• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    花岗伟晶岩与花岗岩的关系

    赵振华 马林

    赵振华, 马林, 2025. 花岗伟晶岩与花岗岩的关系. 地球科学, 50(12): 4819-4878. doi: 10.3799/dqkx.2025.018
    引用本文: 赵振华, 马林, 2025. 花岗伟晶岩与花岗岩的关系. 地球科学, 50(12): 4819-4878. doi: 10.3799/dqkx.2025.018
    Zhao Zhenhua, Ma Lin, 2025. Relationship between Granitic Pegmatite and Granite. Earth Science, 50(12): 4819-4878. doi: 10.3799/dqkx.2025.018
    Citation: Zhao Zhenhua, Ma Lin, 2025. Relationship between Granitic Pegmatite and Granite. Earth Science, 50(12): 4819-4878. doi: 10.3799/dqkx.2025.018

    花岗伟晶岩与花岗岩的关系

    doi: 10.3799/dqkx.2025.018
    基金项目: 

    国家自然科学基金 42122022

    国家重点研发专项 2024YFC2909903

    详细信息
      作者简介:

      赵振华(1941-),男,研究员,主要从事微量元素及稀土元素地球化学研究. ORCID:0009-0009-7783-5026. E-mail:zhzhao@gig.ac.cn

    • 中图分类号: P581

    Relationship between Granitic Pegmatite and Granite

    • 摘要: 花岗伟晶岩是稀有金属的重要来源.近些年来的大量岩石地球化学研究成果表明,花岗伟晶岩与花岗岩的关系是较复杂的,可概括为4类:“父子关系”,花岗伟晶岩是花岗岩浆分异演化的晚期产物;“兄弟关系”,花岗伟晶岩与花岗岩是成分相似的岩浆同时或近于同时分别独立演化结晶的产物;“间接关系”,花岗伟晶岩由已存在的花岗岩经(多阶段)重熔形成;花岗伟晶岩与花岗岩无关,伟晶岩与花岗岩的形成存在显著时差和源区成分差异,由变沉积岩深熔形成的独立伟晶质岩浆结晶形成.岩浆储库的晶粥模型和穿地壳岩浆系统为探讨伟晶岩与花岗岩关系提供了重要依据.应注意继承矿物的识别和同质异位素对铪同位素组成的影响;加强标准物质研制和定年技术提高;开展非传统同位素分馏特点和机制研究;加强相关花岗岩复式岩体岩石地球化学和大比例尺填图研究.

       

    • 图  1  幕阜山花岗岩复式岩体及稀有金属花岗伟晶岩环状空间分布

      a.幕阜山花岗岩复式岩体地质简图;b.仁里伟晶岩型锂铌钽矿床空间分带;据李鹏等(2017)文春华等(2019)

      Fig.  1.  Circular spatial distribution of pegmatite related to Mufushan granite batholith

      图  2  伟晶岩成矿元素与花岗岩关系模型

      Černý(1991b)Müller et al.(2017修改)

      Fig.  2.  Regional zoning model of rare metals around pegmatite related to granite

      图  3  东秦岭古生代花岗岩与伟晶岩分布

      修改自周起凤等(2021)张帅等(2019)刘刚等(2017)袁峰等(2017)

      Fig.  3.  Distribution sketch map of Paleozoic granites and pegmatites in East Qinling district

      图  4  喜马拉雅东段洛扎地区嘎波伟晶岩地质图(据李光明等,2022)

      Fig.  4.  Geological map of the Gabo pegmatite lithium deposit in the Luozha area (after Li et al., 2022)

      图  5  稀有金属花岗岩与似伟晶岩

      a.阿尔泰阿斯喀尔特;b.江西黄山松树岡;c.内蒙巴尔哲;d.广西栗木;修改自刘文政等(2015)Zhu et al.(2015)杨武斌(2012)张玲和梁磊(2018)

      Fig.  5.  Pegmatoid in rare metal granites

      图  6  可可托海、大红柳滩、白龙山矿区及东秦岭官坡细晶花岗岩和花岗伟晶岩

      a.可可托海3b号脉层状细晶岩(张辉和李国胜,2024);b.白龙山层状细晶岩(王核等,2021);c白龙山龙门山伟晶岩与细晶岩(唐俊林等,2022);d,e.东秦岭蔡家沟和南阳山锂伟晶岩内部带中细晶岩(周起凤等,2021

      Fig.  6.  Aplite and pegmatite in Keketuohai, Dahailiutan, East Qinling and Bailongshan ore fields

      图  7  甲基卡矿田钠长-锂辉石矿脉矿石结构构造

      a.微晶、细晶锂辉石韵律条带;b.微晶、细晶、梳妆锂辉石;c.地表梳状与细晶锂辉石条带;spo.锂辉石;据付小方等(2021)

      Fig.  7.  Texture characteristics of the albite-spodumene vein in the Jiajika ore field

      图  8  甲基卡锂矿区深部钻探(JSD-1—JSD-2—JSD-3)联合剖面显示的花岗岩(GS-1和GS-2)、变质沉积岩(T3)和伟晶岩(Pg)多层次穹状花岗岩席和侵入变质沉积岩的伟晶岩脉群组成多层三明治结构

      红色、粉色和橙色圆圈分别代表花岗岩、贫锂伟晶岩和锂矿伟晶岩的年龄,黑虚线推测构造带Ⅰ和Ⅱ的分界;两条绿虚线之间为推测富锂伟晶岩带;BR-BC.巴罗-巴肯变质带;据许志琴等(2023)

      Fig.  8.  JSD-1—JSD-2—JSD-3 profile showing multi-layer domal granitic sheets (GS-1 and GS-2) and pegmatites (Pg) intruded in the metasediments (T3)

      图  9  地壳深熔形成富锂伟晶岩的成岩模型简图(据Koopmans et al., 2024)

      Fig.  9.  Schematic petrogenetic model for generating lithium-rich pegmatites via crustal anatexis (after Koopmans et al., 2024)

