Analysis of the Main Controlling Factors of the Fractured Reservoirs Development in the Buried Hills of the Archean Metamorphic Rocks in the Bohai Sea Area
-
摘要: 近几年,渤中凹陷,辽东湾地区太古界变质岩系陆续发现了多个亿吨级油气田,油气柱高度可超过1 000 m,展示了太古界潜山巨大的勘探潜力. 研究表明,储层发育程度决定了太古界潜山的油藏规模,而裂缝对储层具有核心控制作用. 分析表明,岩性对裂缝储层发育程度有明显影响,黑云母、角闪石等塑性矿物含量高的岩性段储层不发育,长石、石英矿物高含量段裂缝发育. 表生期风化淋滤降低了岩石的抗压强度,风化壳内裂缝发育程度和记录的期次都要远高于内幕带;薄片观察和模拟实验表明,发育裂缝的样品虽然裂缝被充填但其抗压强度显著降低,为后期裂缝再活化创造了条件;后期裂缝会选择原来的裂缝带重新活化,黏土矿物,碳酸盐矿物,铁质充填的裂缝更容易受到后期应力、流体的影响再活化. 宏观上,印支期逆冲推覆作用是形成裂缝储层的关键期,燕山期和喜山期断裂叠加改造对早期裂缝起到了重要的活化作用,印支期与燕山期、喜山期断裂叠合部位控制了厚层储层的分布.Abstract: In recent years, multiple billion ton oil and gas fields have been discovered in the Precambrian metamorphic rocks of the Bozhong Depression and Liaodong Bay area, with height of oil and gas column exceeding 1 000 m, demonstrating the exploration potential of the Archean buried hills. Research has shown that the degree of reservoir development determines the oil reservoir scale of the Archean buried hill, and fractures plays a key controlling role in the reservoir. The lithology has a significant impact on the development degree of fractured reservoirs, The reservoirs with high content of plastic minerals such as biotite and hornblende are not well-developed, while fractures are developed with high content of feldspar and quartz minerals. The weathering and leaching during the epigenetic stage reduce the compressive strength of rocks, and the degree of crack development and recorded stages in the weathering crust are much higher than those in the inner zone. Experiments and thin section analysis have shown that samples with early developed fractures, although filled with minerals, have significantly reduced compressive strength, laying the foundation for later crack development. The later fractures will choose to reactivate the original crack zone, and fractures filled with clay minerals, carbonate minerals, and iron minerals are more susceptible to reactivation under the influence of later stress and fluid.Macroscopically, the Indosinian period was a critical period for the formation of fractured reservoirs due to thrust and overturning. The superimposed transformation of faults during the Yanshan and Himalayan periods played an important role in activating early fractures. The distribution of thick reservoirs was controlled by the overlapping of faults during the Indosinian, Yanshan, and Himalayan periods.
-
Key words:
- Archean /
- metamorphic rocks /
- fractures /
- tectonic stress superposition /
- reservoir /
- Bozhong Depression /
- Bohai Bay Basin /
- petroleum geology
-
图 2 渤中凹陷太古界变质岩储集空间特征
