• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    牙形石生物磷灰石地球化学研究进展

    张磊 赵赫 吕政艺 王向东

    张磊, 赵赫, 吕政艺, 王向东, 2025. 牙形石生物磷灰石地球化学研究进展. 地球科学, 50(3): 1122-1141. doi: 10.3799/dqkx.2025.004
    引用本文: 张磊, 赵赫, 吕政艺, 王向东, 2025. 牙形石生物磷灰石地球化学研究进展. 地球科学, 50(3): 1122-1141. doi: 10.3799/dqkx.2025.004
    Zhang Lei, Zhao He, Lü Zhengyi, Wang Xiangdong, 2025. Progress in Study of Conodont Bioapatite Geochemistry. Earth Science, 50(3): 1122-1141. doi: 10.3799/dqkx.2025.004
    Citation: Zhang Lei, Zhao He, Lü Zhengyi, Wang Xiangdong, 2025. Progress in Study of Conodont Bioapatite Geochemistry. Earth Science, 50(3): 1122-1141. doi: 10.3799/dqkx.2025.004

    牙形石生物磷灰石地球化学研究进展

    doi: 10.3799/dqkx.2025.004
    基金项目: 

    国家自然科学基金项目 92055212

    国家自然科学基金项目 42073073

    国家自然科学基金项目 42477215

    国家自然科学基金项目 42372037

    国家自然科学基金项目 42472160

    中国地质大学(武汉)“地大学者”人才岗位科研启动经费 2023081

    国家资助博士后研究人员计划项目 GZC20232474

    中国博士后科学基金面上项目 2024M753028

    湖北省博士后创新人才培养项目A类 2004HBBHCXA084

    中国地质大学(武汉)地质过程与成矿预测全国重点实验室项目 MSFGPMR2024-104

    详细信息
      作者简介:

      张磊(1991—),男,副研究员,主要从事重大地质事件沉积地球化学的研究工作. ORCID:0000‐0002‐6367‐9001. E‐mail:zhanglei_cug@sina.com

    • 中图分类号: P593

    Progress in Study of Conodont Bioapatite Geochemistry

    • 摘要: 牙形石作为一类已灭绝的但分类地位不明的海洋脊索动物的口部摄食器官,是一种由碳氟磷灰石组成的磷酸盐质微体化石(大小一般约0.5 mm,最大可达3 mm),对成岩蚀变具有较强的抵抗能力,有利于保存原始海水信息,它的元素和同位素组成被认为是可靠的古海洋化学记录载体.以稀土元素和氧、锶、钙同位素体系为代表的牙形石地球化学研究在揭示古海洋氧化还原状态、古海洋酸碱程度、海水表层温度、大陆风化作用和古气候等方面发挥了关键作用.一直以来,相关学者不仅聚焦于牙形石地球化学研究在古环境‒古气候领域的应用,也不断深入探究牙形石微观结构,尤其是多种元素及同位素信息的准确提取、评价和筛选,目的是进一步完善牙形石地球化学研究方法并准确应用.本文综述了牙形石形貌、结构和古生态特征,在此基础上总结了牙形石稀土元素以及氧、锶、钙同位素地球化学研究进展,以期为牙形石地球化学发展及其在古环境‒古气候研究中的应用提供参考和启发.

       

    • 图  1  牙形类动物及牙形石形貌特征

      a. 牙形类动物保留在岩层中的印痕化石(产自下石炭统,现保存于苏格兰皇家博物馆.拍摄者:Derek Briggs);b. 牙形类动物复原图(左),齿片状牙形石的乳白色牙冠、玻璃质牙冠和牙基的相对位置(中),牙形石多分子器官复原简图(右).修改自Henderson(2021

      Fig.  1.  Morphological characteristics of conodont animals and conodonts

      图  2  牙形石自然集群及多分子器官解析

      a. 牙形石自然集合标本(上)与部分孤立离散的分子(下)的重建比较;B. 牙形石自然集群SEM照片;c. 对中三叠世Neogondolella自然集群的解析图. 米黄色. P分子;橙色. S0分子;棕色. S1和S2分子;黄色. S3和S4分子;绿色. M分子.据Goudemand et al.2011

      Fig.  2.  Conodont natural assemblages and the analysis of multi-element conodont apparatus

      图  3  利用不同的磷酸盐‒水的氧同位素分馏方程计算古海水温度对比

      数据来源:磷酸盐‒水的氧同位素分馏方程来自Kolodny et al.1983)、Pucéat et al.2010)和Lécuyer et al.2013);晚二叠世‒早三叠世δ18O牙形石数据来自Sun et al.2012)和Joachimski et al.2012

      Fig.  3.  Comparison of paleoseawater temperature calculation formulas based on phosphate oxygen isotopes in previous studies

      图  4  晚泥盆世海洋87Sr/86Sr演变曲线

      锶同位素数据来源:全岩腕足壳体(红色十字)据van Geldern et al.2006);全岩碳酸盐岩(蓝色方块)据黄思静(1997);全岩碳酸盐岩(橘色方块(杨堤剖面))据Chen et al.2013);全岩牙形石(青色菱形(杨堤剖面)和紫色米字形(Kowala剖面))据Zhang et al.2020);全岩牙形石(绿色三角形(垌村剖面))据Wang et al.2023);微区原位牙形石(橘色圆圈(白沙剖面)和蓝色圆圈(杨堤剖面))据Zhao et al.2024

