Characterization and Genetic Mechanism of Deep Clastic Reservoirs: A Case Study of Yangwuzhai Block in Raoyang Sag
-
摘要: 为了明确深层有利储层发育特征及控制因素,以渤海湾盆地冀中坳陷饶阳凹陷杨武寨地区沙三下亚段储层为研究对象,通过储层沉积和成岩、薄片鉴定、扫描电镜、阴极发光、常规孔渗等技术方法,开展储层特征及储层差异成因研究.结果表明:沙三下亚段岩性以岩屑长石砂岩为主;孔隙度和渗透率均值分别为10.8%和8.79 mD,整体属于低孔‒特低渗储层;成岩阶段处于中成岩A2阶段,成岩复杂,包括压实、胶结和溶蚀作用.主要发育强胶结致密型、溶蚀孔改造型和原生孔保持型3种类型储层.强胶结致密型储层发育在席状朵叶微相中的厚度薄、砂泥互层频繁的砂体中,碳酸盐胶结强且致密;溶蚀孔改造型储层发育于重力流分支水道微相下的薄层砂体中,具有“中等压实‒强溶蚀”的成岩特征,晚期弱烃类充注,晚期碳酸盐胶结溶蚀不充分,储层孔隙性好但渗透率差;原生孔保持型储层发育于重力流水道微相下的厚层砂体中部,具有“绿泥石包壳‒中等压实‒弱碳酸盐胶结”的成岩特征,受晚期强烃类充注对碳酸盐胶结的抑制,储层孔隙性和渗透率均保持较好.该认识对杨武寨地区和类似地质背景地区的深层油气勘探具有指导意义.Abstract: This study aims to reveal the development characteristics and controlling factors of deep favorable reservoirs in the Lower Third Member of the Shahejie Formation (Es3L) in the Yangwuzhai Block of the Raoyang Sag, Jizhong Depression, Bohai Bay Basin. The reservoir heterogeneous properties and the genetic mechanisms are investigated by an integrated approach combining sedimentological and diagenetic analysis, thin section petrography, scanning electron microscopy (SEM), cathodoluminescence (CL), and porosity-permeability measurements. The results indicate that the Es3L reservoirs are dominated by lithic arkose, with average porosity and permeability values of 10.8% and 8.79 mD, respectively, which are generally classified as low-porosity and ultra-low-permeability reservoirs. The reservoirs are at the middle diagenetic stage A2, with complex diagenetic processes including compaction, cementation, and dissolution. Three main reservoir types were identified: (1) tightly cemented reservoirs with strong carbonate cementation, (2) dissolution-enhanced reservoirs with secondary porosity, and (3) primary pore-preserved reservoir. The tightly cemented reservoirs are mainly developed in thin, sheet-like sand bodies of lobe microfacies, characterized by frequent interbedding of sand and shale, with intense carbonate cementation. The dissolution-enhanced reservoirs occur in thin-bedded sand bodies associated with distributary channels of gravity flows, showing a diagenetic sequence of moderate compaction followed by intense dissolution. These reservoirs exhibit high porosity but poor permeability, owing to weak late-stage hydrocarbon charging and limited carbonate dissolution. In contrast, the primary pore-preserved reservoirs are developed in the middle parts of thick sand bodies within gravity flow channel microfacies, and exhibit diagenetic features of chlorite grain-coating, moderate compaction and weak carbonate cementation. Strong late-stage hydrocarbon charging inhibited further carbonate cementation, resulting in relatively favorable reservoir quality. These findings provide valuable insights for deep hydrocarbon exploration in the Yangwuzhai area and other regions with similar geological settings.
