidification Are Absent from the End⁃Permian Mass Extinction. Scientific Reports, 12(1): 1202. https://doi.org/10.1038/s41598⁃022⁃04991⁃9
      Franks, P. J., Royer, D. L., Beerling, D. J., et al., 2014. New Constraints on Atmospheric CO2 Concentration for the Phanerozoic. Geophysical Research Letters, 41(13): 4685-4694. https://doi.org/10.1002/2014gl060457
      Friedlingstein, P., O'Sullivan, M., Jones, M. W., et al., 2020. Global Carbon Budget 2020. Earth System Science Data, 12(4): 3269-3340. https://doi.org/10.5194/essd⁃12⁃3269⁃2020
      Gales, E., Black, B., Elkins⁃Tanton, L. T., 2020. Carbonatites as a Record of the Carbon Isotope Composition of Large Igneous Province Outgassing. Earth and Planetary Science Letters, 535: 116076. https://doi.org/10.1016/j.epsl.2020.116076
      Garbelli, C., Angiolini, L., Brand, U., et al., 2016. Neotethys Seawater Chemistry and Temperature at the Dawn of the End Permian Mass Extinction. Gondwana Research, 35: 272-285. https://doi.org/10.1016/j.gr.2015.05.012
      Garbelli, C., Angiolini, L., Shen, S. Z., 2017. Biomineralization and Global Change: A New Perspective for Understanding the End⁃Permian Extinction. Geology, 45(1): 19-22. https://doi.org/10.1130/g38430.1
      Gastaldo, R. A., Kamo, S. L., Neveling, J., et al., 2020. The Base of the Lystrosaurus Assemblage Zone, Karoo Basin, Predates the End⁃Permian Marine Extinction. Nature Communications, 11(1): 1428. https://doi.org/10.1038/s41467⁃020⁃15243⁃7
      Gastaldo, R. A., Knight, C. L., Neveling, J., et al., 2014. Latest Permian Paleosols from Wapadsberg Pass, South Africa: Implications for Changhsingian Climate. Geological Society of America Bulletin, 126(5-6): 665-679. https://doi.org/10.1130/b30887.1
      Gliwa, J., Wiedenbeck, M., Schobben, M., et al., 2022. Gradual Warming Prior to the End⁃Permian Mass Extinction. Palaeontology, 65(5): e12621. https://doi.org/10.1111/pala.12621
      Grard, A., François, L. M., Dessert, C., et al., 2005. Basaltic Volcanism and Mass Extinction at the Permo⁃Triassic Boundary: Environmental Impact and Modeling of the Global Carbon Cycle. Earth and Planetary Science Letters, 234(1-2): 207-221. https://doi.org/10.1016/j.epsl.2005.02.027
      Grasby, S. E., Beauchamp, B., Bond, D. P. G., et al., 2015. Progressive Environmental Deterioration in Northwestern Pangea Leading to the Latest Permian Extinction. Geological Society of America Bulletin, 127(9-10): 1331-1347. https://doi.org/10.1130/b31197.1
      Grasby, S. E., Beauchamp, B., Embry, A., et al., 2013. Recurrent Early Triassic Ocean Anoxia. Geology, 41(2): 175-178. https://doi.org/10.1130/g33599.1
      Grasby, S. E., Bond, D. P. G., 2023. How Large Igneous Provinces Have Killed Most Life on Earth—Numerous Times. Elements, 19(5): 276-281. https://doi.org/10.2138/gselements.19.5.276
      Grasby, S. E., Liu, X. J., Yin, R. S., et al., 2020. Toxic Mercury Pulses into Late Permian Terrestrial and Marine Environments. Geology, 48(8): 830-833. https://doi.org/10.1130/g47295.1
      Grasby, S. E., Shen, W. J., Yin, R. S., et al., 2017. Isotopic Signatures of Mercury Contamination in Latest Permian Oceans. Geology, 45(1): 55-58. https://doi.org/10.1130/g38487.1
      He, B., Zhong, Y. T., Xu, Y. G., et al., 2014. Triggers of Permo⁃Triassic Boundary Mass Extinction in South China: The Siberian Traps or Paleo⁃Tethys Ignimbrite Flare⁃Up? Lithos, 204: 258-267. https://doi.org/10.1016/j.lithos.2014.05.011
      Hochuli, P. A., Schneebeli⁃Hermann, E., Mangerud, G., et al., 2017. Evidence for Atmospheric Pollution across the Permian⁃Triassic Transition. Geology, 45(12): 1123-1126. https://doi.org/10.1130/g39496.1
      Hönisch, B., Ridgwell, A., Schmidt, D. N., et al., 2012. The Geological Record of Ocean Acidification. Science, 335(6072): 1058-1063. https://doi.org/10.1126/science.1208277
      Hu, X. M., Li, J., Han, Z., et al., 2020. Two Types of Hyperthermal Events in the Mesozoic⁃Cenozoic: Environmental Impacts, Biotic Effects, and Driving Mechanisms. Science in China (Series D), 50(8): 1023-1043 (in Chinese).
