• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    从地球生物学到天体生物学

    罗根明 王畅 殷宗军 沈冰 林巍 屈原皋

    罗根明, 王畅, 殷宗军, 沈冰, 林巍, 屈原皋, 2025. 从地球生物学到天体生物学. 地球科学, 50(3): 857-876. doi: 10.3799/dqkx.2025.013
    引用本文: 罗根明, 王畅, 殷宗军, 沈冰, 林巍, 屈原皋, 2025. 从地球生物学到天体生物学. 地球科学, 50(3): 857-876. doi: 10.3799/dqkx.2025.013
    Luo Genming, Wang Chang, Yin Zongjun, Shen Bing, Lin Wei, Qu Yuangao, 2025. From Geobiology to Astrobiology. Earth Science, 50(3): 857-876. doi: 10.3799/dqkx.2025.013
    Citation: Luo Genming, Wang Chang, Yin Zongjun, Shen Bing, Lin Wei, Qu Yuangao, 2025. From Geobiology to Astrobiology. Earth Science, 50(3): 857-876. doi: 10.3799/dqkx.2025.013

    从地球生物学到天体生物学

    doi: 10.3799/dqkx.2025.013
    基金项目: 

    国家自然科学基金项目 42425305

    详细信息
      作者简介:

      罗根明(1984-),男,教授,博士,从事地球生物学和天体生物学方面的研究及教学工作.ORCID:0000-0001-5496-6474. E-mail:gmluo@cug.edu.cn

    • 中图分类号: P52

    From Geobiology to Astrobiology

    • 摘要: 我们在宇宙中是否独一无二?地球生命是在何处以及如何起源?这些全人类孜孜以求的重大科学问题正是天体生物学研究的核心问题.伴随着深空探测技术的提高和工程任务的开展,我们比以往任何时候都更有可能回答上述问题.地球是迄今为止唯一确认孕育生命的星球,地球生物学的研究对地外生命的探寻具有重要的指导意义.为了更好地推动天体生物学的发展,本文介绍了地球生物学和天体生物学内涵和简要发展历史.在此基础上,围绕天体生物学所关注的宜居性和生命的形成与演化这两个不同层次的核心科学问题,阐述了天体宜居性所要满足的条件,分析如何判断宜居环境是否孕育了生命.最后提出了地球生物学需要加强的3方面研究,分别为早期地球宜居性演化、极端环境的生命特征和记录,以及生命信号的构建.

       

    • 图  1  环境宜居性的4个核心要素

      只有当4个要素全部满足时才是宜居环境.时间表示环境宜居性不是永恒不变的,而是随时间呈动态变化.修改自National Academies of Sciences,Engineering,and Medicine(2023)

      Fig.  1.  The four principal components of the habitability of an environment

      图  2  基于恒星大小及行星距恒星的距离所划分的宜居带(habitable zone),该宜居带范围可以维持行星表面保留液态水

      冰质卫星(Europa、Titan、Ganymede和Enceladus)的发现表明在传统宜居带之外的天体的地下深部可存在液态水,扩宽了宜居带的范围.修改自Grasset et al.(2013)

      Fig.  2.  The original model of the habitable zone according to the relative size of the host star and the distance of the planet from this star to model where water could be present in surface environments

      图  3  地球生物学基于早期地球、现代地球极端环境和~40亿年的生物与环境相互作用和协同演化历史的研究,通过宜居环境识别和生命信号构建两个途径服务于天体生物学研究

      Fig.  3.  Research topics in Geobiology, such as the habitability of early Earth, life in the extreme environments of modern Earth, and the ca. 4.0 billion-year history of the interactions and coevolution of life and environment, which provide insights into the research of astrobiology from the perspectives of habitability identification and biosignatures reconstruction

      图  4  早期地球主要环境参数和潜在生命信号揭示的早期生命演化特征(右,参考文献见正文)及前生命进化的主要阶段(左,Joyce, 2002

      修改自National Academies of Sciences,Engineering,and Medicine(2023).LUCA. 最后共同祖先.文献来源:pO2参考Luo et al.(2022)pCH4来自Catling and Zahnle(2020);温度的记录参考Knauth and Lowe(2003)Robert and Chaussidon(2006)Hren et al.(2009)Blake et al.(2010)Lowe et al.(2020);海水pH值修改自Halevy and Bachan(2017)

      Fig.  4.  The main environmental parameters of early Earth and the characteristics of early life on Earth revealed by the potential biosignatures (right, see the main text for the references), and the main stages of prebiotic evolution are summarized in the left panel (Joyce, 2002)

      图  5  地外环境模拟舱的主体组成部分,包括球形腔体及各种外置设备

      Fig.  5.  Facility of laboratory simulation of space environments, including the spheric main chamber and many inlet subsystems