-
Key words:
- deep clastic reservoir /
- diagenesis process /
- high-quality reservoir /
- Raoyang Sag /
- petroleum geology
-
图 3 沙三下亚段储层主要成岩作用特征照片
a.q2-81x井,4 005 m,凹凸‒线接触;b.q104x井,4 376.11 m,假杂基化;c.q2-53x井,3 904.26 m,方解石基底式胶结;d.q104x井,4 375.5 m,方解石胶结;e.q75x井,3 654.3 m,白云石胶结;f.q104x井,4 376.2 m,绿泥石膜抑制石英加大边;g.q104x井,4 375.07 m,石英次生加大边;h.q104x井,4 172.38 m,方解石和高岭石;i.q104x井,4 375.33 m,颗粒表面绿泥石;j.q104x井,4 175.91 m,颗粒表面伊蒙混层和伊利石;k.q2-81x井,3 863 m,溶蚀充分残留黏土包膜;l.q2-81x井,3 782 m,碳酸盐胶结溶蚀
Fig. 3. Images illustrating key diagenetic features of the reservoir in the Es3L
表 1 研究区沙三下亚段成岩阶段指标
Table 1. Diagenetic stage indicators and parameters of the Es3L in the study area
指标 Ro(%) Tmax(℃) %S 最小值‒最大值 0.5~1.0 403~506 15~30 平均值 0.79 438.3 18.4 N 49 128 28 注:“%S”为伊蒙混层中蒙脱石占比. -
Beard, D. C., Weyl, P. K., 1973. Influence of Texture on Porosity and Permeability of Unconsolidated Sand. AAPG Bulletin, 57(2): 349-369. https://doi.org/10.1306/819A4272-16C5-11D7-8645000102C1865D Bjørkum, P. A., Gjelsvik, N., 1988. An Isochemical Model for Formation of Authigenic Kaolinite, K-Feldspar and Illite in Sediments. Journal of Sedimentary Research, 58(3): 506-511. https://doi.org/10.1306/212F8DD2-2B24-11D7-8648000102C1865D Bjørlykke, K., 2014. Relationships between Depositional Environments, Burial History and Rock Properties. Some Principal Aspects of Diagenetic Process in Sedimentary Basins. Sedimentary Geology, 301: 1-14. https://doi.org/10.1016/j.sedgeo.2013.12.002 Cao, Y. C., Xi, K. L., Wang, Y. Z., et al., 2013. Quantitative Research on Porosity Evolution of Reservoirs in the Member 4 of Paleogene Shahejie Formation in Hexiwu Structural Zone of Langgu Sag, Jizhong Depression. Journal of Palaeogeography, 15(5): 593-604 (in Chinese with English abstract). Cao, Y. C., Yuan, G. H., Yang, H. J., et al., 2022a. Current Situation of Oil and Gas Exploration and Research Progress of the Origin of High-Quality Reservoirs in Deep-Ultra-Deep Clastic Reservoirs of Petroliferous Basins. Acta Petrolei Sinica, 43(1): 112-140 (in Chinese with English abstract). Cao, Y. C., Yuan, G. H., Wang, Y. Z., et al., 2022b. Understanding of Relay Pore-Forming of Feldspar Dissolution in Deep Feldspar-Rich Clastic Reservoirs in Typical Oil-Gas-Bearing Basins and Its Petroleum Geological Significance. Scientia Sinica Terrae, 52(9): 1694-1725 (in Chinese). Chen, G., Kan, H. G., Chen, D. Q., et al., 2019. Reservoir Characteristics and Differential Study of Shan 1 and Shan 23 Reservoirs in Yan113-Yan133 Well Blocks. Petroleum Geology and Engineering, 33(6): 1-4 (in Chinese with English abstract). Chen, Y. M., Xie, M. Y., Sun, X. N., et al., 2021. Types and Geneses of Low Permeability Reservoirs in Zhu Ⅰ Depression, Pearl River Mouth Basin. Sino-Global Energy, 26(9): 38-44 (in Chinese with English abstract). Dowey, P. J., Hodgson, D. M., Worden, R. H., 2012. Pre-Requisites, Processes, and Prediction of Chlorite Grain Coatings in Petroleum Reservoirs: A Review of Subsurface