      图  10  江西九岭花岗岩地质图

      a.九岭新元古代花岗岩;1.新元古代花岗岩;2.中生代花岗岩;3.断层;4.研究区域;b.九岭元古代花岗岩中燕山期花岗岩;1.联圩组;2.青白口系修水组;3.青白口系安乐林组上段;4.青白口系安乐林组中段;5.青白口系安乐林组下段;6.青白口系宜丰岩组;7.白水洞岩体白云母二长花岗岩;8.武堂岩体二云母二长花岗岩;9.古阳寨岩体二云母二长花岗岩;10.甘坊岩体二云母二长花岗岩;11.石花尖岩体黑云母花岗闪长岩;12.九岭岩体黑云母二长花岗岩;13.九岭岩体黑云母花岗闪长岩;14.九岭岩体黑云母英云闪长岩;15.伟晶岩脉/采样点;16.霏细斑岩脉/细晶岩脉;17.断裂/地质界线;18.蚀变花岗岩型/细晶岩型锂矿床;据张福神等(2020)李仁泽等(2020)徐喆等(2024)

      Fig.  10.  Geological map of the Neoproterozoic granites in Jiuling area, Jiangxi Province

      图  11  九岭新元古代和燕山期花岗岩锆石Hf-O同位素相关关系

      地幔εHft)为12,δ18O为5.6×10-3;变火成岩源区可用锆石的δ18O(< 8.0×10-3)识别,变沉积岩源区δ18O(全岩平均11.0×10-3,据Simon and Lécuyer,2005);底图据李献华等(2009);数据取自Wang et al.(20132014c);Wei et al.(2018)

      Fig.  11.  εHf(t) vs.δ18O diagram for zircons in Jiuling Neoproterozoic and Yanshanian granites

      图  12  可可托海伟晶岩田地质简图(据闫军武等,2020)

      Fig.  12.  Sketch geology map of Koktokay area (modified from Yan et al., 2020)

      图  13  美国Mt Mica伟晶岩、淡色体与Sabago花岗岩稀土球粒陨石标准化(a)及微量元素全地壳标准化(b)对比

      Simmons et al.(2016);伟晶岩(红色),淡色体(蓝色),Sabro花岗岩(绿色)

      Fig.  13.  Whole rock chondrite-normalized REE (a) and total crust -normalized trace element (b) spider diagrams for the Mt. Mica pegmatites, leucosomes and Sabago granites

      图  14  控制伟晶岩形成与侵入体关系的地壳剖面简图(据Müller et al., 2017)

      Fig.  14.  Schematic crustal profile illustrating the contrasting controls on the formation of pegmatites in a pluton-related and a pluton-unrelated scenario (after Müller et al., 2017)

      图  15  晶粥模型和穿地壳岩浆系统

      a.上地壳岩浆系统,硅质熔体从下面深层间歇式补给的底侵基性岩浆镁铁质岩浆分离出来;b.穿地壳岩浆系统:地壳深部熔体过程产生的熔体转移到地壳中部,最终转移到地壳上层.该系统中短暂的垂直连通性潜力表明熔体透镜连续不稳定的可能性;c.岩浆(橘色)和晶粥(灰色)流变的变化是颗粒体积含量的函数;据Cashman et al.(2017)Bachmann and Bergantz(2004)

      Fig.  15.  Models of magma mush and transcrustal magmatic system

      图  16  云母高度不相容元素i, j在花岗岩和伟晶岩在由不连续周期性部分熔融

      同成因(a)和不同成因液体(b)产生的液体分离结晶过程中的理论演化关系;c.海西期St-Sylvestre(SSLG)淡色花岗岩与其MAPF伟晶岩[Rb]液体-[Cs]液体演化示意图(据Villaros and Pichavant, 2019);Co.原始液体成分;Cl.分离结晶的液体成分;Cf.最终液体成分;bi.黑云母;mu.白云母;WR.全岩

      Fig.  16.  Schematic theoretical evolution of two highly incompatible elements (i and j) in liquids in the case of fractional crystallization of cogenetic

      图  17  阿尔金吐格曼稀有金属伟晶岩脉中铌钽铁矿背散射图与U-Pb年龄

      Gao et al.(2021)李杭等(2022)

      Fig.  17.  BSE images and element mapping results of columbite-tantalite from the Tugeman pegmatite