    • 2021-2030 Earth Science Development Strategy Research Group, 2021. Development Strategy of Earth Science in 2021-2030: The Past, Present and Future of the Habitable Earth. Science Press, Beijing (in Chinese).
      Allwood, A. C., Rosing, M. T., Flannery, D. T., et al., 2018. Reassessing Evidence of Life in 3 700-Million-Year-Old Rocks of Greenland. Nature, 563: 241-244. https://doi.org/10.1038/s41586-018-0610-4
      Allwood, A. C., Walter, M. R., Kamber, B. S., et al., 2006. Stromatolite Reef from the Early Archaean Era of Australia. Nature, 441: 714-718. https://doi.org/10.1038/nature04764
      Altair, T., de Avellar, M. G. B., Rodrigues, F., et al., 2018. Microbial Habitability of Europa Sustained by Radioactive Sources. Scientific Reports, 8: 260. https://doi.org/10.1038/s41598-017-18470-z
      Baas-Becking, L. G. M., 1934. Geobiologie of Inleiding tot de Milieukunde. W. P. Van Stockum & Zoon, Den Haag.
      Baqué, M., Verseux, C., Böttger, U., et al., 2016. Preservation of Biomarkers from Cyanobacteria Mixed with Mars­Like Regolith under Simulated Martian Atmosphere and UV Flux. Origins of Life and Evolution of Biospheres, 46(2): 289-310. https://doi.org/10.1007/s11084-015-9467-9
      Bell, E. A., Boehnke, P., Harrison, T. M., et al., 2015. Potentially Biogenic Carbon Preserved in a 4.1 Billion-Year-Old Zircon. Proceedings of the National Academy of Sciences, 112(47): 14518-14521. https://doi.org/10.1073/pnas.1517557112
      Biemann, K., Oro, J., Toulmin, P., et al., 1976. Search for Organic and Volatile Inorganic Compounds in Two Surface Samples from the Chryse Planitia Region of Mars. Science, 194(4260): 72-76. https://doi.org/10.1126/science.194.4260.72
      Bigham, J. M., Nordstrom, D. K., 2000. Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters. Reviews in Mineralogy and Geochemistry, 40(1): 351-403. https://doi.org/10.2138/rmg.2000.40.7
      Blake, R. E., Chang, S. J., Lepland, A., 2010. Phosphate Oxygen Isotopic Evidence for a Temperate and Biologically Active Archaean Ocean. Nature, 464: 1029-1032. https://doi.org/10.1038/nature08952
      Botta, O., Bada, J. L., 2002. Extraterrestrial Organic Compounds in Meteorites. Surveys in Geophysics, 23: 411-467. doi: 10.1023/A:1020139302770
      Bouquet, A., Glein, C. R., Wyrick, D., et al., 2017. Alternative Energy: Production of H2 by Radiolysis of Water in the Rocky Cores of Icy Bodies. The Astrophysical Journal Letters, 840(1): L8. https://doi.org/10.3847/2041-8213/aa6d56
      Braterman, P. S., Cairns-Smith, A. G., Sloper, R. W., 1983. Photo-Oxidation of Hydrated Fe2+—Significance for Banded Iron Formations. Nature, 303: 163-164. https://doi.org/10.1038/303163a0
      Bryan, N. C., Christner, B. C., Guzik, T. G., et al., 2019. Abundance and Survival of Microbial Aerosols in the Troposphere and Stratosphere. The ISME Journal, 13(11): 2789-2799. https://doi.org/10.1038/s41396-019-0474-0
      Catling, D. C., Zahnle, K. J., 2020. The Archean Atmosphere. Science Advances, 6(9): eaax1420. https://doi.org/10.1126/sciadv.aax1420
      Catling, D. C., Zahnle, K. J., McKay, C., 2001. Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth. Science, 293(5531): 839-843. https://doi.org/10.1126/science.1061976
      Cavicchioli, R., 2002. Extremophiles and the Search for Extraterrestrial Life. Astrobiology, 2(3): 281-292. https://doi.org/10.1089/153110702762027862
      China Academy of Sciences "Deep Underground Biosphere" Project Group, 2020. Deep Underground Biosphere. Science Press, Beijing (in Chinese).
      Chyba, C., Sagan, C., 1992. Endogenous Production, Exogenous Delivery and Impact-Shock Synthesis of Organic Molecules: an Inventory for the Origins of Life. Nature, 355: 125-132. https://doi.org/10.1038/355125a0
      Clarke, A., 2014. The Thermal Limits to Life on Earth. International Journal of Astrobiology, 13(2): 141-154. https://doi.org/10.1017/s1473550413000438
      Cockell, C. S., 2014. Habitable Worlds with no Signs of Life. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 372(2014): 20130082. https://doi.org/10.1098/rsta.2013.0082
      Cockell, C. S., Bush, T., Bryce, C., et al., 2016. Habitability: A Review. Astrobiology, 16(1): 89-117. https://doi.org/10.1089/ast.2015.1295
      Czaja, A. D., Johnson, C. M., Beard, B. L., et al., 2013. Biological Fe Oxidation Controlled Deposition of Banded Iron Formation in the ca. 3 770 Ma Isua Supracrustal Belt (West Greenland). Earth and Planetary Science Letters, 363: 192-203. https://doi.org/10.1016/j.epsl.2012.12.025