Examples. Marine and Petroleum Geology, 32(1): 63-75. https://doi.org/10.1016/j.marpetgeo.2011.11.007 Ehrenberg, S. N., 1995. Measuring Sandstone Compaction from Modal Analyses of Thin Sections; How to do It and What the Results Mean. Journal of Sedimentary Research, 65(2a): 369-379. https://doi.org/10.1306/D42680C7-2B26-11D7-8648000102C1865D Grigsby, J. D., 2001. Origin and Growth Mechanism of Authigenic Chlorite in Sandstones of the Lower Vicksburg Formation, South Texas. Journal of Sedimentary Research, 71(1): 27-36. https://doi.org/10.1306/060100710027 Ji, Y. L., Zhao, X. Z., Shan, J. F., et al., 2009. Depositional Architecture of Paleogene System Tectonic Sequences and Evolvement of Sedimentary System in Jizhong Depression. Acta Sedimentologica Sinica, 27(1): 48-56 (in Chinese with English abstract). Jia, C. Z., 2023. Key Scientific and Technological Problems of Petroleum Exploration and Development in Deep and Ultra-Deep Formation. Journal of China University of Petroleum (Edition of Natural Science), 47(5): 1-12 (in Chinese with English abstract). Jiang, S., Wang, H., Weimer, P., 2008. Sequence Stratigraphy Characteristics and Sedimentary Elements in Deepwater. Earth Science, 33(6): 825-833 (in Chinese with English abstract). Lan, Y. F., Huang, S. J., Liang, R., et al., 2011. Influence of Authigenic Chlorite on the Relationship of Porosity to Permeability in the Sandstone Reservoir: A Case Study from Chang-8 Oil-Bearing Formation of Triassic in Jiyuan-Huaqing Area, Ordos Basin. Journal of Chengdu University of Technology (Science & Technology Edition), 38(3): 313-320 (in Chinese with English abstract). Li, Y. L., Jia, A. L., He, D. B., 2013. Control Factors on the Formation of Effective Reservoirs in Tight Sands: Examples from Guang'an and Sulige Gasfields. Acta Petrolei Sinica, 34(1): 71-82 (in Chinese with English abstract). Li, Z. J., Xiao, Y., Tian, J. Z., et al., 2024. Potentials and Favorable Directions for New Fields, New Types of Oil-Gas Exploration in Jizhong Depression, Bohai Bay Basin. Acta Petrolei Sinica, 45(1): 69-98 (in Chinese with English abstract). Liu, J. G., Wang, Y. Z., Cao, Y. C., et al., 2023. Factors Controlling the Development of Deep and Ultra-Deep Coarse-Grained Siliciclastic Reservoirs with High Quality in the Steep Slope Zone of the Minfeng Sub-Sag, Dongying Sag, Bohai Bay Basin. Oil & Gas Geology, 44(5): 1203-1217 (in Chinese with English abstract). Liu, L., Zhao, Y. C., Wang, Y. J., et al., 2015. Genetic Mechanism of Ultra-Low Permeability Reservoir of Chang 63 Gravity Flow Deposits in B153 Block, Huaqing. Journal of Northeast Petroleum University, 39(6): 66-75, 5 (in Chinese with English abstract). Liu, Y. P., Wen, H. G., Huang, J. L., et al., 2016. Characteristics of Authigenic Chlorite of Toutunhe Formation in the Northern Region of Fubei, Junggar Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 43(4): 487-496 (in Chinese with English abstract). Lundegard, P. D., 