      Hülse, D., Lau, K. V., van de Velde, S. J., et al., 2021. End⁃Permian Marine Extinction Due to Temperature⁃Driven Nutrient Recycling and Euxinia. Nature Geoscience, 14: 862-867. https://doi.org/10.1038/s41561⁃021⁃00829⁃7
      Ivanov, A. V., He, H., Yan, L. K., et al., 2013. Siberian Traps Large Igneous Province: Evidence for Two Flood Basalt Pulses around the Permo⁃Triassic Boundary and in the Middle Triassic, and Contemporaneous Granitic Magmatism. Earth⁃Science Reviews, 122: 58-76. https://doi.org/10.1016/j.earscirev.2013.04.001
      Jiao, Y., Zhou, L., Algeo, T. J., et al., 2023. Zirconium and Neodymium Isotopes Record Intensive Felsic Volcanism in South China Region during the Permian⁃Triassic Boundary Crisis. Chemical Geology, 636: 121653. https://doi.org/10.1016/j.chemgeo.2023.121653
      Joachimski, M. M., Alekseev, A. S., Grigoryan, A., et al., 2020. Siberian Trap Volcanism, Global Warming and the Permian⁃Triassic Mass Extinction: New Insights from Armenian Permian⁃Triassic Sections. GSA Bulletin, 132(1-2): 427-443. https://doi.org/10.1130/b35108.1
      Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian⁃Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/g32707.1
      Joachimski, M. M., Müller, J., Gallagher, T. M., et al., 2022. Five Million Years of High Atmospheric CO2 in the Aftermath of the Permian⁃Triassic Mass Extinction. Geology, 50(6): 650-654. https://doi.org/10.1130/g49714.1
      Jurikova, H., Gutjahr, M., Wallmann, K., et al., 2020. Permian⁃Triassic Mass Extinction Pulses Driven by Major Marine Carbon Cycle Perturbations. Nature Geoscience, 13: 745-750. https://doi.org/10.1038/s41561⁃020⁃00646⁃4
      Komar, N., Zeebe, R. E., 2016. Calcium and Calcium Isotope Changes during Carbon Cycle Perturbations at the End⁃Permian. Paleoceanography, 31(1): 115-130. https://doi.org/10.1002/2015pa002834
      Li, H., Yu, J. X., McElwain, J. C., et al., 2019. Reconstruction of Atmospheric CO2 Concentration during the Late Changhsingian Based on Fossil Conifers from the Dalong Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 37-48. https://doi.org/10.1016/j.palaeo.2018.09.006
      Li, M. H., Frank, T. D., Xu, Y. L., et al., 2022. Sulfur Isotopes Link Atmospheric Sulfate Aerosols from the Siberian Traps Outgassing to the End⁃Permian Extinction on Land. Earth and Planetary Science Letters, 592: 117634. https://doi.org/10.1016/j.epsl.2022.117634
      Li, R. C., Wu, N. P., Shen, S. Z., et al., 2023. A Rapid Onset of Ocean Acidification Associated with the End⁃Permian Mass Extinction. Global and Planetary Change, 225: 104130. https://doi.org/10.1016/j.gloplacha.2023.104130
      Liu, F., Peng, H. P., Marshall, J. E. A., et al., 2023. Dying in the Sun: Direct Evidence for Elevated UV⁃B Radiation at the End⁃Permian Mass Extinction. Science Advances, 9(1): eabo6102. https://doi.org/10.1126/sciadv.abo6102