      表  1  与花岗岩有关的伟晶岩及花岗岩岩石地球化学

      Table  1.   Litho-geochemistry of pegmatites related to granites

      伟晶岩 成矿元素 年龄(Ma) εHf(t) 相关花岗岩 岩石类型 年龄(Ma) εHf(t) 参考文献
      仁里 Ta-Nb-Li-Be超大型 130.5 (辉钼矿;
      133.0,138.4, 136.0(铌钽铁矿U-Pb)
      -8.3~-6.6 幕阜山
      2 400 km2
      闪长岩;花岗闪长岩,黑云母花岗岩;二云母花岗岩 闪长岩154;
      黑云母二长花岗岩148~140;
      二云母二长花岗岩138~127
      闪长岩: -0.92;
      黑云母二长花岗岩: -11.5~-6.13;
      二云母二长花岗岩: -10.8~-5.4
      周芳春等(2019)
      Wang et al.(2014);
      李乐广等(2023)
      Ji et al.(2017);
      文春华等(2019);
      许畅等(2019);
      Li et al.(2020);
      黄小强等(2021)
      西昆仑白龙山 Li多金属超大型 208.1±1.5(铌钽铁矿U-Pb)
      207.4±0.6(独居石U-Pb)
      211.3±5.0(锡石U-Pb)
      -12.6~-5.4 δ18O (‰): 10.4~12.6(锆石) 白龙山 石英闪长岩 216.8~212.3 -14.12~4.58 δ18O (‰): 10.11 ~13.46(锆石) 王核等(2017);
      Zhou et al.(2021);
      魏小鹏等(2017);
      唐俊林等(2022)
      Yan et al.(2022)
      花岗闪长岩 210~209
      二云母二长花岗岩 216
      二云母花岗岩 208~209
      细晶钠长花岗岩 209
      西昆仑肖尔布龙,霍什塔什 Li,Be (Nb, Ta)超大型 205(锆石) -5.3~-4.1 二云母花岗岩 208 -6.9~-5.8 Yan et al.(2022);
      王核等(2022)
      206(铌钽铁矿)
      204(独居石)
      阿尔金吐格曼塔什萨依 Li, Li-Be中-大型 485~454(锆石,铌钽铁矿,锡石)
      436~434, 415(铌钽铁矿)
      角闪黑云母花岗岩、二云母钾长花岗岩、二云母二长花岗岩、白云母碱长花岗岩、电气石石榴子石钠长花岗岩细晶花岗岩 490~480 -12.0~+3.3 徐兴旺等(2019);
      Gao et al.(2021);
      李杭等(2022);
      Li et al.(2023);
      Ma et al.(2024)
      480~440
      435~415
      东秦岭官坡 Li, Nb, Ta, Be大型 422~418(锡石) 灰池子340 km2
      大毛沟
      6 km2
      黑云母二长花岗岩
      含石榴石正长花岗岩
      450~432 +5.3~+7.8 李伍平等(2000);
      Yuan et al.(2020);
      曾威等(2021);
      韩金生(2022未发表)
      426~418
      东秦岭光石沟 U大型 黑云母
      伟晶岩
      -2.8~1.8 高山沟
      大毛沟
      1~6 km2
      含石榴石正长花岗岩 421 -5.1~2.4 袁峰等(2017)
      Chen et al.(20182020)
      415, 420, 419
      不含矿黑云母伟晶岩
      414
      东秦岭陈家庄 U小型 416 黄龙庙
      75 km2
      黑云母花岗岩 448~446 赵如意等(2014)
      张帅等(2019)
      王江波等(2020)
      陈家庄
      0.5 km2
      含石榴石二长花岗岩 418~415
      下载: 导出CSV

      表  2  呈兄弟关系的伟晶岩及花岗岩岩石地球化学

      Table  2.   Litho-geochemistry of Brotherly relationship of pegmatite and granite

      伟晶岩 成矿元素 年龄(Ma) εHf(t) 相关花岗岩 岩石类型 年龄(Ma) εHf(t) 参考文献
      阿斯卡尔特 Be-Nb-Mo大型 229~218(辉钼矿) -1.50~1.69 白云母钠长花岗岩;白云母花岗岩;5 km2 222~215 -0.72~1.99 刘文政(2015)
      王春龙(2015)
      丁欣等(2016)
      闫军武等(2020)
      甲基卡 Li(Be, Nb, Ta, Cs, Sn)超大型 223~204锆石,锡石;216~214铌钽铁矿 -10.39~-5.4 马颈子5.3 km2 二云母花岗岩;细晶岩 223~206 -24.4~+2.9 郝雪峰(2015);
      李贤芳(2020)
      周雄等(2021);
      付小方(2021)
      许志琴等(2023)
      下载: 导出CSV

      表  3  花岗岩及其多阶段熔融形成的花岗岩与伟晶岩岩石地球化学

      Table  3.   Litho-geochemistry of pegmatites produceded by multi-stage partial melting of source granite

      花岗岩 岩石类型 年龄(Ma) εHf(t) 伟晶岩或花岗岩 成矿元素 年龄(Ma) εHf(t) 参考文献
      九岭 花岗闪长岩
      黑云母二长花岗岩
      英云闪长岩
      3 680 km2
      833~808(锆石) -6.76~+9.22,平均+3.8;锆石δ18O: 6.79~11.5平均7.36‰ 甘坊花岗岩400 km2 Li,Ta, Nb 二云母二长花岗岩:144~147
      白云母花岗岩:141~144
      细晶岩:138(锡石)
      -11.4~-7.5 Wang et al.(2013, 2014, 2017);
      段政等(2017)
      Wei et al.(2018);
      张福神(2020);
      曾闰灵等(2023)
      石门寺 石门寺花岗岩 W, Cu, Mo, Li, Nb, Ta 似斑状黑云母花岗岩、似斑状二云母花岗和花岗斑岩, 150~140 Ma -10.0~+0.58,平均-5.22;
      锆石δ18O 6.64‰~8.87‰,平均7.47‰
      潘大鹏(2017)
      Wei et al.(2018)
      刘莹等(2018)
      古阳寨 古阳寨伟晶岩 Be, Li 139(独居石) 徐喆等(2024)
      曾闰灵(2023)
      下载: 导出CSV

      表  4  九岭新元古代及燕山期花岗岩类与双桥山群元素与Nd、Hf、O同位素组成对比

      Table  4.   The comparison of Nd, Hf and O isotope compositions of Yanshannian granites with Neoproterozoic Shuangqiaoshan Formation

      岩石 岩石类型 年龄(Ma) Li Ba Nb Ta W Cu εHf(t) εNd(t) δ18O(‰)
      (10-6)
      九岭 花岗闪长岩
      黑云母二长花岗岩
      英云闪长岩
      833~808 64.3~362.0 4.3~11.0 3.1~11.1 0.6~0.98 13.8~51.3 41~81.5 -0.8~+9.2(173个点)平均+4.0 -4.0~-1.3平均-2.9 6.6~12.0平均8.2(39个点)
      双桥山群 (凝灰质)千枚岩
      变砂岩
      角页岩
      片岩
      830~815 52.0~76.9 2.2~2.7 11.0~13.8 0.84~0.98 1.81~2.1 21.9~29.2 -16.5~-2.6(16个点)平均-11.1 -7.6~-0.4-10.4~-2.2-0.3~+0.7 10.7~12.7平均11.7
      甘坊 二云母花岗岩 210 210 10.52 15.2 4.52 3.14 -11.4~-7.5平均-7.6 -6.4~ -9.2平均-7.7
      石门寺 似斑状黑云母花岗岩
      似斑状二云母花岗
      花岗斑岩
      150~140 59.2 265.7 -10.0~+0.6, 平均-5.2 -8.0~-7.5 8.9~6.6, 平均7.5
      上地壳 21 2.1 12 0.9 2 28
      注:Wang et al.(20132014)Wang et al.(2017b)段政等(2017)Wei et al.(2018)张福神等(2020)曾闰灵等(2023)Wei et al.(2018)段政等(2017)Fan et al.(2019)孙克克等(2017)周效华等(2012)霍海龙等(2018)Rudnick and Gao(2003).
      下载: 导出CSV