      Des Marais, D. J., Nuth, J. A. Ⅲ, Allamandola, L. J., et al., 2008. The NASA Astrobiology Roadmap. Astrobiology, 8(4): 715-730. https://doi.org/10.1089/ast.2008.0819
      Diehl, A., Bach, W., 2020. MARHYS (MARine HYdrothermal Solutions) Database: A Global Compilation of Marine Hydrothermal Vent Fluid, End Member, and Seawater Compositions. Geochemistry, Geophysics, Geosystems, 21(12): e2020GC009385. https://doi.org/10.1029/2020gc009385
      Dodd, M. S., Papineau, D., Grenne, T., et al., 2017. Evidence for Early Life in Earth's Oldest Hydrothermal Vent Precipitates. Nature, 543: 60-64. https://doi.org/10.1038/nature21377
      Elkins-Tanton, L. T., 2008. Linked Magma Ocean Solidification and Atmospheric Growth for Earth and Mars. Earth and Planetary Science Letters, 271(1-4): 181-191. https://doi.org/10.1016/j.epsl.2008.03.062
      Elkins-Tanton, L. T., 2012. Magma Oceans in the Inner Solar System. Annual Review of Earth and Planetary Sciences, 40: 113-139. https://doi.org/10.1146/annurev-earth-042711-105503
      Falkowski, P. G., Fenchel, T., Delong, E. F., 2008. The Microbial Engines that Drive Earth's Biogeochemical Cycles. Science, 320(5879): 1034-1039. https://doi.org/10.1126/science.1153213
      Farquhar, J., Bao, H., Thiemens, M., 2000. Atmospheric Influence of Earth's Earliest Sulfur Cycle. Science, 289(5480): 756-759. https://doi.org/10.1126/science.289.5480.756
      Fogg, M. J., 1992. An Estimate of the Prevalence of Biocompatible and Habitable Planets. Journal of the British Interplanetary Society, 45(1): 3-12.
      Furnes, H., Banerjee, N. R., Muehlenbachs, K., et al., 2004. Early Life Recorded in Archean Pillow Lavas. Science, 304(5670): 578-581. https://doi.org/10.1126/science.1095858
      Gillen, C., Jeancolas, C., McMahon, S., et al., 2023. The Call for a New Definition of Biosignature. Astrobiology, 23(11): 1228-1237. https://doi.org/10.1089/ast.2023.0010
      Grasset, O., Dougherty, M. K., Coustenis, A., et al., 2013. JUpiter ICy Moons Explorer (JUICE): An ESA Mission to Orbit Ganymede and to Characterise the Jupiter System. Planetary and Space Science, 78: 1-21. https://doi.org/10.1016/j.pss.2012.12.002
      Green, J., Hoehler, T., Neveu, M., et al., 2021. Call for a Framework for Reporting Evidence for Life beyond Earth. Nature, 598: 575-579. https://doi.org/10.1038/s41586-021-03804-9
      Habicht, K. S., Gade, M., Thamdrup, B., et al., 2002. Calibration of Sulfate Levels in the Archean Ocean. Science, 298(5602): 2372-2374. https://doi.org/10.1126/science.1078265
      Halevy, I., Bachan, A., 2017. The Geologic History of Seawater pH. Science, 355(6329): 1069-1071. https://doi.org/10.1126/science.aal4151
      Hassenkam, T., Andersson, M. P., Dalby, K. N., et al., 2017. Elements of Eoarchean Life Trapped in Mineral Inclusions. Nature, 548: 78-81. https://doi.org/10.1038/nature23261
      Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., et al., 2014. Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. Science, 343(6169): 1244797. https://doi.org/10.1126/science.1244797
      Hays, L. E., 2015. NASA Astrobiology Strategy. NASA, Houston.
      Hays, L. E., Graham, H. V., Des Marais, D. J., et al., 2017. Biosignature Preservation and Detection in Mars Analog Environments. Astrobiology, 17(4): 363-400. https://doi.org/10.1089/ast.2016.1627
      He, H. P., Wu, X., Xian, H. Y., et al., 2021. An Abiotic Source of Archean Hydrogen Peroxide and Oxygen that Pre-Dates Oxygenic Photosynthesis. Nature Communications, 12: 6611. https://doi.org/10.1038/s41467-021-26916-2
      Holland, H. D., 2006. The Oxygenation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society B, 361(1470): 903-915. https://doi.org/10.1098/rstb.2006.1838
      Horneck, G., Walter, N., Westall, F., et al., 2016. AstRoMap European Astrobiology Roadmap. Astrobiology, 16(3): 201-243. https://doi.org/10.1089/ast.2015.1441
      Horowitz, N. H., Cameron, R. E., Hubbard, J. S., 1972. Microbiology of the Dry Valleys of Antarctica. Science, 176(4032): 242-245. https://doi.org/10.1126/science.176.4032.242
      Hou, Z. Q., Liu, J. Z., Xu, Y. G., et al., 2024. The Search for Life Signatures on Mars by the Tianwen-3 Mars Sample Return Mission. National Science Review, 11(11): nwae313. https://doi.org/10.1093/nsr/nwae313
      House, C. H., 2015. Penciling in Details of the Hadean. Proceedings of the National Academy of Sciences, 112(47): 14410-14411. https://doi.org/10.1073/pnas.1519765112
      Hren, M. T., Tice, M. M., Chamberlain, C. P., 2009. Oxygen and Hydrogen Isotope Evidence for a Temperate Climate 3.42 Billion Years Ago. Nature, 462: 205-208. https://doi.org/10.1038/nature08518