      Maruoka, T., Koeberl, C., Hancox, P. J., et al., 2003. Sulfur Geochemistry across a Terrestrial Permian⁃Triassic Boundary Section in the Karoo Basin, South Africa. Earth and Planetary Science Letters, 206(1-2): 101-117. https://doi.org/10.1016/S0012⁃821X(02)01087⁃7
      Nagajyoti, P. C., Lee, K. D., Sreekanth, T. V. M., 2010. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environmental Chemistry Letters, 8(3): 199-216. https://doi.org/10.1007/s10311⁃010⁃0297⁃8
      Nelson, D. A., Cottle, J. M., 2019. Tracking Voluminous Permian Volcanism of the Choiyoi Province into Central Antarctica. Lithosphere, 11(3): 386-398. https://doi.org/10.1130/l1015.1
      Payne, J. L., Kump, L. R., 2007. Evidence for Recurrent Early Triassic Massive Volcanism from Quantitative Interpretation of Carbon Isotope Fluctuations. Earth and Planetary Science Letters, 256(1-2): 264-277. https://doi.org/10.1016/j.epsl.2007.01.034
      Payne, J. L., Lehrmann, D. J., Follett, D., et al., 2007. Erosional Truncation of Uppermost Permian Shallow⁃Marine Carbonates and Implications for Permian⁃Triassic Boundary Events. Geological Society of America Bulletin, 119(7-8): 771-784. https://doi.org/10.1130/b26091.1
      Payne, J. L., Turchyn, A. V., Paytan, A., et al., 2010. Calcium Isotope Constraints on the End⁃Permian Mass Extinction. Proceedings of the National Academy of Sciences, 107(19): 8543-8548. https://doi.org/10.1073/pnas.0914065107
      Penn, J. L., Deutsch, C., Payne, J. L., et al., 2018. Temperature⁃Dependent Hypoxia Explains Biogeography and Severity of End⁃Permian Marine Mass Extinction. Science, 362(6419): eaat1327. https://doi.org/10.1126/science.aat1327
      Rampino, M. R., Rodriguez, S., Baransky, E., et al., 2017. Global Nickel Anomaly Links Siberian Traps Eruptions and the Latest Permian Mass Extinction. Scientific Reports, 7(1): 12416. https://doi.org/10.1038/s41598⁃017⁃12759⁃9
      Renne, P. R., Basu, A. R., 1991. Rapid Eruption of the Siberian Traps Flood Basalts at the Permo⁃Triassic Boundary. Science, 253(5016): 176-179. https://doi.org/10.1126/science.253.5016.176
      Retallack, G. J., 2009. Greenhouse Crises of the Past 300 Million Years. Geological Society of America Bulletin, 121(9-10): 1441-1455. https://doi.org/10.1130/b26341.1
      Retallack, G. J., 2013. Permian and Triassic Greenhouse Crises. Gondwana Research, 24(1): 90-103. https://doi.org/10.1016/j.gr.2012.03.003
      Retallack, G. J., Jahren, A. H., 2008. Methane Release from Igneous Intrusion of Coal during Late Permian Extinction Events. The Journal of Geology, 116(1): 1-20. https://doi.org/10.1086/524120
      Ridgwell, A., Schmidt, D. N., 2010. Past Constraints on the Vulnerability of Marine Calcifiers to Massive Carbon Dioxide Release. Nature Geoscience, 3: 196-200. https://doi.org/10.1038/ngeo755
      Rong, J. Y., Huang, B., 2014. Study of Mass Extinction over the Past Thirty Years: A Synopsis. Science in China (Series D), 44(3): 377-404 (in Chinese).