      表  5  伟晶岩及与其无关围岩花岗岩的岩石地球化学

      Table  5.   Litho-geochemistry of No relationship between granitic pegmatite and granite

      伟晶岩 成矿元素 年龄εHf(t) εHf(t) 花岗岩 岩石类型 年龄εHf(t) εHf(t) 参考文献
      阿尔泰柯鲁姆特,卡鲁安 Li、Be、Nb、Ta大-超大型 238~188
      228~211
      +0.03~+2.35
      +9.9~+15.2
      +0.65~+2.50
      哈龙600 km2 黑云母花岗岩;二云母花岗岩 456~446 -1.41 ~+4.13 马占龙等(2015)
      Zhang et al.(2016)
      et al.(2012)
      别也萨麻斯 Li、Be、Nb_Ta中型 151~160 +0.62~+1.30 二云母二长花岗岩;二云母花岗岩 449~376 +1.35~+14.9 吕正航等(2015)
      丁建刚等(2020)
      何晗晗等(2020)
      可可托海三号脉 Li, Be, Nb, Ta, Cs超大型 208~202铌钽铁矿;220~208
      199~172锆石,辉钼矿
      +1.25~+2.39 阿拉尔1 300~2 000 km2 黑云母二长花岗岩; 碱长花岗岩 219~210 +1.0~+4.0-4.2~+4.9 Wang et al.(2006, 2007)
      刘锋等(2012);
      刘宏(2013)
      Che et al.(2015)
      陈剑锋等(2018)
      闫军武等(2020)
      福建南平 Ta, Nb (Li, Be, Cs)大型 391~343 -13.81~-11.60 西芹38.5 km2 含钠铁闪石钾长花岗岩 419~412 -3.3~-0.7 Cai et al.(2017)
      下载: 导出CSV
    • Annen, C., 2009. From Plutons to Magma Chambers: Thermal Constraints on the Accumulation of Eruptible Silicic Magma in the Upper Crust. Earth and Planetary Science Letters, 284(3-4): 409-416. https://doi.org/10.1016/j.epsl.2009.05.006
      Appleby, S. K., Gillespie, M. R., Graham, C. M., et al., 2010. Do S-Type Granites Commonly Sample Infracrustal Sources? New Results from an Integrated O, U-Pb and Hf Isotope Study of Zircon. Contributions to Mineralogy and Petrology, 160(1): 115-132. https://doi.org/10.1007/s00410-009-0469-3
      Bachmann, O., Bergantz, G. W., 2004. On the Origin of Crystal-Poor Rhyolites: Extracted from Batholithic Crystal Mushes. Journal of Petrology, 45(8): 1565-1582. https://doi.org/10.1093/petrology/egh019
      Bai, W, L., 1994. Gem Pegmatite in Gaoligongshan Area, Western Yunnan. Mineral Resources and Geology, 8(4): 281-286 (in Chinese with English abstract).
      Baker, D. R., 1998. The Escape of Pegmatite Dikes from Granitic Plutons: Constraints from New Models of Viscosity and Dike Propagation. The Canadian Mineralogist, 36(2): 255-263.
      Bakker, R, J., Elburg, M, A., 2006. A Magmatic Hydrothermal Transition in Arkaroola (Northern Flinders Ranges, South Australia): From Diopside-Titanite Pegmatites to Hematite-Quartz Growth. Contribution to Mineralogy and Petrology, 152(5): 541-569. https://doi.org/10.1007/s00410-006-0125-0
      Barboni, M., Annen, C., Schoene, B., 2015. Evaluating the Construction and Evolution of Upper Crustal Magma Reservoirs with Coupled U/Pb Zircon Geochronology and Thermal Modeling: A Case Study from the Mt. Capanne Pluton (Elba, Italy). Earth and Planetary Science Letter, 432: 436-448. https://doi.org/10.1016/j.epsl.2015.09.043
      Barboni, M., Boehnke, P., Schmitt, A. K., et al., 2016. Warm Storage for Arc Magmas. PNAS, 113(49): 13959-13964. https://doi.org/10.1073/pnas.1616129113
      Barnes, E, M., Weis, D., Grouat, L, A., 2012. Significant Li Isotope Fractionation in Geochemical Evolved Rare Element-Bearing Pegmatites from the Little Mahanni Pegmatite Group, NWT, Canada. Lithos, 132-133: 21-36. https://doi.org/10.1016/j.lithos.2011.11.014
      Bea, F., Pereira, M. D., Stroh, A., 1994. Mineral/Leucosome Trace-Element Partitioning in a Peraluminous Migmatite (a Laser Ablation-ICP-MS Study). Chemical Geology, 117(1-4): 291-312. https://doi.org/10.1016/0009-2541(94)90133-3
      Butler, R. W. H., Torvela, T., 2018. The Competition between Rates of Deformation and Solidification in Syn-Kinematic Granitic Intrusions: Resolving the Pegmatite Paradox. Journal of Structural Geology, 117: 1-13. https://doi.org/10.1016/j.jsg.2018.08.013
      Cai, D., W., Tang, Y., Zhang, H., et al., 2017. Petrogenesis and Tectonic Setting of the Devonian Xiqin A-Type Granite in the Northeastern Cathaysia Block, SE China. Journal of Asian Earth Sciences, 141(15): 43-58. https://doi.org/10.1016/j.jseaes.2016.05.015
      Cai, K. D., Sun, M., Yuan, C., et al., 2012. Keketuohai Mafic-Ultramafic Complex in the Chinese Altai, NW China: Petrogenesis and Geodynamic Significance. Chemical Geology, 294: 26-41. https://doi.org/10.1016/j.chemgeo.2011.11.031
      Cao, H, W., 2015. Research on Mesozoic-Cenozoic Magmatic Evolution and Its Relation with Metallogeny in Tengchong-Lianghe Tin Ore Belt, Western Yunnan (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Cashman, K. V., Sparks, R. S. J., Blundy, J. D., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 355(6331): eaag3055. https://doi.org/10.1126/science.aag3055
      Černý, P., 1991a. Rare-Element Granitic Pegmatites 1. Anatomy and Internal Evolution of Pegmatite Deposits. Geoscience Canada, 18(2): 49-67.
      Černý, P., 1991b. Rare-Element Granitic Pegmatites. Part Ⅱ: Regional to Global Environments and Petrogenesis. Geoscience Canada, 18(2): 68-81.