      Huang, S. S., 1959. The Problem of Life in the Universe and the Mode of Star Formation. Publications of the Astronomical Society of the Pacific, 71: 421. https://doi.org/10.1086/127417
      Huang, S. S., 1960. Life-Supporting Regions in the Vicinity of Binary Systems. Publications of the Astronomical Society of the Pacific, 72: 106. https://doi.org/10.1086/127489
      Hubbard, G. S., Naderi, F. M., Garvin, J. B., 2002. Following the Water, the New Program for Mars Exploration. Acta Astronautica, 51(1-9): 337-350. https://doi.org/10.1016/S0094-5765(02)00067-X
      Hurowitz, J. A., Grotzinger, J. P., Fischer, W. W., et al., 2017. Redox Stratification of an Ancient Lake in Gale Crater, Mars. Science, 356(6341): eaah6849. https://doi.org/10.1126/science.aah6849
      Joyce, G. F., 2002. The Antiquity of RNA-Based Evolution. Nature, 418: 214-221. https://doi.org/10.1038/418214a
      Kasting, J. F., Whitmire, D. P., Reynolds, R. T., 1993. Habitable Zones around Main Sequence Stars. Icarus, 101(1): 108-128. https://doi.org/10.1006/icar.1993.1010
      Kasting, J., Kirschvink, J., 2012. Evolution of a Habitable Planet. In: Impey, C., Lunine, J., Funes, J., eds., Frontiers of Astrobiology. Cambridge University Press, Cambridge, 115-131. https://doi.org/10.1017/cbo9780511902574.010
      Kelley, D. S., Karson, J. A., Früh-Green, G. L., et al., 2005. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field. Science, 307(5714): 1428-1434. https://doi.org/10.1126/science.1102556
      Kerr, R. A., 2005. Are we Alone in the Universe? Science, 309(5731): 88. https://doi.org/10.1126/science.309.5731.88
      Knauth, L. P., 2005. Temperature and Salinity History of the Precambrian Ocean: Implications for the Course of Microbial Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1-2): 53-69. https://doi.org/10.1016/j.palaeo.2004.10.014
      Knauth, L. P., Lowe, D. R., 2003. High Archean Climatic Temperature Inferred from Oxygen Isotope Geochemistry of Cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geological Society of America Bulletin, 115: 566-580. https://doi.org/10.1130/0016-7606(2003)1150566: hactif>2.0.co;2 doi: 10.1130/0016-7606(2003)1150566:hactif>2.0.co;2
      Kvenvolden, K., Lawless, J., Pering, K., et al., 1970. Evidence for Extraterrestrial Amino-Acids and Hydrocarbons in the Murchison Meteorite. Nature, 228: 923-926. https://doi.org/10.1038/228923a0
      Lane, N., Martin, W., 2010. The Energetics of Genome Complexity. Nature, 467: 929-934. https://doi.org/10.1038/nature09486
      Lasne, J., Noblet, A., Szopa, C., et al., 2016. Oxidants at the Surface of Mars: A Review in Light of Recent Exploration Results. Astrobiology, 16(12): 977-996. https://doi.org/10.1089/ast.2016.1502
      Lederberg, J., 1960. Exobiology: Approaches to Life beyond the Earth. Science, 132(3424): 393-400. https://doi.org/10.1126/science.132.3424.393
      Lepland, A., Arrhenius, G., Cornell, D., 2002. Apatite in Early Archean Isua Supracrustal Rocks, Southern West Greenland: Its Origin, Association with Graphite and Potential as a Biomarker. Precambrian Research, 118(3-4): 221-241. https://doi.org/10.1016/S0301-9268(02)00106-7
      Lepland, A., van Zuilen, M. A., Arrhenius, G., et al., 2005. Questioning the Evidence for Earth's Earliest Life—Akilia Revisited. Geology, 33(1): 77-79. https://doi.org/10.1130/g20890.1
      Li, Y. L., 2011. Outline of Astrobiology. Science & Technology Review, 29: 66-74 (in Chinese with English abstract).
      Li, Y. L., Sun, S., 2016. The Origin of Life on Earth. Chinese Science Bulletin, 61(28-29): 3065-3078 (in Chinese). doi: 10.1360/N972016-00551
      Lin, W., Li, Y. L., Wang, G. H., et al., 2020. Overview and Perspectives of Astrobiology. Chinese Science Bulletin, 65(5): 380-391 (in Chinese).
      Lonsdale, P., 1977. Clustering of Suspension-Feeding Macrobenthos near Abyssal Hydrothermal Vents at Oceanic Spreading Centers. Deep Sea Research, 24(9): 857-863. https://doi.org/10.1016/0146-6291(77)90478-7
      Louca, S., Parfrey, L. W., Doebeli, M., 2016. Decoupling Function and Taxonomy in the Global Ocean Microbiome. Science, 353(6305): 1272-1277. https://doi.org/10.1126/science.aaf4507
      Lovelock, J., 1979. Gaia: A New Look at Life on Earth. Oxford University Press, Oxford.
      Lowe, D. R., Ibarra, D. E., Drabon, N., et al., 2020. Constraints on Surface Temperature 3.4 Billion Years ago Based on Triple Oxygen Isotopes of Cherts from the Barberton Greenstone Belt, South Africa, and the Problem of Sample Selection. American Journal of Science, 320(9): 790-814. https://doi.org/10.2475/11.2020.02