      Schmidt, A., Skeffington, R. A., Thordarson, T., et al., 2016. Selective Environmental Stress from Sulphur Emitted by Continental Flood Basalt Eruptions. Nature Geoscience, 9: 77-82. https://doi.org/10.1038/ngeo2588
      Schneebeli⁃Hermann, E., Kurschner, W. M., Hochuli, P. A., et al., 2013. Evidence for Atmospheric Carbon Injection during the End⁃Permian Extinction. Geology, 41(5): 579-582. https://doi.org/10.1130/g34047.1
      Schobben, M., Joachimski, M. M., Korn, D., et al., 2014. Palaeotethys Seawater Temperature Rise and an Intensified Hydrological Cycle Following the End⁃Permian Mass Extinction. Gondwana Research, 26(2): 675-683. https://doi.org/10.1016/j.gr.2013.07.019
      Scotese, C. R., 2021. An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come in and the Seas Go out. Annual Review of Earth and Planetary Sciences, 49: 679-728. https://doi.org/10.1146/annurev⁃earth⁃081320⁃064052
      Sephton, M. A., Jiao, D., Engel, M. H., et al., 2015. Terrestrial Acidification during the End⁃Permian Biosphere Crisis? Geology, 43(2): 159-162. https://doi.org/10.1130/g36227.1
      Shen, J. H., Zhang, Y. G., Yang, H., et al., 2022. Early and Late Phases of the Permian⁃Triassic Mass Extinction Marked by Different Atmospheric CO2 Regimes. Nature Geoscience, 15: 839-844. https://doi.org/10.1038/s41561⁃022⁃01034⁃w
      Shen, J., Chen, J. B., Algeo, T. J., et al., 2019a. Evidence for a Prolonged Permian⁃Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10(1): 1563. https://doi.org/10.1038/s41467⁃019⁃09620⁃0
      Shen, J., Chen, J. B., Algeo, T. J., et al., 2021. Mercury Fluxes Record Regional Volcanism in the South China Craton Prior to the End⁃Permian Mass Extinction. Geology, 49(4): 452-456. https://doi.org/10.1130/g48501.1
      Shen, J., Chen, J. B., Yu, J. X., et al., 2023. Mercury Evidence from Southern Pangea Terrestrial Sections for End⁃Permian Global Volcanic Effects. Nature Communications, 14(1): 6. https://doi.org/10.1038/s41467⁃022⁃35272⁃8
      Shen, J., Yu, J. X., Chen, J. B., et al., 2019b. Mercury Evidence of Intense Volcanic Effects on Land during the Permian⁃Triassic Transition. Geology, 47(12): 1117-1121. https://doi.org/10.1130/g46679.1
      Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End⁃Permian Mass Extinction. Science, 334(6061): 1367-1372. https://doi.org/10.1126/science.1213454
      Shen, S. Z., Ramezani, J., Chen, J., et al., 2019c. A Sudden End⁃Permian Mass Extinction in South China. GSA Bulletin, 131(1-2): 205-223. https://doi.org/10.1130/b31909.1
      Shen, S. Z., Zhang, F. F., Wang, W. Q., et al., 2024. Deep⁃Time Major Biological and Climatic Events Versus Global Changes: Progresses and Challenges. Chinese Science Bulletin, 69(2): 268-285 (in Chinese).