      Fig.  4.  Compiled 87Sr/86Sr data during the Late Devonian

    • Armstrong, H. A., Pearson, D. G., Griselin, M., 2001. Thermal Effects on Rare Earth Element and Strontium Isotope Chemistry in Single Conodont Elements. Geochimica et Cosmochimica Acta, 65(3): 435-441. https://doi.org/10.1016/S0016-7037(00)00548-2
      Balter, V., Martin, J. E., Tacail, T., et al., 2019. Calcium Stable Isotopes Place Devonian Conodonts as First Level Consumers. Geochemical Perspectives Letters, 10: 36-39. https://doi.org/10.7185/geochemlet.1912
      Bergström, S. M., Sweet, W. C., 1966. Conodonts from the Lexington Limestone (Middle Ordovician) of Kentucky, and Its Lateral Equivalents in Ohio and Indiana. Bulletin of American Paleontology, 50: 271-441.
      Brazier, J. M., Suan, G., Tacail, T., et al., 2015. Calcium Isotope Evidence for Dramatic Increase of Continental Weathering during the Toarcian Oceanic Anoxic Event (Early Jurassic). Earth and Planetary Science Letters, 411: 164-176. https://doi.org/10.1016/j.epsl.2014.11.028
      Bright, C. A., Cruse, A. M., Lyons, T. W., et al., 2009. Seawater Rare-Earth Element Patterns Preserved in Apatite of Pennsylvanian Conodonts? Geochimica et Cosmochimica Acta, 73(6): 1609-1624. https://doi.org/10.1016/j.gca.2008.12.014
      Buggisch, W., Joachimski, M. M., Sevastopulo, G., et al., 2008. Mississippian δ13Ccarb and Conodont Apatite δ18O Records: Their Relation to the Late Palaeozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3-4): 273-292. https://doi.org/10.1016/j.palaeo.2008.03.043
      Carlson, S. J., 2018. Revision and Review of the Order Pentamerida. In: Copper, P., ed., Brachiopods. CRC Press, Boca Raton, 53-58. https://doi.org/10.1201/9781315138602-10
      Chen, B., Joachimski, M. M., Sun, Y. D., et al., 2011. Carbon and Conodont Apatite Oxygen Isotope Records of Guadalupian-Lopingian Boundary Sections: Climatic or Sea-Level Signal? Palaeogeography, Palaeoclimatology, Palaeoecology, 311(3-4): 145-153. https://doi.org/10.1016/j.palaeo.2011.08.016
      Chen, D. Z., Wang, J. G., Racki, G., et al., 2013. Large Sulphur Isotopic Perturbations and Oceanic Changes during the Frasnian-Famennian Transition of the Late Devonian. Journal of the Geological Society, 170(3): 465-476. https://doi.org/10.1144/jgs2012-037
      Chen, J. B., Algeo, T. J., Zhao, L. S., et al., 2015. Diagenetic Uptake of Rare Earth Elements by Bioapatite, with an Example from Lower Triassic Conodonts of South China. Earth-Science Reviews, 149: 181-202. https://doi.org/10.1016/j.earscirev.2015.01.013
      Chen, J. B., Zhao, L. S., Chen, Z. Q., et al., 2012. In Situ Rare Earth Elements in Conodont from Meishan Section in Zhejiang Province and Implications for Paleoenvironmental Evolution. Earth Science, 37(1): 25-34 (in Chinese with English abstract).
      Chen, J., Shen, S. Z., Li, X. H., et al., 2016. High-Resolution SIMS Oxygen Isotope Analysis on Conodont Apatite from South China and Implications for the End-Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 26-38. https://doi.org/10.1016/j.palaeo.2015.11.025
      Chen, Y. L., Joachimski, M. M., Richoz, S., et al., 2021. Smithian and Spathian (Early Triassic) Conodonts from Oman and Croatia and Their Depth Habitat Revealed. Global and Planetary Change, 196: 103362. https://doi.org/10.1016/j.gloplacha.2020.103362
      Cummins, R. C., Finnegan, S., Fike, D. A., et al., 2014. Carbonate Clumped Isotope Constraints on Silurian Ocean Temperature and Seawater δ18O. Geochimica et Cosmochimica Acta, 140: 241-258. https://doi.org/10.1016/j.gca.2014.05.024
      De La Rocha, C. L., DePaolo, D. J., 2000. Isotopic Evidence for Variations in the Marine Calcium Cycle over the Cenozoic. Science, 289(5482): 1176-1178. https://doi.org/10.1126/science.289.5482.1176
      Deng, Y., Guo, Q., Liu, C., et al., 2022. Early Diagenetic Control on the Enrichment and Fractionation of Rare Earth Elements in Deep-Sea Sediments. Science Advances, 8(25): eabn5466. https://doi.org/10.1126/sciadv.abn5466
      Du, Y., Zhu, Y. Y., Song, H., et al., 2019. Analytical Method for δ18O of Phosphate in Trace Apatite. Earth Science, 44(2): 456-462 (in Chinese with English abstract).
      Ebneth, S., Diener, A., Buhl, D., et al., 1997. Strontium Isotope Systematics of Conodonts: Middle Devonian, Eifel Mountains, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4): 79-96. https://doi.org/10.1016/S0031-0182(97)00057-6
      Edwards, C. T., Jones, C. M., Quinton, P. C., et al., 2022. Oxygen Isotope (δ18O) Trends Measured from Ordovician Conodont Apatite Using Secondary Ion Mass Spectrometry (SIMS): Implications for Paleo-Thermometry Studies. GSA Bulletin, 134(1-2): 261-274. https://doi.org/10.1130/b35891.1