      Luo, G. M., Liu, D., Yang, H., 2024. Microbes in Mass Extinction: An Accomplice or a Savior? National Science Review, 11(1): nwad291. https://doi.org/10.1093/nsr/nwad291
      Luo, G. M., Ono, S., Beukes, N. J., et al., 2016. Rapid Oxygenation of Earth's Atmosphere 2.33 Billion Years ago. Science Advances, 2(5): e1600134. https://doi.org/10.1126/sciadv.1600134
      Luo, G. M., Zhu, X. K., Wang, S. J., et al., 2022. Mechanisms and Climatic-Ecological Effects of the Great Oxidation Event in the Early Proterozoic. Science China Earth Sciences, 65(9): 1646-1672. https://doi.org/10.1007/s11430-021-9934-y
      Lyon, D. Y., Monier, J. M., Dupraz, S., et al., 2010. Integrity and Biological Activity of DNA after UV Exposure. Astrobiology, 10(3): 285-292. https://doi.org/10.1089/ast.2009.0359
      Martin, H., Moyen, J. F., 2002. Secular Changes in Tonalite-Trondhjemite-Granodiorite Composition as Markers of the Progressive Cooling of Earth. Geology, 30(4): 319-322. https://doi.org/10.1130/0091-7613(2002)0300319: scittg>2.0.co;2 doi: 10.1130/0091-7613(2002)0300319:scittg>2.0.co;2
      Martin, W. F., Bryant, D. A., Beatty, J. T., 2018. A Physiological Perspective on the Origin and Evolution of Photosynthesis. FEMS Microbiology Reviews, 42(2): 205-231. https://doi.org/10.1093/femsre/fux056
      Martin, W., Russell, M. J., 2007. On the Origin of Biochemistry at an Alkaline Hydrothermal Vent. Philosophical Transactions of the Royal Society B, 362(1486): 1887-1925. https://doi.org/10.1098/rstb.2006.1881
      Martins, Z., Cottin, H., Kotler, J. M., et al., 2017. Earth as a Tool for Astrobiology—A European Perspective. Space Science Reviews, 209(1): 43-81. https://doi.org/10.1007/s11214-017-0369-1
      Martins, Z., Pasek, M. A., 2024. Delivery of Organic Matter to the Early Earth. Elements, 20(1): 19-23. https://doi.org/10.2138/gselements.20.1.19
      McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al., 1996. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science, 273(5277): 924-930. https://doi.org/10.1126/science.273.5277.924
      McMahon, S., O'Malley-James, J., Parnell, J., 2013. Circumstellar Habitable Zones for Deep Terrestrial Biospheres. Planetary and Space Science, 85: 312-318. https://doi.org/10.1016/j.pss.2013.07.002
      Michalski, J. R., Cuadros, J., Niles, P. B., et al., 2013. Groundwater Activity on Mars and Implications for a Deep Biosphere. Nature Geoscience, 6: 133-138. https://doi.org/10.1038/ngeo1706
      Miller, S. L., 1953. A Production of Amino Acids under Possible Primitive Earth Conditions. Science, 117(3046): 528-529. https://doi.org/10.1126/science.117.3046.528
      Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., et al., 1996. Evidence for Life on Earth before 3, 800 Million Years ago. Nature, 384(6604): 55-59. https://doi.org/10.1038/384055a0
      Mustard, J. F., Adler, M., Allwood, A., et al., 2013. Report of the Mars 2020 Science Definition Team. Mars Exploration Program Analysis Group, Houston.
      National Academies of Sciences, Engineering, and Medicine. 2023. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032. The National Academies Press, Washington, D. C. .
      National Natural Science Foundation of China, China Academy of Sciences, 2022. Microbiology in Extreme Geological Environment. Science Press, Beijing (in Chinese).
      Noffke, N., Christian, D., Wacey, D., et al., 2013. Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the Ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia. Astrobiology, 13(12): 1103-1124. https://doi.org/10.1089/ast.2013.1030
      Nutman, A. P., Bennett, V. C., Friend, C. R. L., et al., 2016. Rapid Emergence of Life Shown by Discovery of 3 700-Million-Year-Old Microbial Structures. Nature, 537(7621): 535-538. https://doi.org/10.1038/nature19355
      Nutman, A. P., Mojzsis, S. J., Friend, C. R. L., 1997. Recognition of ≥3 850 Ma Water-Lain Sediments in West Greenland and Their Significance for the Early Archaean Earth. Geochimica et Cosmochimica Acta, 61(12): 2475-2484. https://doi.org/10.1016/S0016-7037(97)00097-5
      Olson, J. M., 2006. Photosynthesis in the Archean Era. Photosynthesis Research, 88(2): 109-117. https://doi.org/10.1007/s11120-006-9040-5
      Olson, J. M., Blankenship, R. E., 2004. Thinking about the Evolution of Photosynthesis. Photosynthesis Research, 80(1-3): 373-386. https://doi.org/10.1023/b: pres.0000030457.06495.83 doi: 10.1023/b:pres.0000030457.06495.83
      Orosei, R., Lauro, S. E., Pettinelli, E., et al., 2018. Radar Evidence of Subglacial Liquid Water on Mars. Science, 361(6401): 490-493. https://doi.org/10.1126/science.aar7268