      Černý, P., 1992. Geochemical and Petrogenetic Features of Mineralization in Rare-Element Granitic Pegmatites in the Light of Current Research. Applied Geochemistry, 7(5): 393-416. https://doi.org/10.1016/0883-2927(92)90002-k
      Černý, P., Ercit, T. S., 2005. The Classification of Granitic Pegmatites Revisited. The Canadian Mineralogist, 43(6): 2005-2026. https://doi.org/10.2113/gscanmin.43.6.2005
      Che, X. D., Wu, F. Y., Wang, R. C., et al., 2015. In Situ U-Pb Isotopic Dating of Columbite-Tantalite by LA-ICP-MS. Ore Geology Reviews, 65: 979-989. https://doi.org/10.1016/j.oregeorev.2014.07.008
      Chen, B., Huang, C., Zhao, H., 2020. Lithium and Nd Isotopic Constraints on the Origin of Li-Poor Pegmatite with Implications for Li Mineralization. Chemical Geology, 551(6): 119769. https://doi.org/10.1016/j.chemgeo.2020.119769
      Chen, B., Ma, X, H., Wang, Z, Q., et al., 2011. Genetic Relationship between the Early Main and Late Minorphase and It's Metallogenetic Implications of the Qianlishan Composite Pluton in Nanling Region. Acta Mineralogica Sinica, 31(Suppl. 1): 9-11 (in Chinese with English abstract).
      Chen, B., Ma, X. H., Wang, Z. Q., 2014. Origin of the Fluorine-Rich Highly Differentiated Granites from the Qianlishan Composite Plutons (South China) and Implications for Polymetallic Mineralization. Journal of Asian Earth Sciences, 93: 301-314. https://doi.org/10.1016/j.jseaes.2014.07.022
      Chen, J., Li, J. K., 2024. Progress in Lithium Isotopic Study of Pegmatites and Its Application in Lithium Deposit. Acta Geologica Sinica, 98(5): 1600-1614(in Chinese with English abstract).
      Chen, J. F., Zhang, H., Zhang, J. X., et al., 2018. Geochronology and Hf Isotope of Zircon for Koktokay No. 3 Granitic Pegmatite in Xinjiang and Its Geological Implications. The Chinese Journal of Nonferrous Metals, 28(9): 1832-1844 (in Chinese with English abstract).
      Chen, L., Nie, X., Liu, K., et al., 2023. Mineralogical and Chronological Characteristics of the Huoyangou Pegmatite Sn (Nb-Ta) Deposit in Guanpo, Eastern Qinling. Earth Science Frontiers, 30(5): 40-58(in Chinese with English abstract).
      Chen, X. Y., Wu, J. H., Tang, W. X., et al., 2023. Newly Found Giant Granite-Associated Lithium Resources in the Western Jiangxi Province, South China. Earth Science, 48(10): 3957-3960 (in Chinese with English abstract).
      Chen, Y. J., Chen, B., Duan, X. X., et al., 2021. Origin of Highly Fractionated Peraluminous Granites in South China: Implications for Crustal Anatexis and Evolution. Lithos, 402: 106145. https://doi.org/10.1016/j.lithos.2021.106145
      Chen, Y. W., Hu, R. Z., Bi, X. W., et al., 2018. Zircon U-Pb Ages and Sr-Nd-Hf Isotopic Characteristics of the Huichizi Granitic Complex in the North Qinling Orogenic Belt and Their Geological Significance. Journal of Earth Science, 29(3): 492-507. https://doi.org/10.1007/s12583-017-0906-6
      Chen, Y. X., Gao, F., Pei, X. Z., et al., 2017. Chronology, Geochemistry and Tectonic Implication of the Huiteng Granitic Pluton in the Altay Area, Xinjiang. Acta Petrologica Sinica, 33(10): 3076-3090 (in Chinese with English abstract).
      Claiborne, L. L., Miller, C. F., Wooden, J. L., 2010. Trace Element Composition of Igneous Zircon: A Thermal and Compositional Record of the Accumulation and Evolution of a Large Silicic Batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology, 160(4): 511-531. https://doi.org/10.1007/s00410-010-0491-5
      Clemens, J. D., Vielzeuf, D., 1987. Constraints on Melting and Magma Production in the Crust. Earth and Planetary Science Letters, 86(2-4): 287-306. https://doi.org/10.1016/0012-821x(87)90227-5
      Coleman, D. S., Gray, W., Glazner, A. F., 2004. Rethinking the Emplacement and Evolution of Zoned Plutons: Geochronologic Evidence for Incremental Assembly of the Tuolumne Intrusive Suite, California. Geology, 32(5): 433-436. https://doi.org/10.1130/g20220.1
      Cong, F., Lin, S, L., Tang, H, F., et al., 2010. Trace Elements and Hf Isotope Compositions and U-Pb Age of Igneous Zircons from the Triassic Granite in Lianghe, Western Yunnan. Acta Geologica Sinica, 84(8): 1155-1164 (in Chinese with English abstract).
      Cooper, K. M., Kent, A. J. R., 2014. Rapid Remobilization of Magmatic Crystals Kept in Cold Storage. Nature, 506: 480-483. https://doi.org/10.1038/nature12991
      de Saint Blanquat, M., Horsman, E., Habert, G., et al., 2011. Multiscale Magmatic Cyclicity, Duration of Pluton Construction, and the Paradoxical Relationship between Tectonism and Plutonism in Continental Arcs. Tectonophysics, 500(1-4): 20-33. https://doi.org/10.1016/j.tecto.2009.12.009