      Elrick, M., 2022. Orbital-Scale Climate Changes Detected in Lower and Middle Ordovician Cyclic Limestones Using Oxygen Isotopes of Conodont Apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 603: 111209. https://doi.org/10.1016/j.palaeo.2022.111209
      Epstein, A. G., Epstein, J. B., Harris, L. D., 1975. Conodont Color Alteration; an Index to Organic Metamorphism. U. S. Geological Survey, Washington, D. C. .
      Fantle, M. S., 2010. Evaluating the Ca Isotope Proxy. American Journal of Science, 310(3): 194-230. https://doi.org/10.2475/03.2010.03
      Farkaš, J., Böhm, F., Wallmann, K., et al., 2007. Calcium Isotope Record of Phanerozoic Oceans: Implications for Chemical Evolution of Seawater and Its Causative Mechanisms. Geochimica et Cosmochimica Acta, 71(21): 5117-5134. https://doi.org/10.1016/j.gca.2007.09.004
      Faure, G., Powell, J. L., 2012. Strontium Isotope Geology. Springer, New York.
      Gao, F., Xue, J., Hu, R., et al., 2024. Atom Probe Tomography Reveals Nano-Scale Organic Remaining in Conodont. Atomic Spectroscopy, 45(1): 1-8. https://doi.org/10.46770/as.2024.026
      García-López, S., Bastida, F., Aller, J., et al., 2001. Geothermal Palaeogradients and Metamorphic Zonation from the Conodont Colour Alteration Index (CAI). Terra Nova, 13(2): 79-83. https://doi.org/10.1046/j.1365-3121.2001.00328.x
      Girard, C., Cornée, J. J., Joachimski, M. M., et al., 2020. Paleogeographic Differences in Temperature, Water Depth and Conodont Biofacies during the Late Devonian. Palaeogeography, Palaeoclimatology, Palaeoecology, 549: 108852. https://doi.org/10.1016/j.palaeo.2018.06.046
      Golding, M. L., McMillan, R., 2021. The Impacts of Diagenesis on the Geochemical Characteristics and Color Alteration Index of Conodonts. Palaeobiodiversity and Palaeoenvironments, 101(3): 803-821. https://doi.org/10.1007/s12549-020-00447-y
      Goudemand, N., Orchard, M. J., Urdy, S., et al., 2011. Synchrotron-Aided Reconstruction of the Conodont Feeding Apparatus and Implications for the Mouth of the First Vertebrates. Proceedings of the National Academy of Sciences, 108(21): 8720-8724. https://doi.org/10.1073/pnas.1101754108
      Griffin, J. M., Montañez, I. P., Glessner, J. J. G., et al., 2021. Geologic Variability of Conodont Strontium Isotopic Composition Quantified by Laser Ablation Multiple Collection Inductively Coupled Plasma Mass Spectrometry. Palaeogeography, Palaeoclimatology, Palaeoecology, 568: 110308. https://doi.org/10.1016/j.palaeo.2021.110308
      Griffith, E. M., Fantle, M. S., Eisenhauer, A., et al., 2015. Effects of Ocean Acidification on the Marine Calcium Isotope Record at the Paleocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 419: 81-92. https://doi.org/10.1016/j.epsl.2015.03.010
      Gussone, N., Filipsson, H. L., 2010. Calcium Isotope Ratios in Calcitic Tests of Benthic Foraminifers. Earth and Planetary Science Letters, 290(1-2): 108-117. https://doi.org/10.1016/j.epsl.2009.12.010
      Haley, B. A., Klinkhammer, G. P., McManus, J., 2004. Rare Earth Elements in Pore Waters of Marine Sediments. Geochimica et Cosmochimica Acta, 68(6): 1265-1279. https://doi.org/10.1016/j.gca.2003.09.012
      Henderson, C. M., 2021. Conodonts. In: Selley, R., Plimer, I., Cocks, L., eds., Encyclopedia of Geology. Elsevier, Amsterdam, 435-445. https://doi.org/10.1016/b978-0-08-102908-4.00113-2
      Henkes, G. A., Passey, B. H., Grossman, E. L., et al., 2018. Temperature Evolution and the Oxygen Isotope Composition of Phanerozoic Oceans from Carbonate Clumped Isotope Thermometry. Earth and Planetary Science Letters, 490: 40-50. https://doi.org/10.1016/j.epsl.2018.02.001
      Herrmann, A. D., Barrick, J. E., Algeo, T. J., 2015. The Relationship of Conodont Biofacies to Spatially Variable Water Mass Properties in the Late Pennsylvanian Midcontinent Sea. Paleoceanography, 30(3): 269-283. https://doi.org/10.1002/2014PA002725
      Heuser, A., Eisenhauer, A., 2008. The Calcium Isotope Composition (δ44/40Ca) of NIST SRM 915b and NIST SRM 1486. Geostandards and Geoanalytical Research, 32(3): 311-315. https://doi.org/10.1111/j.1751-908x.2008.00877.x
      Higgins, J. A., Blättler, C. L., Lundstrom, E. A., et al., 2018. Mineralogy, Early Marine Diagenesis, and the Chemistry of Shallow-Water Carbonate Sediments. Geochimica et Cosmochimica Acta, 220: 512-534. https://doi.org/10.1016/j.gca.2017.09.046
      Hinde, G. J., 1879. On Conodonts from the Chazy and Cincinnati Group of the Cambro-Silurian, and from the Hamilton and Genesee-Shale Divisions of the Devonian, in Canada and the United States. Quarterly Journal of the Geological Society of London, 35(1-4): 351-369. https://doi.org/10.1144/gsl.jgs.1879.035.01-04.23