      Papineau, D., De Gregorio, B. T., Cody, G. D., et al., 2010. Ancient Graphite in the Eoarchean Quartz-Pyroxene Rocks from Akilia in Southern West Greenland I: Petrographic and Spectroscopic Characterization. Geochimica et Cosmochimica Acta, 74(20): 5862-5883. https://doi.org/10.1016/j.gca.2010.05.025
      Papineau, D., De Gregorio, B. T., Cody, G. D., et al., 2011. Young Poorly Crystalline Graphite in the > 3.8-Gyr-Old Nuvvuagittuq Banded Iron Formation. Nature Geoscience, 4: 376-379. https://doi.org/10.1038/ngeo1155
      Patel, M. R., Zarnecki, J. C., Catling, D. C., 2002. Ultraviolet Radiation on the Surface of Mars and the Beagle 2 UV Sensor. Planetary and Space Science, 50(9): 915-927. https://doi.org/10.1016/S0032-0633(02)00067-3
      Pinti, D. L., 2005. The Origin and Evolution of the Oceans. In: Gargaud, M., Barbier, B., Martin, H., & Reisse, J., eds., Lectures in Astrobiology. Springer, Berlin, 83-112. https://doi.org/10.1007/10913406_4
      Planavsky, N. J., Asael, D., Hofmann, A., et al., 2014. Evidence for Oxygenic Photosynthesis Half a Billion Years before the Great Oxidation Event. Nature Geoscience, 7: 283-286. https://doi.org/10.1038/ngeo2122
      Proskurowski, G., Lilley, M. D., Seewald, J. S., et al., 2008. Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field. Science, 319(5863): 604-607. https://doi.org/10.1126/science.1151194
      Ramirez, R. M., Craddock, R. A., 2018. The Geological and Climatological Case for a Warmer and Wetter Early Mars. Nature Geoscience, 11: 230-237. https://doi.org/10.1038/s41561-018-0093-9
      Robbins, L. J., Fakhraee, M., Smith, A. J. B., et al., 2023. Manganese Oxides, Earth Surface Oxygenation, and the Rise of Oxygenic Photosynthesis. Earth-Science Reviews, 239: 104368. https://doi.org/10.1016/j.earscirev.2023.104368
      Robert, F., Chaussidon, M., 2006. A palaeotemperature Curve for the Precambrian Oceans Based on Silicon Isotopes in Cherts. Nature, 443(7114): 969-972. https://doi.org/10.1038/nature05239
      Rosing, M. T., 1999. 13C-Depleted Carbon Microparticles in > 3 700 Ma Sea-Floor Sedimentary Rocks from West Greenland. Science, 283(5402): 674-676. https://doi.org/10.1126/science.283.5402.674
      Rosing, M. T., Rose, N. M., Bridgwater, D., et al., 1996. Earliest Part of Earth's Stratigraphic Record: A Reappraisal of the > 3.7 Ga Isua (Greenland) Supracrustal Sequence. Geology, 24(1): 43-46. https://doi.org/10.1130/0091-7613(1996)0240043: epoess>2.3.co;2 doi: 10.1130/0091-7613(1996)0240043:epoess>2.3.co;2
      Rubie, D. C., Nimmo, F., Melosh, H. J., 2007. Formation of Earth's Core. In: Schubert, G., ed., Treatise on Geophysics, 1st Edition, Volume 9: Evolution of the Earth. Elsevier, Amsterdam.
      Rushby, A. J., Claire, M. W., Osborn, H., et al., 2013. Habitable Zone Lifetimes of Exoplanets around Main Sequence Stars. Astrobiology, 13(9): 833-849. https://doi.org/10.1089/ast.2012.0938
      Russell, M. J., Daniel, R. M., Hall, A. J., et al., 1994. A Hydrothermally Precipitated Catalytic Iron Sulphide Membrane as a First Step Toward Life. Journal of Molecular Evolution, 39(3): 231-243. https://doi.org/10.1007/bf00160147
      Sánchez-Baracaldo, P., Ridgwell, A., Raven, J. A., 2014. A Neoproterozoic Transition in the Marine Nitrogen Cycle. Current Biology, 24(6): 652-657. https://doi.org/10.1016/j.cub.2014.01.041
      Sasselov, D. D., Grotzinger, J. P., Sutherland, J. D., 2020. The Origin of Life as a Planetary Phenomenon. Science Advances, 6(6): eaax3419. https://doi.org/10.1126/sciadv.aax3419
      Sauvage, J. F., Flinders, A., Spivack, A. J., et al., 2021. The Contribution of Water Radiolysis to Marine Sedimentary Life. Nature Communications, 12(1): 1297. https://doi.org/10.1038/s41467-021-21218-z
      Schmitt-Kopplin, P., Gabelica, Z., Gougeon, R. D., et al., 2010. High Molecular Diversity of Extraterrestrial Organic Matter in Murchison Meteorite Revealed 40 Years after Its Fall. Proceedings of the National Academy of Sciences, 107(7): 2763-2768. https://doi.org/10.1073/pnas.0912157107
      Schopf, J. W., 1993. Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life. Science, 260: 640-646. https://doi.org/10.1126/science.260.5108.640
      Schopf, J. W., 2024. Pioneers of Origin of Life Studies—Darwin, Oparin, Haldane, Miller, Oró—And the Oldest Known Records of Life. Life, 14(10): 1345. https://doi.org/10.3390/life14101345
      Schopf, J. W., Kudryavtsev, A. B., Osterhout, J. T., et al., 2017. An Anaerobic ∼3 400 Ma Shallow-Water Microbial Consortium: Presumptive Evidence of Earth's Paleoarchean Anoxic Atmosphere. Precambrian Research, 299: 309-318. https://doi.org/10.1016/j.precamres.2017.07.021