      Shen, S. Z., Zhang, H., 2017. What Caused the Five Mass Extinctions. Chinese Science Bulletin, 62(11): 1119-1135 (in Chinese). doi: 10.1360/N972017-00013
      Sial, A. N., Chen, J. B., Lacerda, L. D., et al., 2020. Globally Enhanced Hg Deposition and Hg Isotopes in Sections Straddling the Permian⁃Triassic Boundary: Link to Volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 540: 109537. https://doi.org/10.1016/j.palaeo.2019.109537
      Silva⁃Tamayo, J. C., Lau, K. V., Jost, A. B., et al., 2018. Global Perturbation of the Marine Calcium Cycle during the Permian⁃Triassic Transition. GSA Bulletin, 130(7/8): 1323-1338. https://doi.org/10.1130/b31818.1
      Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., et al., 2011. Linking Mantle Plumes, Large Igneous Provinces and Environmental Catastrophes. Nature, 477(7364): 312-316. https://doi.org/10.1038/nature10385
      Song, H. C., Song, H. J., Zhang, Z. S., et al., 2023. Evolution and Driving Mechanisms of Water Circulation During the Late Paleozoic to Early Mesozoic. Chinese Science Bulletin, 68(12): 1501-1516 (in Chinese). doi: 10.1360/TB-2022-0896
      Song, H. J., Huang, S., Jia, E. H., et al., 2020. Flat Latitudinal Diversity Gradient Caused by the Permian⁃Triassic Mass Extinction. Proceedings of the National Academy of Sciences, 117(30): 17578-17583. https://doi.org/10.1073/pnas.1918953117
      Song, H. J., Scotese, C. R., 2023. The End⁃Paleozoic Great Warming. Science Bulletin, 68(21): 2523-2526. https://doi.org/10.1016/j.scib.2023.09.009
      Song, H. J., Song, H. Y., Tong, J. N., et al., 2021. Conodont Calcium Isotopic Evidence for Multiple Shelf Acidification Events during the Early Triassic. Chemical Geology, 562: 120038. https://doi.org/10.1016/j.chemgeo.2020.120038
      Song, H. J., Tong, J. N., 2016. Mass Extinction and Survival during the Permian⁃Triassic Crisis. Earth Science, 41(6): 901-918 (in Chinese with English abstract).
      Song, H. J., Wignall, P. B., Tong, J. N., et al., 2012. Geochemical Evidence from Bio⁃Apatite for Multiple Oceanic Anoxic Events during Permian⁃Triassic Transition and the Link with End⁃Permian Extinction and Recovery. Earth and Planetary Science Letters, 353: 12-21. https://doi.org/10.1016/j.epsl.2012.07.005
      Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian⁃Triassic Crisis. Nature Geoscience, 6: 52-56. https://doi.org/10.1038/ngeo1649
      Song, H. J., Wu, Y. Y., Dai, X., et al., 2024. Respiratory Protein⁃Driven Selectivity during the Permian⁃Triassic Mass Extinction. The Innovation, 5(3): 100618. https://doi.org/10.1016/j.xinn.2024.100618
      Sun, Y. D., Farnsworth, A., Joachimski, M. M., et al., 2024. Mega El Niño Instigated the End⁃Permian Mass Extinction. Science, 385(6714): 1189-1195. https://doi.org/10.1126/science.ado2030
      Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126
      Svensen, H. H., Frolov, S., Akhmanov, G. G., et al., 2018. Sills and Gas Generation in the Siberian Traps. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 376(2130): 20170080. https://doi.org/10.1098/rsta.2017.0080
      Svensen, H., Planke, S., Polozov, A. G., et al., 2009. Siberian Gas Venting and the End⁃Permian Environmental Crisis. Earth and Planetary Science Letters, 277(3-4): 490-500. https://doi.org/10.1016/j.epsl.2008.11.015
      Tong, J. N., Yin, H. F., 2009. Advance in the Study of Early Triassic Life and Environment. Acta Palaeontologica Sinica, 48(3): 497-508 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GSWX200903019.htm
      Vajda, V., McLoughlin, S., Mays, C., et al., 2020. End⁃Permian (252 Mya) Deforestation, Wildfires and Flooding: An Ancient Biotic Crisis with Lessons for the Present. Earth and Planetary Science Letters, 529: 115875. https://doi.org/10.1016/j.epsl.2019.115875
      Visscher, H., Looy, C. V., Collinson, M. E., et al., 2004. Environmental Mutagenesis during the End⁃Permian Ecological Crisis. Proceedings of the National Academy of Sciences, 101(35): 12952-12956. https://doi.org/10.1073/pnas.0404472101
      Wang, M., Zhong, Y. T., Hou, Y. L., et al., 2018. Source and Extent of the Felsic Volcanic Ashes at the Permian⁃Triassic Boundary in South China. Acta Petrologica Sinica, 34(1): 36-48 (in Chinese with English abstract).