1992. Sandstone Porosity Loss; A "Big Picture" View of the Importance of Compaction. Journal of Sedimentary Research, 62(2): 250-260. https://doi.org/10.1306/d42678d4-2b26-11d7-8648000102c1865d Luo, W., Ni, L. M., 2020. Main Controlling Factors of Formation and Evolution of Effective Reservoir in Tight Sandstone: Taking Bashijiqike Formation Sandstone Reservoir in Kuqa Depression as an Example. Fault-Block Oil & Gas Field, 27(1): 7-12 (in Chinese with English abstract). Morad, S., Ketzer, J. M., De Ros, L. F., 2000. Spatial and Temporal Distribution of Diagenetic Alterations in Siliciclastic Rocks: Implications for Mass Transfer in Sedimentary Basins. Sedimentology, 47(s1): 95-120. https://doi.org/10.1046/j.1365-3091.2000.00007.x Ronald, C. S., Crossey, L. J., Hagen, E. S., et al., 1989. Organic-Inorganic Interactions and Sandstone Diagenesis. AAPG Bulletin, 73(1): 1-23. https://doi.org/10.1306/703C9AD7-1707-11D7-8645000102C1865D Scherer, M., 1987. Parameters Influencing Porosity in Sandstones: A Model for Sandstone Porosity Prediction. AAPG Bulletin, 71(5): 485-491. https://doi.org/10.1306/94886ED9-1704-11D7-8645000102C1865D Shan, X., Dou, Y., Liu, C. W., et al., 2023. Characteristics and Controlling Factors of Deep Buried Tight Conglomerate: A Case Study from the Permian Upper Urho Formation of Fukang Sag, Junggar Basin. Acta Sedimentologica Sinica, 1-18 (in Chinese with English abstract). https://doi.org/10.14027/j.issn.1000-0550.2023.097 Song, L. D., Li, M. R., Yu, H. P., et al., 2022. Selective Dissolution Process of Feldspar and Calcite Minerals under Different pH Conditions. Journal of Northeast Petroleum University, 46(3): 74-83, 10 (in Chinese with English abstract). Wei, Q. L., Cui, G. X., Liu, M. R., et al., 2021. Reservoir Characteristics and Controlling Factors of Permian Lower He8 Member in Southwestern Ordos Basin. Lithologic Reservoirs, 33(2): 17-25 (in Chinese with English abstract). Wilson, J. C., McBride, E. F., 1988. Compaction and Porosity Evolution of Pliocene Sandstones, Ventura Basin, California. AAPG Bulletin, 72(6): 664-681. https://doi.org/10.1306/703C8EFC-1707-11D7-8645000102C1865D Worden, R. H., Griffiths, J., Wooldridge, L. J., et al., 2020. Chlorite in Sandstones. Earth-Science Reviews, 204: 103105. https://doi.org/10.1016/j.earscirev.2020.103105 Wu, J. Y., Lyu, Z. X., Qing, Y. H., et al., 2020. Genesis of Authigenic Chlorite in Tight Oil Reservoirs and Its Influence on Physical Properties: A Case Study of Shaximiao Formation in NE of Central Sichuan Basin. Lithologic Reservoirs, 32(1): 76-85 (in Chinese with English abstract). Xi, M. H., 2023. Controlling Effect of Chlorite on Reservoir Development in the North-Central Xihu Depression. Offshore Oil, 43(4): 72-76 (in Chinese with English abstract). Xu, C. Q., Zhang, X. T., Yao, C., et al., 2019. Characteristics and Physical Properties Controlling Factors of Low Permeability Reservoir of E3d2 in BZ2-1 Oilfield of Bohai