      Shen, J. X., Liu, C. Z., Pan, Y. X., et al., 2024. Follow the Serpentine as a Comprehensive Diagnostic for Extraterrestrial Habitability. Nature Astronomy, 8: 1230-1236. https://doi.org/10.1038/s41550-024-02373-x
      Shen, Y. A., Buick, R., Canfield, D. E., 2001. Isotopic Evidence for Microbial Sulphate Reduction in the Early Archaean Era. Nature, 410: 77-81. https://doi.org/10.1038/35065071
      Shen, Y. A., Farquhar, J., Masterson, A., et al., 2009. Evaluating the Role of Microbial Sulfate Reduction in the Early Archean Using Quadruple Isotope Systematics. Earth and Planetary Science Letters, 279(3-4): 383-391. https://doi.org/10.1016/j.epsl.2009.01.018
      Sleep, N. H., Meibom, A., Fridriksson, T., et al., 2004. H2-Rich Fluids from Serpentinization: Geochemical and Biotic Implications. Proceedings of the National Academy of Sciences, 101(35): 12818-12823. https://doi.org/10.1073/pnas.0405289101
      Sleep, N. H., Zahnle, K., 2001. Carbon Dioxide Cycling and Implications for Climate on Ancient Earth. Journal of Geophysical Research: Planets, 106(E1): 1373-1399. https://doi.org/10.1029/2000je001247
      Smith, D. J., 2013. Microbes in the Upper Atmosphere and Unique Opportunities for Astrobiology Research. Astrobiology, 13(10): 981-990. https://doi.org/10.1089/ast.2013.1074
      Summons, R. E., Amend, J. P., Bish, D., et al., 2011. Preservation of Martian Organic and Environmental Records: Final Report of the Mars Biosignature Working Group. Astrobiology, 11(2): 157-181. https://doi.org/10.1089/ast.2010.0506
      Sun, F. N., Luo, G. M., Pancost, R. D., et al., 2024. Methane Fueled Lake Pelagic Food Webs in a Cretaceous Greenhouse World. Proceedings of the National Academy of Sciences, 121(44): e2411413121. https://doi.org/10.1073/pnas.2411413121
      Tarnas, J. D., Mustard, J. F., Sherwood Lollar, B., et al., 2021. Earth-Like Habitable Environments in the Subsurface of Mars. Astrobiology, 21(6): 741-756. https://doi.org/10.1089/ast.2020.2386
      Tashiro, T., Ishida, A., Hori, M., et al., 2017. Early Trace of Life from 3.95 Ga Sedimentary Rocks in Labrador, Canada. Nature, 549: 516-518. https://doi.org/10.1038/nature24019
      Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95rg00262
      ten Kate, I. L., Garry, J. R. C., Peeters, Z., et al., 2006. The Effects of Martian near Surface Conditions on the Photochemistry of Amino Acids. Planetary and Space Science, 54(3): 296-302. https://doi.org/10.1016/j.pss.2005.12.002
      Tice, M. M., Lowe, D. R., 2004. Photosynthetic Microbial Mats in the 3 416-Myr-Old Ocean. Nature, 431(7008): 549-552. https://doi.org/10.1038/nature02888
      Tucker, J. M., Mukhopadhyay, S., 2014. Evidence for Multiple Magma Ocean Outgassing and Atmospheric Loss Episodes from Mantle Noble Gases. Earth and Planetary Science Letters, 393: 254-265. https://doi.org/10.1016/j.epsl.2014.02.050
      Tyler, S. A., Barghoorn, E. S., 1954. Occurrence of Structurally Preserved Plants in Pre-Cambrian Rocks of the Canadian Shield. Science, 119(3096): 606-608. https://doi.org/10.1126/science.119.3096.606
      Ueno, Y., Yamada, K., Yoshida, N., et al., 2006. Evidence from Fluid Inclusions for Microbial Methanogenesis in the Early Archaean Era. Nature, 440: 516-519. https://doi.org/10.1038/nature04584
      Valley, J. W., Cavosie, A. J., Ushikubo, T., et al., 2014. Hadean Age for a Post-Magma-Ocean Zircon Confirmed by Atom-Probe Tomography. Nature Geoscience, 7: 219-223. https://doi.org/10.1038/ngeo2075
      Valley, J. W., Peck, W. H., King, E. M., et al., 2002. A Cool Early Earth. Geology, 30(4): 351-354. https://doi.org/10.1130/0091-7613(2002)0300351: acee>2.0.co;2 doi: 10.1130/0091-7613(2002)0300351:acee>2.0.co;2
      van Kranendonk, M. J., 2006. Volcanic Degassing, Hydrothermal Circulation and the Flourishing of Early Life on Earth: A Review of the Evidence from C. 3490-3240 Ma Rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth-Science Reviews, 74(3-4): 197-240. https://doi.org/10.1016/j.earscirev.2005.09.005
      van Zuilen, M. A., Lepland, A., Arrhenius, G., 2002. Reassessing the Evidence for the Earliest Traces of Life. Nature, 418: 627-630. https://doi.org/10.1038/nature00934
      Vernadsky, V. L., 1926. The Biosphere. Translated by Langmuir, D. B., 1998. Copernicus, New York.
      Wang, D. T., Gruen, D. S., Lollar, B. S., et al., 2015. Nonequilibrium clumped Isotope Signals in Microbial Methane. Science, 348 (6233): 428-431. https://doi.org/10.1126/science.aaa4326