      Wang, W. Q., Garbelli, C., Zhang, F. F., et al., 2020. A High⁃Resolution Middle to Late Permian Paleotemperature Curve Reconstructed Using Oxygen Isotopes of Well⁃Preserved Brachiopod Shells. Earth and Planetary Science Letters, 540: 116245. https://doi.org/10.1016/j.epsl.2020.116245
      Wang, X. D., Cawood, P. A., Zhao, H., et al., 2018. Mercury Anomalies across the End Permian Mass Extinction in South China from Shallow and Deep Water Depositional Environments. Earth and Planetary Science Letters, 496: 159-167. https://doi.org/10.1016/j.epsl.2018.05.044
      Wignall, P. B., 2001. Large Igneous Provinces and Mass Extinctions. Earth⁃Science Reviews, 53(1-2): 1-33. https://doi.org/10.1016/S0012⁃8252(00)00037⁃4
      Wignall, P. B., Kershaw, S., Collin, P. Y., et al., 2009. Erosional Truncation of Uppermost Permian Shallow⁃Marine Carbonates and Implications for Permian⁃Triassic Boundary Events: Comment. Geological Society of America Bulletin, 121(5-6): 954-956. https://doi.org/10.1130/b26424.1
      Witkowski, C. R., Weijers, J. W. H., Blais, B., et al., 2018. Molecular Fossils from Phytoplankton Reveal Secular Pco2 Trend over the Phanerozoic. Science Advances, 4(11): eaat4556. https://doi.org/10.1126/sciadv.aat4556
      Wu, Q., Zhang, H., Ramezani, J., et al., 2024a. The Terrestrial End⁃Permian Mass Extinction in the Paleotropics Postdates the Marine Extinction. Science Advances, 10(5): eadi7284. https://doi.org/10.1126/sciadv.adi7284
      Wu, Y. Y., Chu, D. L., Tong, J. N., et al., 2021. Six⁃Fold Increase of Atmospheric pCO2 during the Permian⁃ Triassic Mass Extinction. Nature Communications, 12(1): 2137. https://doi.org/10.1038/s41467⁃021⁃22298⁃7
      Wu, Y. Y., Cui, Y., Chu, D. L., et al., 2023. Volcanic CO2 Degassing Postdates Thermogenic Carbon Emission during the End⁃Permian Mass Extinction. Science Advances, 9(7): eabq4082. https://doi.org/10.1126/sciadv.abq4082
      Wu, Y. Y., Pohl, A., Tian, L., et al., 2024b. Recurrent Marine Anoxia in the Paleo⁃Tethys Linked to Constriction of Seaways during the Early Triassic. Earth and Planetary Science Letters, 643: 118882. https://doi.org/10.1016/j.epsl.2024.118882
      Wu, Y. Y., Tong, J. N., Algeo, T. J., et al., 2020. Organic Carbon Isotopes in Terrestrial Permian⁃Triassic Boundary Sections of North China: Implications for Global Carbon Cycle Perturbations. GSA Bulletin, 132(5-6): 1106-1118. https://doi.org/10.1130/b35228.1
      Xie, S. C., Pancost, R. D., Wang, Y. B., et al., 2010. Cyanobacterial Blooms Tied to Volcanism during the 5 M. Y. Permo⁃Triassic Biotic Crisis. Geology, 38(5): 447-450. https://doi.org/10.1130/g30769.1
      Yang, L. R., Dai, X., Liu, X. K., et al., 2024. Foraminiferal Extinction and Size Reduction during the Permian⁃ Triassic Transition in Southern Tibet. Journal of Earth Science, 35(6): 1799-1809. https://doi.org/10.1007/s12583⁃023⁃1847⁃x
      Yang, Z. Y., Wu, S. B., Yin, H. F., 1991. Permo⁃Triassic Events of South China. Geological Publishing House, Beijing (in Chinese).
      Yin, H. F., Feng, Q. L., Lai, X. L., et al., 2007. The Protracted Permo⁃Triassic Crisis and Multi⁃Episode Extinction around the Permian⁃Triassic Boundary. Global and Planetary Change, 55(1-3): 1-20. https://doi.org/10.1016/j.gloplacha.2006.06.005
      Yin, H. F., Huang, S. J., Zhang, K., et al., 1992. The Effects of Volcanism on the Permo⁃Triassic Mass Extinction in South China. In: Sweet, W. C., Yang, Z., Dickins, J. M., eds., Permo⁃Triassic Events in the Eastern Tethys. Cambridge University Press, Cambridge, 146-157.