a. B9-2,岩心3 878.25~3 878.70 m,三期宏观裂缝,混合花岗岩;b. B9-1,4 074 m,宏观构造缝叠加风化淋滤作用,见高岭土充填裂缝;c. B9-16,5 048 m,微裂缝切穿长石颗粒,正交光;d. B9-1,4 068 m,微裂缝发育,部分被泥质充填,单偏光;e. B9-3,4 444 m,沿微裂缝长石的溶蚀扩大孔,单偏光;f. B9-14,4 481 m,钾长石溶蚀形成的准铸模孔,单偏光;g. B9-15,5 213 m,微裂缝中早期白云石被溶蚀,单偏光;h. B3-5,4 621 m,碎裂钾长石颗粒先破碎再溶蚀,单偏光
Fig. 2. Characteristics of reservoir space of precambrian metamorphic rocks in Bozhong Depression
图 8 太古界变质岩裂缝活化差异性及新(黄色箭头)老(红色箭头)裂缝继承性关系
a、b. a:正交偏光,b:与a同一视域荧光. 早期裂缝被大量充填,晚期构造活动对早期裂缝部分再活化改造成为油气有效储层(蓝色箭头),未被活化裂缝未见荧光显示(白色箭头),B9-4井,4 361.61 m. c.早期裂缝被菱铁矿充填,后期裂缝主要延早期裂缝发育,后期流体溶解部分菱铁矿充填物,B9-14井,4 481 m;d.早期裂缝被菱铁矿充填,后期裂缝切穿菱铁矿,在早期裂缝边缘发育,B9-12井,5 163 m;e.早期裂缝被铁方解石充填,后期裂缝切穿方解石在边缘发育,部分晚期裂缝沿着早期裂缝方向在近早期裂缝带发育,方解石溶蚀提供了部分储集空间;B9-14井,4 600 m;f.两期裂缝交汇,早期裂缝充填一期充填方解石,一期充填黏土矿物及铁质矿物,后期裂缝主要沿着充填黏土矿物方向发育,部分为再开启裂缝,部分发育在近早期裂缝带,B9-7井,4 537 m,先期裂缝边缘“再活化”新生成裂缝;g. 铁方解石充填,未见后期活化裂缝,储层整体不发育,B6-9井,5 161.5 m;h. 钠长石粒内缝被方解石(Cc)充填,未见后期活化裂缝,储层整体不发育,B9-9井,5 098 m;i.微裂缝绿泥石(C)充填,未见后期活化裂缝,储层整体不发育,B9-9井,5 234.5 m
Fig. 8. Differential activation of fractures in ancient metamorphic rocks and inheritance relationship between new (yellow arrow) and old (red arrow) fractures
图 11 渤中凹陷西南部太古界变质岩潜山不同时期断裂展布图
B-B’为图 10的地震剖面位置
Fig. 11. Distribution pattern of fractures in the buried hills of Precambrian metamorphic rocks in the southwestern part of Bozhong Depression
表 1 发育裂缝与不发育裂缝岩样三轴抗压破裂实验
Table 1. Comparative experiment on triaxial compressive fracture of rock samples with and without developed fractures
井号 深度(m) 岩性 长度(mm) 直径(mm) 抗压强度(MPa) 弹性模量(GPa) 泊松比 B6-8 3 688.78 黑云二长片麻岩(微裂缝发育并见充填) 55.73 25.35 68.74 9.04 0.16 B6-8 3 693.38 黑云二长片麻岩(微裂缝不发育) 55.95 25.17 233 11.89 0.22 表 2 不同构造带储层厚度及净毛比统计表
Table 2. Statistical table of reservoir thickness and net to gross ratio in different structural zones
井名 构造带位置 裂缝产状描述 储层厚度(m) 储层净毛比(%) B9-2sa 构造带西侧:印支期逆冲断裂与燕山期-喜山期长期活动走滑断裂密集叠加带 近东西向为主 290.9 49.2% B9-4 北西向为主 220.1 60.0% B9-5 近东西向为主 290.9 49.2% B9-7 近东西向为主 440.1 44.8% B9-9 近东西向为主 344.3 40.4% B9-14 北东东向为主 124.2 18.4% B3-2 近东西向为主 346.0 47.4% B3-4 北西向为主 224.1 29.5% 算数平均值 285.1 42.4% B9-8 构造带东侧:印支期早晚期逆冲断裂叠加带,局部被燕山期断裂扰动 近南北向和近东西向 55.4 22.1% B9-10 近东西向为主 148.8 30.9% B9-11 北西向为主 284.3 30.7% B9-12 北东东向为主 168.0 20.3% B9-15 近东西向为主 104.8 14.1% B9-16 近东西向为主 202.1 25.0% B3-5 近东西向 121.9 20.7% 算数平均值 155.0 23.4% -
Deng, Y. H., 2015. Formation Mechanism and Exploration Practice of Large-Medium Buried-Hill Oil Fields in Bohai Sea. Acta Petrolei Sinica, 36(3): 253-261(in Chinese with English abstract). Dou, L. R., Wei, X. D., Wang, J. C., et al., 2015. Characteristics of Granitic Basement Rock Buried-Hill Reservoir in Bongor Basin, Chad. Acta Petrolei Sinica, 36(8): 897-904(in Chinese with English abstract). Gao, X. L., 2012. Precambrian Base Structure and Reservoir Characteristics of Chengdao Oilfield in Bohai