      Deng, G., Jiang, D., Li, G., et al., 2024. Barium Isotope Evidence for a Magmatic Fluid-Dominated Petrogenesis of LCT-Type Pegmatites. Geochemical Perspectives Letters, 31: 14-20. https://doi.org/10.7185/geochemlet.2426
      Deveaud, S., Millot, R., Villaros, A., 2015. The Genesis of LCT-Type Granitic Pegmatites, as Illustrated by Lithium Isotopes in Micas. Chemical Geology, 411: 97-111. https://doi.org/10.1016/j.chemgeo.2015.06.029
      Dill, H. G., 2015a. The Hagendorf-Pleystein Province: The Center of Pegmatites in an Ensialic Orogeny. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-18806-5
      Dill, H. G., 2015b. Pegmatites and Aplites: Their Genetic and Applied Ore Geology. Ore Geology Reviews, 69: 417-561. https://doi.org/10.1016/j.oregeorev.2015.02.022
      Ding, J. G., Yang, C. D., Yang, F. Q., et al., 2020. Genetic Relationship between Ore-Bearing Pegmatite and the Surrounding Granite of Bieyesamasi Rare Metal Deposit in Altay of Xinjiang, China. Journal of Earth Sciences and Environment, 42 (1): 71-85 (in Chinese with English abstract).
      Ding, K., Liang, T., Zhou, Y., et al., 2020. Petrogenesis of Dahongliutan Biotite Monzogranite in Western Kunlun Orogen: Evidence from Zircon U-Pb Age and Li-Hf Isotope. Northwestern Geology, 53(1): 24-34(in Chinese with English abstract).
      Ding, X., Li, J. K., Ding, J. G., et al., 2016. Molybdenite Re-Os Isochron Age and Geological Implication in Asikaerte Be-Nb-Mo Deposit of Xinjiang. Journal of Guilin University of Technology, 36(1): 60-65(in Chinese with English abstract).
      Dong, M. L., Dong, G. C., Mo, X. X., et al., 2013. The Mesozoic-Cenozoic Magmatism in Baoshan Block, Western Yunnan and Its Tectonic Significance. Acta Petrologica Sinica, 29(11): 3901-3913 (in Chinese with English abstract).
      Duan, Z., Xing, G. F., Liao, S. B., et al., 2017. Compositional Difference from the Sources of Jiuling Neoproterozoic Granite Complex in Eastern Segment of the Jiangnan Orogen: Constraints from Geochemistry and Hf Isotope of Zircons. Acta Petrologica Sinica, 33(11): 3610-3634 (in Chinese with English abstract).
      Evensen, J. M., London, D., 2003. Experimental Partitioning of Be, Cs, and Other Trace Elements between Cordierite and Felsic Melt, and the Chemical Signature of S-Type Granite. Contributions to Mineralogy and Petrology, 144(6): 739-757. https://doi.org/10.1007/s00410-002-0426-x
      Fan, X. K., Mavrogenes, J., Hou, Z. Q., et al., 2019. Petrogenesis and Metallogenic Significance of Multistage Granites in Shimensi Tungsten Polymetallic Deposit, Dahutang Giant Ore Field, South China. Lithos, 336: 326-344. https://doi.org/10.1016/j.lithos.2019.04.001
      Feng, Y. G., Liang, T., Cen, J. B., et al., 2024. Metallogenetic Regularity of Rare-Metal Pegmatites in East Qinling. Acta Petrologica Sinica, 40(9): 2703-2728 (in Chinese with English abstract). doi: 10.18654/1000-0569/2024.09.07
      Feng, Y. G., Liang, T., Zhang, Z., et al., 2019. Columbite U-Pb Geochronology of Kalu'an Lithium Pegmatites in Northern Xinjiang, China: Implications for Genesis and Emplacement History of Rare-Element Pegmatites. Minerals, 9(8): 456. https://doi.org/10.3390/min9080456
      Fu, X. F, Liang, B., Zou, F. G., et al., 2021. Discussion on Metallogenic Geological Characteristics and Genesis of Rare Polymetallic Ore Fields in Western Sichuan, Acta Geologica Sinica, 95(10): 3054-3068 (in Chinese with English abstract).
      Fu, X. F., Huang, T., Hao, X. F., et al., 2023. Granitic-Aplite-Pegmatite Lithium Deposits in Western Sichuan: Ore-Bearing Property Evaluation and Geological Indicators. Earth Science Frontiers, 30(5): 227-243 (in Chinese with English abstract).
      Fuertes-Fuente, M., Martin-Izard, A., Boiron, M. C., et al., 2000. P-T Path and Fluid Evolution in the Franqueira Granitic Pegmatite, Central Galicia, Northwestern Spain. The Canadian Mineralogist, 38(5): 1163-1175. https://doi.org/10.2113/gscanmin.38.5.1163
      Gao, J. G., Wei, G. Y., Li, G. W., et al., 2024a. Geochemical Constraints on the Origin of the Rare Metal Mineralization in Granite-Pegmatite, Evidence from Three-Kilometer Scientific Drilling Core in the Jiajika Li Deposit, Eastern Tibetan Plateau. Ore Geology Reviews, 165: 105852. https://doi.org/10.1016/j.oregeorev.2023.105852
      Gao, L., Zeng, L. S., Asimow, P. D., 2017. Contrasting Geochemical Signatures of Fluid-Absent versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources: The Himalayan Leucogranites. Geology, 45(1): 39-42. https://doi.org/10.1130/g38336.1
      Gao, X., Anne-Sophie Michaud, J., Zhou, Z. H., et al., 2024b. Trace Element (Be, Zn, Ga, Rb, Nb, Cs, Ta, W) Partitioning between Mica and Li-Rich Granitic Melt: Experimental Approach and Implications for W Mineralization. Geochimica et Cosmochimica Acta, 375: 1-18. https://doi.org/10.1016/j.gca.2024.05.004