      Ward, P. D., Brownlee, D., Krauss, L., 2000. Rare Earth: Why Complex Life Is Uncommon in the Universe. Copernicus Books, New York.
      Westall, F., 2012. The Early Earth. In: Impey, C., Lunine, J., Funes, J., eds., Frontiers of Astrobiology. Cambridge University Press, Cambridge, 89-114. https://doi.org/10.1017/cbo9780511902574.009
      Westall, F., Foucher, F., Bost, N., et al., 2015. Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life. Astrobiology, 15(11): 998-1029. https://doi.org/10.1089/ast.2015.1374
      Westall, F., Xiao, S. H., 2024. Precambrian Earth: Co-Evolution of Life and Geodynamics. Precambrian Research, 414: 107589. https://doi.org/10.1016/j.precamres.2024.107589
      Wirth, R., 2017. Colonization of Black Smokers by Hyperthermophilic Microorganisms. Trends in Microbiology, 25(2): 92-99. https://doi.org/10.1016/j.tim.2016.11.002
      Xie, S. C., 2023. Geobiology. Higher Education Press, Beijing (in Chinese).
      Xie, S. C., Luo, G. M., 2023. Opportunities and Challenges for the Development of Geobiology. Acta Palaeontologica Sinica, 62(4): 454-462 (in Chinese with English abstract).
      Xie, S. C., Gong, Y. M., Tong, J. N., et al., 2006. Leap from Paleontology to Geobiology. Chinese Science Bulletin, 51(19): 2327-2336 (in Chinese). doi: 10.1007/s11434-006-2111-3
      Xie, S. C., Jiao, N. Z., Luo, G. M., et al., 2022b. Evolution of Biotic Carbon Pumps in Earth History: Microbial Roles as a Carbon Sink in Oceans. Chinese Science Bulletin, 67(15): 1715-1726 (in Chinese). doi: 10.1360/TB-2021-0672
      Xie, S. C., Luo, G. M., Zhu, X. C., et al., 2022a. Geological Agents of Microbes in Deep Sea, Deep Earth, Deep Space and Deep Time: From Climate and Environment Changes to Ecological Crisis. Geological Review, 68(5): 1575-1583 (in Chinese with English abstract).
      Xie, S. C., Yang, H., Luo, G. M., et al., 2012. Geomicrobial Functional Groups: A Window on the Interaction between Life and Environments. Chinese Science Bulletin, 57(1): 3-22 (in Chinese). doi: 10.1360/csb2012-57-1-3
      Xie, S. C., Yin, H. F., Liu, D., et al., 2018. On Development from Paleontology to Geobiology: Overview of Innovation and Expansion of Application Fields. Earth Science, 43(11): 3823-3826 (in Chinese with English abstract).
      Xiong, J., Fischer, W. M., Inoue, K., et al., 2000. Molecular Evidence for the Early Evolution of Photosynthesis. Science, 289(5485): 1724-1730. https://doi.org/10.1126/science.289.5485.1724
      Yesiltas, M., Kebukawa, Y., 2024. Extraterrestrial Organic Matter: An Introduction. Elements, 20(1): 7-12. https://doi.org/10.2138/gselements.20.1.7
      Yin, H. F., 1994. Biogeology. Advances in Earth Science, 9(6): 79-82 (in Chinese).
      Zahnle, K., Arndt, N., Cockell, C., et al., 2007. Emergence of a Habitable Planet. Space Science Reviews, 129(1): 35-78. https://doi.org/10.1007/s11214-007-9225-z
      Zhao, J. N., Shi, Y. T., Zhang, M. J., et al., 2021. Advances in Martian Water-Related Landforms. Acta Geologica Sinica, 95(9): 2755-2768 (in Chinese with English abstract).
      Zheng, Y. F., Guo, Z. T., Jiao, N. Z., et al., 2024. A Holistic Perspective on Earth System Science. Science in China (Series D), 54(10): 3065-3090 (in Chinese).
      Zimmer, C., 2005. How and where Did Life on Earth Arise? Science, 309(5731): 89. https://doi.org/10.1126/science.309.5731.89
      2021-2030地球科学发展战略研究组, 2021. 2021-2030地球科学发展战略: 宜居地球的过去、现在与未来. 北京: 科学出版社.
      中国科学院"深部地下生物圈"项目组, 2020. 深部地下生物圈. 北京: 科学出版社.
      李一良, 2011. 天体生物学概要. 科技导报, 29: 66-74.
      李一良, 孙思, 2016. 地球生命的起源. 科学通报, 61(28-29): 3065-3078.
      林巍, 李一良, 王高鸿, 等, 2020. 天体生物学研究进展和发展趋势. 科学通报, 65(5): 380-391.
      国家自然科学基金委员会, 中国科学院, 2022. 极端地质环境微生物学. 北京: 科学出版社.
      谢树成, 2023. 地球生物学. 北京: 高等教育出版社.
      谢树成, 罗根明, 2023. 地球生物学发展的机遇与挑战. 古生物学报, 62(4): 454-462.
      谢树成, 龚一鸣, 童金南, 等, 2006. 从古生物学到地球生物学的跨越. 科学通报, 51(19): 2327-2336.
      谢树成, 焦念志, 罗根明, 等, 2022b. 海洋生物碳泵的地质演化: 微生物的碳汇作用. 科学通报, 67(15): 1715-1726.
      谢树成, 罗根明, 朱秀昌, 等, 2022a. "四深"微生物的地质作用——从气候环境变化到生态灾难. 地质论评, 68(5): 1575-1583.
      谢树成, 杨欢, 罗根明, 等, 2012. 地质微生物功能群: 生命与环境相互作用的重要突破口. 科学通报, 57(1): 3-22.
      谢树成, 殷鸿福, 刘邓, 等, 2018. 再谈古生物学向地球生物学的发展: 服务领域的拓展与创新. 地球科学, 43(11): 3823-3836. doi: 10.3799/dqkx.2018.169
      殷鸿福, 1994. 生物地质学. 地球科学进展, 9(6): 79-82.
      赵健楠, 史语桐, 张明杰, 等, 2021. 火星水成地貌研究进展. 地质学报, 95(9): 2755-2768.
      郑永飞, 郭正堂, 焦念志, 等. 2024. 地球系统科学研究态势. 中国科学(D辑), 54(10): 3065-3090.
    • 加载中
    图(5)
    计量
    • 文章访问数:  371
    • HTML全文浏览量:  136
    • PDF下载量:  85
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-12-20
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回