Bay Basin. Journal of Oil and Gas Technology, 34(1): 45-49, 165-166(in Chinese with English abstract). Gao, X. Z., Chen, Z. Y., Zou, Z. W., et al., 2007. Forming Conditions and Accumulation Features of Oil Pools within the Inner of Highly Buried-Hills of Xinglongtai in West Sag of Liaohe Depression. Journal of China University of Petroleum (Edition of Natural Science), 31(6): 6-9(in Chinese with English abstract). Hou, G. T., Qian, X. L., Cai, D. S., 2001. The Tectonic Evolution of Bohai Basin in Mesozoic and Cenozoic Time. Acta Scicentiarum Naturalum Universitis Pekinesis, 37(6): 845-851(in Chinese with English abstract). Hou, M. C., Cao, H. Y., Li, H. Y., et al., 2019. Characteristics and Controlling Factors of Deep Buried-Hill Reservoirs in the BZ19-6 Structural Belt, Bohai Sea Area. Natural Gas Industry, 39(1): 33-44(in Chinese with English abstract). Li, S. Z., Suo, Y. H., Zhou, L. H., et al., 2011. Pull-Apart Basins within the North China Craton: Structural Pattern and Evolution of Huanghua Depression in Bohai Bay Basin. Journal of Jilin University (Earth Science Edition), 41(5): 1362-1379(in Chinese with English abstract). Liu, H. M., Zhang, P. F., SongG. Q., et al, 2014. Fracture Types and Distribution of Archaean Rocks in West Shandong, China. Journal of China University of Petroleum (Edition of Natural Science), 38(5): 34-41(in Chinese with English abstract). Ma, L., Liu, Q. X., Zhang, J. L., et al., 2006. A Discussion of Exploration Potentlals of Basement Hydrocarbon Reservoir. Natural Gas Industry, 26(1): 8-11(in Chinese with English abstract). Smith, J., 1956. Basement Reservoir of La Paz-Mara Oil Fields, Western Venezuela: Geological Notes. AAPG Bulletin, 40: 380-385. https://doi.org/10.1306/5CEAE328-16BB-11D7-8645000102C1865D Song, B. R., Hu, Y. J., Bian, S. Z., et al., 2011. Reservoir Characteristics of the Crystal Basement in the Xinglongtai Buried-Hill, Liaohe Depression. Acta Petrolei Sinica, 32(1): 77-82(in Chinese with English abstract). doi: 10.3969/j.issn.1001-8719.2011.01.013 Sun, X. J., Yang, W., Bai, Y. D., et al., 2019. Characterization of the Reservoir-Caprock Assemblage of the Basement Reservoir in the Qaidam Basin, China. Natural Gas Geoscience, 30(2): 228-236(in Chinese with English abstract). Tong, K. J., Zhao, C. M., Lü, Z. B., et al., 2012. Reservoir Evaluation and Fracture Chracterization of the Metamorphic Buried Hill Reservoir in Bohai Bay Basin. Petroleum Exploration and Development, 39(1): 62-69. https://doi.org/10.1016/S1876-3804(12)60015-9 Wang, D. Y., Wang, Q. B., Liu, X. J., et al., 2019. Characteristics and Developing Patterns of Gneiss Buried Hill Weathering Crust Reservoir in the Sea Area of