      Hinojosa, J. L., Brown, S. T., Chen, J., et al., 2012. Evidence for End-Permian Ocean Acidification from Calcium Isotopes in Biogenic Apatite. Geology, 40(8): 743-746. https://doi.org/10.1130/g33048.1
      Huang, S. J., 1997. Carbon and Strontium Isotopes of Late Paleozoic Marine Carbonates in the Upper Yangtze Platform. Acta Geologica Sinica, 71(1): 45-53 (in Chinese with English abstract).
      Joachimski, M. M., Breisig, S., Buggisch, W., et al., 2009. Devonian Climate and Reef Evolution: Insights from Oxygen Isotopes in Apatite. Earth and Planetary Science Letters, 284(3-4): 599-609. https://doi.org/10.1016/j.epsl.2009.05.028
      Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/g32707.1
      Joachimski, M. M., van Geldern, R., Breisig, S., et al., 2004. Oxygen Isotope Evolution of Biogenic Calcite and Apatite during the Middle and Late Devonian. International Journal of Earth Sciences, 93(4): 542-553. https://doi.org/10.1007/s00531-004-0405-8
      John, E. H., Cliff, R., Wignall, P. B., 2008. A Positive Trend in Seawater 87Sr/86Sr Values over the Early- Middle Frasnian Boundary (Late Devonian) Recorded in Well-Preserved Conodont Elements from the Holy Cross Mountains, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 269(3-4): 166-175. https://doi.org/10.1016/j.palaeo.2008.04.031
      Jost, A. B., Mundil, R., He, B., et al., 2014. Constraining the Cause of the End-Guadalupian Extinction with Coupled Records of Carbon and Calcium Isotopes. Earth and Planetary Science Letters, 396: 201-212. https://doi.org/10.1016/j.epsl.2014.04.014
      Kamber, B. S., Webb, G. E., 2001. The Geochemistry of Late Archaean Microbial Carbonate: Implications for Ocean Chemistry and Continental Erosion History. Geochimica et Cosmochimica Acta, 65(15): 2509-2525. https://doi.org/10.1016/S0016-7037(01)00613-5
      Kilic, A. M., 2024. Note on Lower Triassic Gondolelloid Conodont Rediversifications with Emphasis on the Spathian Recovery. Journal of Earth Science, 35(4): 1236-1242. https://doi.org/10.1007/s12583-023-1954-8
      Kolodny, Y., Luz, B., Navon, O., 1983. Oxygen Isotope Variations in Phosphate of Biogenic Apatites, I. Fish Bone Apatite—Rechecking the Rules of the Game. Earth and Planetary Science Letters, 64(3): 398-404. https://doi.org/10.1016/0012-821X(83)90100-0
      Königshof, P., 2003. Conodont Deformation Patterns and Textural Alteration in Paleozoic Conodonts: Examples from Germany and France. Palaeobiodiversity and Palaeoenvironments, 83(1-2): 149-156. https://doi.org/10.1007/bf03043310
      Lai, X. L., Wignall, P., Zhang, K. X., 2001. Palaeoecology of the Conodonts Hindeodus and Clarkina during the Permian-Triassic Transitional Period. Palaeogeography, Palaeoclimatology, Palaeoecology, 171(1-2): 63-72. https://doi.org/10.1016/S0031-0182(01)00269-3
      Lara-Peña, R. A., Blanco-Ferrera, S., Torres-Martínez, M. A., et al., 2024. CAI and Microtextures of Low-Grade Metamorphosed Conodonts Related to Lithological and Geological Controls. Palaeoworld, 33(4): 937-958. https://doi.org/10.1016/j.palwor.2023.06.010
      Le Houedec, S., McCulloch, M., Trotter, J., et al., 2017. Conodont Apatite δ88/86Sr and δ44/40Ca Compositions and Implications for the Evolution of Palaeozoic to Early Mesozoic Seawater. Chemical Geology, 453: 55-65. https://doi.org/10.1016/j.chemgeo.2017.02.013
      Lécuyer, C., Amiot, R., Touzeau, A., et al., 2013. Calibration of the Phosphate δ18O Thermometer with Carbonate-Water Oxygen Isotope Fractionation Equations. Chemical Geology, 347: 217-226. https://doi.org/10.1016/j.chemgeo.2013.03.008
      Lécuyer, C., Reynard, B., Grandjean, P., 2004. Rare Earth Element Evolution of Phanerozoic Seawater Recorded in Biogenic Apatites. Chemical Geology, 204(1-2): 63-102. https://doi.org/10.1016/j.chemgeo.2003.11.003
      Li, Q. L., Yang, W., Liu, Y., et al., 2013. Ion Microprobe Microanalytical Techniques and Their Applications in Earth Sciences. Bulletin of Mineralogy, Petrology and Geochemistry, 32(3): 310-327 (in Chinese with English abstract).
      Li, Y., Zhao, L. S., Chen, Z. Q., et al., 2017. Oceanic Environmental Changes on a Shallow Carbonate Platform (Yangou, Jiangxi Province, South China) during the Permian-Triassic Transition: Evidence from Rare Earth Elements in Conodont Bioapatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 6-16. https://doi.org/10.1016/j.palaeo.2017.02.035
      Liu, K., Jiang, M. S., Zhang, L. Y., et al., 2022. A New High-Resolution Palaeotemperature Record during the Middle-Late Ordovician Transition Derived from Conodont δ18O Palaeothermometry. Journal of the Geological Society, 179(4): jgs2021-jgs2148. https://doi.org/10.1144/jgs2021-148