      Yin, H. F., Jiang, H. S., Xia, W. C., et al., 2014. The End⁃Permian Regression in South China and Its Implication on Mass Extinction. Earth⁃Science Reviews, 137: 19-33. https://doi.org/10.1016/j.earscirev.2013.06.003
      Yin, H. F., Xie, S. C., Luo, G. M., et al., 2012. Two Episodes of Environmental Change at the Permian⁃Triassic Boundary of the GSSP Section Meishan. Earth⁃Science Reviews, 115(3): 163-172. https://doi.org/10.1016/j.earscirev.2012.08.006
      Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian⁃Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004
      Yin, H. F., Huang, S. J., Zhang, K. X., et al., 1989. Volcanism at the Permian⁃Triassic Boundary in South China and Its Effects on Mass Extinction. Acta Geologica Sinica, 63(2): 169-180 (in Chinese with English abstract).
      Yin, H. F., Song, H. J., 2013. Mass Extinction and Pangea Integration during the Paleozoic⁃Mesozoic Transition. Science in China (Series D), 43(10): 1539-1552 (in Chinese).
      Zeebe, R. E., Ridgwell, A., Zachos, J. C., 2016. Anthropogenic Carbon Release Rate Unprecedented during the Past 66 Million Years. Nature Geoscience, 9: 325-329. https://doi.org/10.1038/ngeo2681
      Zhang, F. F., Romaniello, S. J., Algeo, T. J., et al., 2018. Multiple Episodes of Extensive Marine Anoxia Linked to Global Warming and Continental Weathering Following the Latest Permian Mass Extinction. Science Advances, 4(4): e1602921. https://doi.org/10.1126/sciadv.1602921
      Zhang, H., Cai, Y. F., Jiao, S. L., et al., 2024. Global Warming Event and the Changeover of Terrestrial Ecosystems during the Permian⁃Triassic Transition. Quaternary Sciences, 44(5): 1093-1107 (in Chinese with English abstract).
      Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End⁃Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390
      胡修棉, 李娟, 韩中, 等, 2020. 中新生代两类极热事件的环境变化、生态效应与驱动机制. 中国科学(D辑), 50(8): 1023-1043.
      戎嘉余, 黄冰, 2014. 生物大灭绝研究三十年. 中国科学(D辑), 44(3): 377-404.
      沈树忠, 张飞飞, 王文倩, 等, 2024. 深时重大生物和气候事件与全球变化: 进展与挑战. 科学通报, 69(2): 268-285.
      沈树忠, 张华, 2017. 什么引起五次生物大灭绝? 科学通报, 62(11): 1119-1135.
      宋汉宸, 宋海军, 张仲石, 等, 2023. 古生代‒中生代之交的水循环演变及驱动机制. 科学通报, 68(12): 1501-1516.
      宋海军, 童金南, 2016. 二叠纪‒三叠纪之交生物大灭绝与残存. 地球科学, 41(6): 901-918.
      童金南, 殷鸿福, 2009. 早三叠世生物与环境研究进展. 古生物学报, 48(3): 497-508.
      王曼, 钟玉婷, 侯莹玲, 等, 2018. 华南地区二叠纪‒三叠纪界线酸性火山灰的源区与规模. 岩石学报, 34(1): 36-48.
      杨遵仪, 吴顺宝, 殷鸿福, 1991. 华南二叠‒三叠纪过渡时期地质事件. 北京: 地质出版社.
      殷鸿福, 黄思骥, 张克信, 等1989. 华南二叠纪‒三叠纪之交的火山活动及其对生物绝灭的影响. 地质学报, 63(2): 169-180.
      殷鸿福, 宋海军, 2013. 古、中生代之交生物大灭绝与泛大陆聚合. 中国科学(D辑), 43(10): 1539-1552.
      张华, 蔡垚峰, 角升林, 等, 2024. 二叠纪‒三叠纪转折期升温事件与陆地生态系统. 第四纪研究, 44(5): 1093-1107.
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  213
    • HTML全文浏览量:  94
    • PDF下载量:  69
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-11-30
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回