the Bohai Bay Basin. Acta Petrologica Sinica, 35(4): 1181-1193(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.04.13 Wang, Q. B., Niu, C. M., Liu X. J., et al., 2019. The Relationship of the Densification Diagenesis and Hydrocarbon Charging of the Deep-Buried Glutenite Gas Reservoir, Bozhong Sag. Natural Gas Industry, 39(5): 25-33(in Chinese with English abstract). Wang, Q. B., Niu, C. M., Pan, W. J., et al., 2020. Impacts of Basement Lithology on Reservoir of Lacustrine Carbonate and Clastic Mixed-Deposition in Member l of Shahejie Formation, Bohai Sea Area. Earth Science, 45(10): 3556-3566(in Chinese with English abstract). Wu, Z. P., Hou, X. B., Li, W., 2007. Discussion on Mesozoic Basin Patternsand Evolution in the Eastern North China Block. Geotectonica et Metallogenia, 31(4): 385-399(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2007.04.001 Xia, Q. L., Zhou, X. H., Li, J. P., et al., 2012. The Sedimentary Evolution and Distribution of Paleogene Sequence in the Bohai Sea Area. Petroleum Industry Press, Beijing(in Chinese). Xu, C. G., Wang, Q. B., Zhu, H. T., et al., 2024. Hydrothermal Alteration Mechanisms of an Archaean Metamorphic Buried Hill and the Models for Reservoir Zonation, Bozhong Depression, Bohai Bay Basin, China. Marine and Petroleum Geology, 164: 106843. doi: 10.1016/j.marpetgeo.2024.106843 Xu, C. G., Yu, H. B., Wang, J., et al., 2019. Formation Conditions and Accumulation Characteristics of Bozhong 19-6 Large Condensate Gas Field in Offshore Bohai Bay Basin. Petroleum Exploration and Development, 46(1): 25-38(in Chinese with English abstract). Xu, C. G., Du, X. F., Liu, X. J., et al., 2020. Formation Mechanism of High-Quality Deep Buried-Hill Reservoir of Archaean Metamorphic Rocks and Its Significance in Petroleum Exploration in Bohai Sea Area. Oil & Gas Geology, 41(2): 235-247, 294(in Chinese with English abstract). . Xue, Y. A., 2019. The Breakthrough of the Deep-Buried Gas Exploration in the Bohai Sea Area and Its Enlightenment. Natural Gas Industry, 39(1): 11-20(in Chinese with English abstract). Ye, T., Niu, C. M., Wang, Q. B., et al., 2021. Characteristics and Controlling Factors of Large Bedrock Burried Hill Reservoirs in the Bohai Basin: A Case Study of the BZ19-6 Condensate Field. Acta Geologica Sinica, 95(6): 1889-1902(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.06.015 Zhang, P. F., Cao, Z. X., Liu, H. M., et al., 2016. Main Controlling Factors of Archaeozoic Inner Buried Hill Reservoir: With Luxi and Jiyang Area as an Example. Journal of China University of Mining & Technology, 45(1): 96-104(in Chinese with English abstract). Zhou, X. H., Wang, Q. B., Feng, C., et al., 2022. Formation