      Lumiste, K., Paiste, T., Paiste, P., et al., 2023. REE+Y Uptake in Bioapatite Revisited: Facies-Controlled Variability in Coeval Conodonts. Chemical Geology, 640: 121761. https://doi.org/10.1016/j.chemgeo.2023.121761
      Matsumoto, H., Takahashi, S., Muto, S., et al., 2023. REE Geochemistry of Conodont Fossils from Pelagic Deep-Sea Sedimentary Rocks. Geochemical Journal, 57(6): 184-196. https://doi.org/10.2343/geochemj.gj23017
      McArthur, J. M., Howarth, R. J., Shields, G. A., et al., 2020. Strontium Isotope Stratigraphy. In: Gradstein, F. M., ed., Geologic Time Scale 2020. Elsevier, Amsterdam, 211-238. https://doi.org/10.1016/b978-0-12-824360-2.00007-3
      McDowell, F. W., McIntosh, W. C., Farley, K. A., 2005. A Precise 40Ar-39Ar Reference Age for the Durango Apatite (U-Th)/He and Fission-Track Dating Standard. Chemical Geology, 214(3-4): 249-263. https://doi.org/10.1016/j.chemgeo.2004.10.002
      McMillan, R., Golding, M., 2019. Thermal Maturity of Carbonaceous Material in Conodonts and the Color Alteration Index: Independently Identifying Maximum Temperature with Raman Spectroscopy. Palaeogeography, Palaeoclimatology, Palaeoecology, 534: 109290. https://doi.org/10.1016/j.palaeo.2019.109290
      Medici, L., Savioli, M., Ferretti, A., et al., 2021. Zooming in REE and Other Trace Elements on Conodonts: Does Taxonomy Guide Diagenesis? Journal of Earth Science, 32(3): 501-511. https://doi.org/10.1007/s12583-020-1094-3
      Murdock, D. J. E., Dong, X. P., Repetski, J. E., et al., 2013. The Origin of Conodonts and of Vertebrate Mineralized Skeletons. Nature, 502: 546-549. https://doi.org/10.1038/nature12645
      Nothdurft, L. D., Webb, G. E., Kamber, B. S., 2004. Rare Earth Element Geochemistry of Late Devonian Reefal Carbonates, Canning Basin, Western Australia: Confirmation of a Seawater REE Proxy in Ancient Limestones. Geochimica et Cosmochimica Acta, 68(2): 263-283. https://doi.org/10.1016/S0016-7037(03)00422-8
      Orchard, M. J., 2007. Conodont Diversity and Evolution through the Latest Permian and Early Triassic Upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 93-117. https://doi.org/10.1016/j.palaeo.2006.11.037
      Orchard, M. J., 2010. Triassic Conodonts and Their Role in Stage Boundary Definition. Geological Society, London, Special Publications, 334(1): 139-161. https://doi.org/10.1144/sp334.7
      Palmer, M. R., Edmond, J. M., 1989. The Strontium Isotope Budget of the Modern Ocean. Earth and Planetary Science Letters, 92(1): 11-26. https://doi.org/10.1016/0012-821X(89)90017-4
      Payne, J. L., Turchyn, A. V., Paytan, A., et al., 2010. Calcium Isotope Constraints on the End-Permian Mass Extinction. Proceedings of the National Academy of Sciences, 107(19): 8543-8548. https://doi.org/10.1073/pnas.0914065107
      Peucker-Ehrenbrink, B., Fiske, G. J., 2019. A Continental Perspective of the Seawater 87Sr/86Sr Record: A Review. Chemical Geology, 510: 140-165. https://doi.org/10.1016/j.chemgeo.2019.01.017
      Picard, S., Lécuyer, C., Barrat, J. A., et al., 2002. Rare Earth Element Contents of Jurassic Fish and Reptile Teeth and Their Potential Relation to Seawater Composition (Anglo-Paris Basin, France and England). Chemical Geology, 186(1-2): 1-16. https://doi.org/10.1016/S0009-2541(01)00424-7
      Pietzner, H., 1968. Zur Chemischen Zusammensetzung und Mikromorphologie der Conodonten. Palaeontographica Abteilung A, (Lieferung 4-6): 115-152.
      Price, G. D., Bajnai, D., Fiebig, J., 2020. Carbonate Clumped Isotope Evidence for Latitudinal Seawater Temperature Gradients and the Oxygen Isotope Composition of Early Cretaceous Seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 552: 109777. https://doi.org/10.1016/j.palaeo.2020.109777
      Pucéat, E., Joachimski, M. M., Bouilloux, A., et al., 2010. Revised Phosphate-Water Fractionation Equation Reassessing Paleotemperatures Derived from Biogenic Apatite. Earth and Planetary Science Letters, 298(1-2): 135-142. https://doi.org/10.1016/j.epsl.2010.07.034
      Pucéat, E., Reynard, B., Lécuyer, C., 2004. Can Crystallinity be Used to Determine the Degree of Chemical Alteration of Biogenic Apatites? Chemical Geology, 205(1-2): 83-97. https://doi.org/10.1016/j.chemgeo.2003.12.014
      Purnell, M. A., Donoghue, P. C. J., Aldridge, R. J., 2000. Orientation and Anatomical Notation in Conodonts. Journal of Paleontology, 74(1): 113-122. https://doi.org/10.1017/s0022336000031292
      Purnell, M. A., von Bitter, P. H., 1992. Blade-Shaped Conodont Elements Functioned as Cutting Teeth. Nature, 359: 629-631. https://doi.org/10.1038/359629a0