      Gao, Y. B., Zhao, X. M., Bagas, L., et al., 2021. Newly Discovered Ordovician Li-Be Deposits at Tugeman in the Altyn-Tagh Orogen, NW China. Ore Geology Reviews, 139: 104515. https://doi.org/10.1016/j.oregeorev.2021.104515
      Gelman, S. E., Gutiérrez, F. J., Bachmann, O., 2013. On the Longevity of Large Upper Crustal Silicic Magma Reservoirs. Geology, 41(7): 759-762. https://doi.org/10.1130/g34241.1
      Glazner, A. F., Bartley, J. M., Coleman, D. S., et al., 2004. Are Plutons Assembled over Millions of Years by Amalgamation from Small Magma Chambers? GSA Today, 14(4): 4-11. https://doi.org/10.1130/1052-5173(2004)0140004:apaomo>2.0.co;2 doi: 10.1130/1052-5173(2004)0140004:apaomo>2.0.co;2
      Gong, M., Wu, J. H., Ji, H., et al., 2023. Occurrence of Lithium and Geochronology of Magmatism and Mineralization in Dagang Granite-Associated Lithium Deposit, West Jiangxi Province. Earth Science, 48(12): 4370-4386 (in Chinese with English abstract).
      Gong, X. D., Yan, G. S., Ye, T. Z., et al., 2015. A Study of Ore-Forming Fluids in the Shimensi Tungsten Deposit, Dahutang Tungsten Polymetallic Ore Field, Jiangxi Province, China. Acta Geologica Sinica (English Edition), 89(3): 822-835. https://doi.org/10.1111/1755-6724.12481
      Gou, S. L., Yu, J. H., Cai, Y. F., et al., 2023. Distribution and Enrichment Mechanism of Lithium in Meta-Sedimentary Rocks in the Jiangnan Orogen and Implications for Lithium Mineralization. Acta Geologica Sinica, 97(11): 3696-3724(in Chinese with English abstract).
      Granitoid Research Group of the Nanling Project, MGMR, 1989. Geology of Granitoids of Nanling Region and Their Petrogenesis and Mineralization. Geological Publishing House, Beijing (in Chinese).
      Grew, E, S., 1998. Boron and Beryllium Minerals in Granulite-Facies Pegmatites and Implications of Beryllium Pegmatites for the Origin and Evolution of the Archean Napier Complex of East Antactica. Memoirs of National Institute of Polar Research Special Issue, 53: 74-92.
      Grunder, A. L., Klemetti, E. W., Feeley, T. C., et al., 2008. Eleven Million Years of Arc Volcanism at the Aucanquilcha Volcanic Cluster, Northern Chilean Andes: Implications for the Life Span and Emplacement of Plutons. Transactions of the Royal Society of Edinburgh: Earth Sciences, 97(4): 415-436. https://doi.org/10.1017/s0263593300001541
      Guo, C. L., Chen, Y. C., Zeng, Z. L., et al., 2012. Petrogenesis of the Xihuashan Granites in Southeastern China: Constraints from Geochemistry and In-Situ Analyses of Zircon U-Pb-Hf-O Isotopes. Lithos, 148: 209-227. https://doi.org/10.1016/j.lithos.2012.06.014
      Guo, C. L., Zhang, B. W., Zheng, Y., et al., 2024. Granite-Type Lithium Deposits in China: Important Characteristics, Metallogenic Conditions, and Genetic Mechanism. Acta Petrologica Sinica, 40(2): 347-403 (in Chinese with English abstract). doi: 10.18654/1000-0569/2024.02.02
      Guo, W. K., Li, G. M., Fu, J. G., et al., 2023. Metallogenic Epoch, Magmatic Evolution and Metallogenic Significance of the Gabo Lithium Pegmatite Deposit, Himalayan Metallogenic Belt, Tibet. Earth Science Frontiers, 30(5): 275-297(in Chinese with English abstract).
      Han, J, S., Chen, H, Y., Xu, H, J., et al., 2023a. Identifying Xenocrystic Tourmaline in Himalaya Leucogranites. American Mineralogist, 108(7-8): 1289-1297. https://doi.org/10.2138/am-2022-8615
      Han, J. S., Hollings, P., Jourdan, F., et al., 2020. Inherited Eocene Magmatic Tourmaline Captured by the Miocene Himalayan Leucogranites. American Mineralogist, 105(9): 1436-1440. https://doi.org/10.2138/am-2020-7608
      Han, J. S., Zhao, Z. H., Hollings, P., et al., 2023b. A 50 m. y. Melting Model for the Rare Metal-Rich Koktokay Pegmatite in the Chinese Altai: Implications from a Newly Identified Jurassic Granite. Geological Society of America Bulletin, 135(5-6): 1467-1479. https://doi.org/10.1130/b36513.1
      Hao, X. F., Fu, X. F., Liang, B., et al., 2015. Formation Ages of Granite and X03 Pegmatite Vein in Jiajika, Western Sichuan, and Their Geological Significance. Mineral Deposits, 34(6): 1199-1208(in Chinese with English abstract).
      He, H. H., Arkin, T., Wang, D. H., et al., 2020. Mineralogical Characteristics and TIMS U-Pb Dating of Tantalite-(Mn) from the Bieyesamas Rare Metal Deposit, Xinjiang. Rock and Mineral Analysis, 39(4): 609-619 (in Chinese with English abstract).
      He, L. P., Sun, X. L., Li, P. F., et al., 2021. Lithospheric Structure near Jiuyishan, South China: Implications for Asthenospheric Upwelling and Lithospheric Modification. Geophysical Research Letters, 48(24): e2021GL096572. https://doi.org/10.1029/2021gl096572