Conditions and Geological Significance of Large Archean Buried Hill Reservoirs in Bohai Sea. Earth Science, 47 (5): 1534-1548(in Chinese with English abstract). Zhou, X. H., Xiang, H., Yu, S., et al., 2005. Reservoir Characteristics and Development Controlling Factors of JZS Neo-Archean Metamorphic Buried Hill Oil Pool in Bohai Sea. Petroleum Exploration and Development, 32(6): 17-20(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2005.06.004 Zhou, X. H., Zhang, R. C., Li, H. Y., et al., 2017. Major Controls on Natural Gas Accumulations in Deep-Buried Hills in Bozhong Depression, Bohai Bay Basin. Journal of China University of Petroleum (Edition of Natural Science), 41(1): 42-50(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2017.01.005 邓运华, 2015. 渤海大中型潜山油气田形成机理与勘探实践. 石油学报, 36(3): 253-261. 窦立荣, 魏小东, 王景春, 等, 2015. 乍得Bongor盆地花岗质基岩潜山储层特征. 石油学报, 36(8): 897-904. 高喜龙, 2012. 渤海湾盆地埕岛油田前寒武系基底构造及储层特征. 石油天然气学报, 34(1): 45-50. 高先志, 陈振岩, 邹志文, 等, 2007. 辽河西部凹陷兴隆台高潜山内幕油气藏形成条件和成藏特征. 中国石油大学学报(自然科学版), (6): 6-9. 侯贵廷, 钱祥麟, 蔡东升, 2001. 渤海湾盆地中、新生代构造演化研究. 北京大学学报(自然科学版), (6): 845-851. 侯明才, 曹海洋, 李慧勇, 等, 2019. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素. 天然气工业, 39(1): 33-44. 李三忠, 索艳慧, 周立宏等, 2011. 华北克拉通内部的拉分盆地: 渤海湾盆地黄骅坳陷结构构造与演化. 吉林大学学报(地球科学版), 41(5): 1362-1379. 刘惠民, 张鹏飞, 宋国奇, 等, 2014. 鲁西地区太古界裂缝类型与发育规律. 中国石油大学学报(自然科学版), 38(5): 34-41. 马龙, 刘全新, 张景廉, 等, 2006. 论基岩油气藏的勘探前景. 天然气工业, 26(1): 8-11. 宋柏荣, 胡英杰, 边少之, 等, 2011. 辽河坳陷兴隆台潜山结晶基岩油气储层特征. 石油学报, 32(1): 77-82. 孙秀建, 杨巍, 白亚东, 等, 2019. 柴达木盆地基岩油气藏储盖特征及组合方式. 天然气地球科学, 30 (2): 228-236. 童凯军, 赵春明, 吕坐彬, 等, 2012. 渤海变质岩潜山油藏储集层综合评价与裂缝表征. 石油勘探与开发, 39 (1): 56-63. 王德英, 王清斌, 刘晓健, 等, 2019. 渤海湾盆地海域片麻岩潜山风化壳型储层特征及发育模式. 岩石学报, 35(4): 1181-1193. 王清斌, 牛成民, 刘晓健, 等, 2019. 渤中凹陷深层砂砾岩气藏油气充注与储层致密化. 天然气工业, 39(5): 25-33. 王清斌, 牛成民, 潘文静, 等, 2020. 渤海海域沙一段基底岩性条件对湖相混积岩储层的控制作用. 地球科学, 45(10): 3556-3566. doi: 10.3799/dqkx.2020.256 吴智平, 侯旭波, 李伟, 2007. 华北东部地区中生代盆地格局及演化过程探讨. 大地构造与成矿, 31(4): 385-399. 夏庆龙, 周心怀, 李建平, 等, 2012. 渤海海域古近系层序沉积演化机储层分布规律. 北京: 石油工业出版社. 徐长贵, 杜晓峰, 刘晓健, 等, 2020. 渤海海域太古界深埋变质岩潜山优质储集层形成机制与油气勘探意义. 石油与天然气地质, 41(2): 235-247, 294. 徐长贵, 于海波, 王军, 等, 2019. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征. 石油勘探与开发, 46(1): 25-38. 薛永安, 2019. 渤海海域深层天然气勘探的突破与启示. 天然气工业, 39(1): 17-26. 叶涛, 牛成民, 王清斌, 等, 2021. 渤海湾盆地大型基岩潜山储层特征及其控制因素——以渤中19-6凝析气田为例. 地质学报, 95(6): 1889-1902. 张鹏飞, 曹忠祥, 刘惠民, 等, 2016. 太古界潜山内幕储层发育主控因素分析——以鲁西-济阳地区为例. 中国矿业大学学报, 45(1). 96-104. 周心怀, 王清斌, 冯冲, 等, 2022. 渤海海域大型太古界潜山储层形成条件及地质意义. 地球科学, 47(5): 1534-1548. doi: 10.3799/dqkx.2021.249 周心怀, 项华, 于水, 等, 2005. 渤海锦州南变质岩潜山油藏储集层特征与发育控制因素. 石油勘探与开发, 32(6): 17-20. doi: 10.3321/j.issn:1000-0747.2005.06.004 周心怀, 张如才, 李慧勇, 等, 2017. 渤海湾盆地渤中凹陷深埋古潜山天然气成藏主控因素探讨. 中国石油大学学报(自然科学版), 41(1): 42-50. -