      Rhodes, F. H. T., 1952. A Classification of Pennsylvanian Conodont Assemblages. Journal of Paleontology, 26(6): 886-901.
      Rigo, M., Joachimski, M. M., 2010. Palaeoecology of Late Triassic Conodonts: Constraints from Oxygen Isotopes in Biogenic Apatite. Acta Palaeontologica Polonica, 55(3): 471-478. https://doi.org/10.4202/app.2009.0100
      Rigo, M., Trotter, J. A., Preto, N., et al., 2012. Oxygen Isotopic Evidence for Late Triassic Monsoonal Upwelling in the Northwestern Tethys. Geology, 40(6): 515-518. https://doi.org/10.1130/g32792.1
      Romaniello, S. J., Field, M. P., Smith, H. B., et al., 2015. Fully Automated Chromatographic Purification of Sr and Ca for Isotopic Analysis. Journal of Analytical Atomic Spectrometry, 30(9): 1906-1912. https://doi.org/10.1039/C5JA00205B
      Saltzman, M. R., Edwards, C. T., Leslie, S. A., et al., 2014. Calibration of a Conodont Apatite-Based Ordovician 87Sr/86Sr Curve to Biostratigraphy and Geochronology: Implications for Stratigraphic Resolution. Geological Society of America Bulletin, 126(11-12): 1551-1568. https://doi.org/10.1130/B31038.1
      Sanz-López, J., Blanco-Ferrera, S., 2012. Overgrowths of Large Authigenic Apatite Crystals on the Surface of Conodonts from Cantabrian Limestones (Spain). Facies, 58(4): 707-726. https://doi.org/10.1007/s10347-012-0295-3
      Schmidt, H., 1934. Conodonten-Funde in Ursprünglichem Zusammenhang. Palaeontologische Zeitschrift, 16(1): 76-85. https://doi.org/10.1007/BF03041668
      Scott, H. W., 1934. The Zoological Relationships of the Conodonts. Journal of Paleontology, 8(4): 448-455. https://www.jstor.org/stable/1298133
      Shemesh, A., 1990. Crystallinity and Diagenesis of Sedimentary Apatites. Geochimica et Cosmochimica Acta, 54(9): 2433-2438. https://doi.org/10.1016/0016-7037(90)90230-I
      Sholkovitz, E. R., Landing, W. M., Lewis, B. L., 1994. Ocean Particle Chemistry: The Fractionation of Rare Earth Elements between Suspended Particles and Seawater. Geochimica et Cosmochimica Acta, 58(6): 1567-1579. https://doi.org/10.1016/0016-7037(94)90559-2
      Song, H. J., Song, H. Y., Tong, J. N., et al., 2021. Conodont Calcium Isotopic Evidence for Multiple Shelf Acidification Events during the Early Triassic. Chemical Geology, 562: 120038. https://doi.org/10.1016/j.chemgeo.2020.120038
      Song, H. J., Wignall, P. B., Tong, J. N., et al., 2012. Geochemical Evidence from Bio-Apatite for Multiple Oceanic Anoxic Events during Permian-Triassic Transition and the Link with End-Permian Extinction and Recovery. Earth and Planetary Science Letters, 353: 12-21. https://doi.org/10.1016/j.epsl.2012.07.005
      Sun, Y. D., Orchard, M. J., Kocsis, Á. T., et al., 2020. Carnian-Norian (Late Triassic) Climate Change: Evidence from Conodont Oxygen Isotope Thermometry with Implications for Reef Development and Wrangellian Tectonics. Earth and Planetary Science Letters, 534: 116082. https://doi.org/10.1016/j.epsl.2020.116082
      Sun, Y. D., Wiedenbeck, M., Joachimski, M. M., et al., 2016. Chemical and Oxygen Isotope Composition of Gem-Quality Apatites: Implications for Oxygen Isotope Reference Materials for Secondary Ion Mass Spectrometry (SIMS). Chemical Geology, 440: 164-178. https://doi.org/10.1016/j.chemgeo.2016.07.013
      Sun, Y., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126
      Sweet, W. C., 1989. The Conodonta: Morphology, Taxonomy, Paleoecology, and Evolutionary History of a Long-Extinct Animal Phylum. Oxford University Press, Oxford.
      Tang, J. W., Köhler, S. J., Dietzel, M., 2008. Sr2+/Ca2+ and 44Ca/40Ca Fractionation during Inorganic Calcite Formation: I. Sr Incorporation. Geochimica et Cosmochimica Acta, 72(15): 3718-3732. https://doi.org/10.1016/j.gca.2008.05.031
      Taylor, A. S., Lasaga, A. C., 1999. The Role of Basalt Weathering in the Sr Isotope Budget of the Oceans. Chemical Geology, 161(1-3): 199-214. https://doi.org/10.1016/S0009-2541(99)00087-X
      Teichert, B. M. A., Gussone, N., Torres, M. E., 2009. Controls on Calcium Isotope Fractionation in Sedimentary Porewaters. Earth and Planetary Science Letters, 279(3-4): 373-382. https://doi.org/10.1016/j.epsl.2009.01.011
      Thiagarajan, N., Lepland, A., Ryb, U., et al., 2024. Reconstruction of Phanerozoic Climate Using Carbonate Clumped Isotopes and Implications for the Oxygen Isotopic Composition of Seawater. Proceedings of the National Academy of Sciences, 121(36): e2400434121.10.1073/pnas. 2400434121 doi: 10.1073/pnas.2400434121
      Tian, S. G., 1993. Late Permian-Earliest Triassic Conodont Palaeoecology in Northwestern Hunan. Acta Palaeontologica Sinica, 32(3): 332-345 (in Chinese with English abstract).