Sea. China Offshore Oil and Gas, 31(1): 13-21 (in Chinese with English abstract). Yuan, G. H., Cao, Y. C., Schulz, H. M., et al., 2019. A Review of Feldspar Alteration and Its Geological Significance in Sedimentary Basins: From Shallow Aquifers to Deep Hydrocarbon Reservoirs. Earth-Science Reviews, 191: 114-140. https://doi.org/10.1016/j.earscirev.2019.02.004 Zhang, G. Y., Ma, F., Liang, Y. B., et al., 2015. Domain and Theory-Technology Progress of Global Deep Oil & Gas Exploration. Acta Petrolei Sinica, 36(9): 1156-1166 (in Chinese with English abstract). Zhou, L., 2014. Genetic Mechanism and Distribution Patterns of Medium-Deep High-Quality Clastic Reservoirs of Paleogene in Jizhong Depression (Dissertation). China University of Petroleum (Huadong), Qingdao (in Chinese with English abstract). Zhu, Y., Ding, X. Q., Hu, X., 2017. Occurrence, Growth Mechanism and Distribution Law of Chlorite Clay in Yingcheng Formation of Longfengshan Gas Field. Journal of Northeast Petroleum University, 41(5): 62-69, 7-8 (in Chinese with English abstract). 操应长, 葸克来, 王艳忠, 等, 2013. 冀中坳陷廊固凹陷河西务构造带古近系沙河街组四段储集层孔隙度演化定量研究. 古地理学报, 15(5): 593-604. 操应长, 远光辉, 杨海军, 等, 2022a. 含油气盆地深层‒超深层碎屑岩油气勘探现状与优质储层成因研究进展. 石油学报, 43(1): 112-140. 操应长, 远光辉, 王艳忠, 等, 2022b. 典型含油气盆地深层富长石碎屑岩储层长石溶蚀接力成孔认识及其油气地质意义. 中国科学: 地球科学, 52(9): 1694-1725. 陈刚, 阚洪阁, 陈登祺, 等, 2019. 延113‒延133井区山1、山2~3储层特征及差异性研究. 石油地质与工程, 33(6): 1-4. 陈一鸣, 谢明英, 孙晓娜, 等, 2021. 珠江口盆地珠一坳陷低渗储层类型及成因. 中外能源, 26(9): 38-44. 纪友亮, 赵贤正, 单敬福, 等, 2009. 冀中坳陷古近系沉积层序特征及其沉积体系的演化. 沉积学报, 27(1): 48-56. 贾承造, 2023. 含油气盆地深层‒深层油气勘探开发的科学技术问题. 中国石油大学学报(自然科学版), 47(5): 1-12. 蒋恕, 王华, Weimer, P., 2008. 深水沉积层序特点及构成要素. 地球科学, 33(6): 825-833. http://www.earth-science.net/article/id/1774 兰叶芳, 黄思静, 梁瑞, 等, 2011. 自生绿泥石对砂岩储层孔隙度‒渗透率关系的影响——以鄂尔多斯盆地姬塬‒庆地区三叠系长8油层组为例. 成都理工大学学报(自然科学版), 38(3): 313-320. 李易隆, 贾爱林, 何东博, 2013. 致密砂岩有效储层形成的控制因素. 石油学报, 34(1): 71-82. 李志军, 肖阳, 田建章, 等, 2024. 渤海湾盆地冀中坳陷新领域、新类型油气勘探潜力及有利方向. 石油学报, 45(1): 69-98. 刘佳庚, 王艳忠, 操应长, 等, 2023. 渤海湾盆地东营凹陷民丰洼陷陡坡带深层‒超深层碎屑岩优质储层控制因素. 石油与天然气地质, 44(5): 1203-1217. 刘丽, 赵应成, 王友净, 等, 2015. 华庆油田B153井区长63重力流超低渗储层特征及成因机制. 东北石油大学学报, 39(6): 66-75, 5. 刘亚鹏, 文华国, 黄建良, 等, 2016. 准噶尔盆地阜北地区头屯河组砂岩自生绿泥石特征. 成都理工大学学报(自然科学版), 43(4): 487-496. 罗威, 倪玲梅, 2020. 致密砂岩有效储层形成演化的主控因素——以库车坳陷巴什基奇克组砂岩储层为例. 断块油气田, 27(1): 7-12. 单祥, 窦洋, 刘超威, 等, 2023. 深层致密砂砾岩储层特征及控制因素——以准噶尔盆地阜康凹陷二叠系上乌尔禾组为例. 沉积学报, 1-18. https://doi.org/10.14027/j.issn.1000-0550.2023.097 宋来弟, 李美蓉, 于海鹏, 等, 2022. 不同pH条件下长石和方解石矿物选择性溶蚀过程. 东北石油大学学报, 46(3): 74-83, 10. 魏钦廉, 崔改霞, 刘美荣, 等, 2021. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素. 岩性油气藏, 33(2): 17-25. 吴家洋, 吕正祥, 卿元华, 等, 2020. 致密油储层中自生绿泥石成因及其对物性的影响: 以川中东北部沙溪庙组为例. 岩性油气藏, 32(1): 76-85. 席敏红, 2023. 西湖凹陷中北部绿泥石对储层发育的控制作用. 海洋石油, 43(4): 72-76. 徐春强, 张新涛, 姚城, 等, 2019. 渤海渤中2-1油田东营组二段低渗储层特征及物性主控因素. 中国海上油气, 31(1): 13-21. 张光亚, 马锋, 梁英波, 等, 2015. 全球深层油气勘探领域及理论技术进展. 石油学报, 36(9): 1156-1166. 周磊, 2014. 冀中坳陷古近系中深层优质储层成因机制及分布规律研究(博士学位论文). 青岛: 中国石油大学(华东). 朱颖, 丁晓琪, 胡鑫, 2017. 龙凤山地区营城组储层绿泥石黏土的形成机制及分布规律. 东北石油大学学报, 41(5): 62-69, 7-8. -