      Trotter, J. A., Barnes, C. R., McCracken, A. D., 2016. Rare Earth Elements in Conodont Apatite: Seawater or Pore-Water Signatures? Palaeogeography, Palaeoclimatology, Palaeoecology, 462: 92-100. https://doi.org/10.1016/j.palaeo.2016.09.007
      Trotter, J. A., Eggins, S. M., 2006. Chemical Systematics of Conodont Apatite Determined by Laser Ablation ICPMS. Chemical Geology, 233(3-4): 196-216. https://doi.org/10.1016/j.chemgeo.2006.03.004
      Trotter, J. A., Fitz Gerald, J. D., Kokkonen, H., et al., 2007. New Insights into the Ultrastructure, Permeability, and Integrity of Conodont Apatite Determined by Transmission Electron Microscopy. Lethaia, 40(2): 97-110. https://doi.org/10.1111/j.1502-3931.2007.00024.x
      Trotter, J. A., Korsch, M. J., Nicoll, R. S., et al., 1998. Sr Isotopic Variations in Single Conodont Elements: Implications for Defining the Sr Seawater Curve. Bollettino-Societa Paleontologica Italiana, 37: 507-514.
      Trotter, J. A., Williams, I. S., Barnes, C. R., et al., 2008. Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science, 321(5888): 550-554. https://doi.org/10.1126/science.1155814
      Trotter, J. A., Williams, I. S., Nicora, A., et al., 2015. Long-Term Cycles of Triassic Climate Change: A New δ18O Record from Conodont Apatite. Earth and Planetary Science Letters, 415: 165-174. https://doi.org/10.1016/j.epsl.2015.01.038
      Turner, S., Burrow, C. J., Schultze, H. P., et al., 2010. False Teeth: Conodont-Vertebrate Phylogenetic Relationships Revisited. Geodiversitas, 32(4): 545-594. https://doi.org/10.5252/g2010n4a1
      van Geldern, R., Joachimski, M. M., Day, J., et al., 2006. Carbon, Oxygen and Strontium Isotope Records of Devonian Brachiopod Shell Calcite. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1-2): 47-67. https://doi.org/10.1016/j.palaeo.2006.03.045
      Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1-3): 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9
      Wang, A. D., Wang, H. D., 1990. Approach on Information Functions and Conodont Palaeocology. Experimental Petroleum Geology, 12(2): 182-190 (in Chinese with English abstract).
      Wang, J. Y., Jacobson, A. D., Zhang, H., et al., 2019. Coupled δ44/40Ca, δ88/86Sr, and 87Sr/86Sr Geochemistry across the End-Permian Mass Extinction Event. Geochimica et Cosmochimica Acta, 262: 143-165. https://doi.org/10.1016/j.gca.2019.07.035
      Wang, R., Chen, J. B., Zhao, L. S., et al., 2013. In Situ Oxygen Isotope Analysis of Conodonts by SIMS and Its Implication for Paleo-Sea Surface Temperature. Global Geology, 32(4): 652-658 (in Chinese with English abstract).
      Wang, W. Q., Katchinoff, J. A. R., Garbelli, C., et al., 2021. Revisiting the Permian Seawater 87Sr/86Sr Record: New Perspectives from Brachiopod Proxy Data and Stochastic Oceanic Box Models. Earth-Science Reviews, 218: 103679. https://doi.org/10.1016/j.earscirev.2021.103679
      Wang, Y. H., Zhu, Y. Y., Huang, J. D., et al., 2018. Application of Rare Earth Elements of the Marine Carbonate Rocks in Paleoenvironmental Researches. Advances in Earth Science, 33(9): 922-932 (in Chinese with English abstract).
      Wang, Y. Y., Liang, K., Xiao, Y. L., et al., 2023. Carbonate Lithium Isotope Systematics Indicate Cooling Triggered Mass Extinction during the Frasnian-Famennian Transition. Global and Planetary Change, 230: 104284. https://doi.org/10.1016/j.gloplacha.2023.104284
      Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. https://doi.org/10.1016/S0016-7037(99)00400-7
      Webers, G. F., 1966. The Middle and Upper Ordovician Conodont Faunas of Minnesota. Minnesota Geological Survey, St. Paul.
      Wenzel, B., Lécuyer, C., Joachimski, M. M., 2000. Comparing Oxygen Isotope Records of Silurian Calcite and Phosphate—δ18O Compositions of Brachiopods and Conodonts. Geochimica et Cosmochimica Acta, 64(11): 1859-1872. https://doi.org/10.1016/S0016-7037(00)00337-9
      Wheeley, J. R., Jardine, P. E., Raine, R. J., et al., 2018. Paleoecologic and Paleoceanographic Interpretation of δ18O Variability in Lower Ordovician Conodont Species. Geology, 46(5): 467-470. https://doi.org/10.1130/g40145.1
      Wheeley, J. R., Smith, M. P., Boomer, I., 2012. Oxygen Isotope Variability in Conodonts: Implications for Reconstructing Palaeozoic Palaeoclimates and Palaeoceanography. Journal of the Geological Society, 169(3): 239-250. https://doi.org/10.1144/0016-76492011-048
      Yang, S. R., Hao, W. C., Jiang, D. Y., 2001. Palaeoenvironmental and Palaeogeographic Significance of the Triassic Conodonts. Journal of Palaeogeography (Chinese Edition), 3(1): 78-84 (in Chinese with English abstract).
      Yang, Y. H., Wu, F. Y., Yang, J. H., et al., 2014. Sr and Nd Isotopic Compositions of Apatite Reference Materials Used in U-Th-Pb Geochronology. Chemical Geology, 385: 35-55. https://doi.org/10.1016/j.chemgeo.2014.07.012
      Ye, F. H., Zhao, L. S., Zhang, L., et al., 2023. Calcium Isotopes Reveal Shelf Acidification on Southern Neotethyan Margin during the Smithian-Spathian Boundary Cooling Event. Global and Planetary Change, 227: 104138. https://doi.org/10.1016/j.gloplacha.2023.104138
      Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004
      Zhang, K. X., 1988. Aleoecology of Changxingian Conodonts from Jiangsu, Zhejiang and Anhui, South China. Earth Science, 13(5): 537-543 (in Chinese with English abstract).
      Zhang, L. Y., Chen, D. Z., Huang, T. Y., et al., 2020. An Abrupt Oceanic Change and Frequent Climate Fluctuations across the Frasnian-Famennian Transition of Late Devonian: Constraints from Conodont Sr Isotope. Geological Journal, 55(6): 4479-4492. https://doi.org/10.1002/gj.3657
      Zhang, L., Algeo, T. J., Cao, L., et al., 2016. Diagenetic Uptake of Rare Earth Elements by Conodont Apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 176-197. https://doi.org/10.1016/j.palaeo.2015.10.049
      Zhang, L., Cao, L., Zhao, L. S., et al., 2017. Raman Spectral, Elemental, Crystallinity, and Oxygen-Isotope Variations in Conodont Apatite during Diagenesis. Geochimica et Cosmochimica Acta, 210: 184-207. https://doi.org/10.1016/j.gca.2017.04.036
      Zhang, W., Hu, Z. C., Liu, Y. S., et al., 2018. Improved in Situ Sr Isotopic Analysis by a 257 nm Femtosecond Laser in Combination with the Addition of Nitrogen for Geological Minerals. Chemical Geology, 479: 10-21. https://doi.org/10.1016/j.chemgeo.2017.12.018
      Zhang, W., Hu, Z. C., Liu, Y. S., et al., 2019. In Situ Calcium Isotopic Ratio Determination in Calcium Carbonate Materials and Calcium Phosphate Materials Using Laser Ablation-Multiple Collector-Inductively Coupled Plasma Mass Spectrometry. Chemical Geology, 522: 16-25. https://doi.org/10.1016/j.chemgeo.2019.04.027
      Zhang, Z. T., Sun, Y. D., 2023. The Ladinian-Carnian Conodont Fauna at Yize, Yunnan, Southwestern China, with Implications for Conodont Palaeoecology and Palaeogeography. Geological Magazine, 160(4): 776-793. https://doi.org/10.1017/S0016756822001236
      Zhao, H., Cui, Y., Zhang, L., et al., 2024. Calcium Isotope Evidence of Increased Carbonate Saturation State during the Frasnian-Famennian Boundary Event. Earth and Planetary Science Letters, 642: 118876. https://doi.org/10.1016/j.epsl.2024.118876
      Zhao, H., Dahl, T. W., Chen, Z. Q., et al., 2020. Anomalous Marine Calcium Cycle Linked to Carbonate Factory Change after the Smithian Thermal Maximum (Early Triassic). Earth-Science Reviews, 211: 103418. https://doi.org/10.1016/j.earscirev.2020.103418
      Zhao, L. S., Chen, Z. Q., Algeo, T. J., et al., 2013. Rare-Earth Element Patterns in Conodont Albid Crowns: Evidence for Massive Inputs of Volcanic Ash during the Latest Permian Biocrisis? Global and Planetary Change, 105: 135-151. https://doi.org/10.1016/j.gloplacha.2012.09.001
      Zhao, L. S., Wu, Y. B., Hu, Z. C., et al., 2009. Trace Element Compositions in Conodont Phosphates Responses to Biotic Extinction Event: A Case Study for Main Act of Global Boundary Stratotype Section and Point of the Permian-Triassic. Earth Science, 34(5): 725-732 (in Chinese with English abstract).
      Zhou, L. Q., Williams, I. S., Liu, J. H., et al., 2012. Methodology of SHRIMP In-Situ O Isotopes Analysis on Conodont. Acta Geologica Sinica, 86(4): 611-618 (in Chinese with English abstract).
      陈剑波, 赵来时, 陈中强, 等, 2012. 浙江煤山牙形石微区原位REE组成及古环境意义. 地球科学, 37(1): 25-34.
      杜勇, 朱园园, 宋虎跃, 等, 2019. 微量磷灰石中磷酸根氧同位素分析方法. 地球科学, 44(2): 456-462.
      黄思静, 1997. 上扬子地台区晚古生代海相碳酸盐岩的碳, 锶同位素研究. 地质学报, 71(1): 45-53.
      李秋立, 杨蔚, 刘宇, 等, 2013. 离子探针微区分析技术及其在地球科学中的应用进展. 矿物岩石地球化学通报, 32(3): 310-327.
      田树刚, 1993. 湘西北晚二叠世‒早三叠世早期牙形石古生态. 古生物学报, 32(3): 332-345.
      王安德, 汪恒定, 1990. 信息函数与牙形石古生态研究. 石油实验地质, 12(2): 182-190.
      王润, 陈剑波, 赵来时, 等, 2013. 二次离子质谱微区原位牙形石氧同位素分析及其在古海表水温记录中的应用. 世界地质, 32(4): 652-658.
      王宇航, 朱园园, 黄建东, 等, 2018. 海相碳酸盐岩稀土元素在古环境研究中的应用. 地球科学进展, 33(9): 922-932.
      杨守仁, 郝维城, 江大勇, 2001. 三叠纪牙形石的古环境与古地理意义. 古地理学报, 3(1): 78-84.
      张克信, 1988. 苏浙皖地区晚二叠世长兴期牙形石古生态. 地球科学, 13(5): 537-543.
      赵来时, 吴元保, 胡兆初, 等, 2009. 牙形石微量元素对生物绝灭事件的响应: 以二叠‒三叠系全球层型剖面第一幕绝灭事件为例. 地球科学, 34(5): 725-732.
      周丽芹, Williams, I. S., 刘建辉, 等, 2012. 牙形石SHRIMP微区原位氧同位素分析方法. 地质学报, 86(4): 611-618.
    • 加载中
    图(4)
    计量
    • 文章访问数:  109
    • HTML全文浏览量:  77
    • PDF下载量:  24
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-12-02
    • 网络出版日期:  2025-03-19
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回