      He, X. H., You, Y. Y., Ming, T. X., et al., 2024. Late Cretaceous-Eocene Granitic Pegmatite Rare-Metal Mineralization Events in the Western Yunnan Province: Constraints from U-Pb Dating of Columbite, Monazite, and Zircon. Acta Petrologica Sinica, 40(2): 510-538 (in Chinese with English abstract). doi: 10.18654/1000-0569/2024.02.09
      Hildreth, W., 2004. Volcanological Perspectives on Long Valley, Mammoth Mountain, and Mono Craters: Several Contiguous But Discrete Systems. Journal of Volcanology and Geothermal Research, 136(3-4): 169-198. https://doi.org/10.1016/j.jvolgeores.2004.05.019
      Hong, T., Zhai, M. G., Xu, X. W., et al., 2021. Tourmaline and Quartz in the Igneous and Metamorphic Rocks of the Tashisayi Granitic Batholith, Altyn Tagh, Northwestern China: Geochemical Variability Constraints on Metallogenesis. Lithos, 400: 106358. https://doi.org/10.1016/j.lithos.2021.106358
      Hou, J. L., Li, J. K., Zhang, Y. J., et al., 2018. Li Isotopic Composition and Its Constrains on Rare Metal Mineralization of Jiajika Two-Mica Granite, Sichuan Province. Earth Science, 43(6): 2042-2054 (in Chinese with English abstract).
      Huang, X. Q., Li, P., Zhang, L. P., et al., 2021. Geochemical Characteristics and Metallogenic Age of No. 36 Pegmatite in Renli Rare Metal Ore Field, Hunan Province, and Their Significance. Mineral Deposits, 40(6): 1248-1266(in Chinese with English abstract).
      Huber, C., Bachmann, O., Dufek, J., 2012. Crystal-Poor versus Crystal-Rich Ignimbrites: A Competition between Stirring and Reactivation. Geology, 40(2): 115-118. https://doi.org/10.1130/g32425.1
      Huo, H, L., Zhang, D., Wu, G, G., 2018. Zircon U-Pb Ages and Hf Isotopes of the Volcanic Clastic Tuff from the Shuangqiaoshan Group in Jingdezhen, Northeastern Jiangxi Province. Bulletin of Mineralogy, Petrology and Geochemistry, 37(1): 103-110 (in Chinese with English abstract).
      Icenhower, J., London, D., 1995. An Experimental Study of Element Partitioning among Biotite, Muscovite, and Coexisting Peraluminous Silicic Melt at 200 MPa (H2O). American Mineralogist, 80(11-12): 1229-1251. https://doi.org/10.2138/am-1995-11-1213
      Implications for the Origin of an LCT Type Pegmatite by Anatexis. The Canadian Mineralogist, 54: 1053-1070. https://doi.org/10.3749/canmin.1600017
      Institute of Geochemistry, Chinese Academy of Sciences, 1979. Geochemistry of the Granitoids in Southern China. Science Press, Beijing, 403-421 (in Chinese).
      Jackson, M. D., Blundy, J., Sparks, S. J., 2018. Chemical Differentiation, Cold Storage and Remobilization of Magma in the Earth's Crust. Nature, 564: 405-409. https://doi.org/10.1038/s41586-018-0746-2
      Jahns, R. H., Burnham, C. W., 1969. Experimental Studies of Pegmatite Genesis; Ⅰ, A Model for the Derivation and Crystallization of Granitic Pegmatites. Economic Geology, 64(8): 843-864. https://doi.org/10.2113/gsecongeo.64.8.843
      Ji, W, B., Faure, M., L, Wei., et al., 2017., Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance: 1. Structural Analysis and Geochronological Constraints. Journal of Geophysical Research: Solid Earth, 123: 689-710.
      Jiang, P. F., Li, P., Li, J. K., et al., 2021. Zircon U-Pb Geochronology and Hf Isotopic Composition of Be-Pegmatites in Maiguo Deposit, Eastern Mufushan, and Their Geological Implications. Mineral Deposits, 40(4): 723-739 (in Chinese with English abstract).
      Jiang, S. Y., Peng, N. J., Huang, L. C., et al., 2015. Geological Characteristic and Ore Genesis of the Giant Tungsten Deposits from the Dahutang Ore-Concentrated District in Northern Jiangxi Province. Acta Petrologica Sinica, 31(3): 639-655(in Chinese with English abstract).
      Jiang, X, Q., 2021. Geochemical Characteristics and Petrogenesis Analysis of the Metallogenic Pluton of the Huangshan Nb-Ta Deposit in Jiangxi Province (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A., et al., 2006. Episodic Growth of the Gondwana Supercontinent from Hafnium and Oxygen Isotopes in Zircon. Nature, 439: 580-583. https://doi.org/10.1038/nature04505
      Kemp, A. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      Knoll, T., Huet, B., Schuster, R., et al., 2023. Lithium Pegmatite of Anatectic Origin: A Case Study from the Austroalpine Unit Pegmatite Province (Eastern European Alps): Geological Data and Geochemical Modeling. Ore Geology Reviews, 154: 105298. https://doi.org/10.1016/j.oregeorev.2023.105298
      Kong, H. L., Ren, G. L., Li, W. Y., et al., 2023. Geochronology, Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit, Western Kunlun, China. Northwestern Geology, 54(2): 61-79 (in Chinese with English abstract).
      Koopmans, L., Martins, T., Linnen, R., et al., 2024. The Formation of Lithium-Rich Pegmatites through Multi-Stage Melting. Geology, 52(1): 7-11. https://doi.org/10.1130/g51633.1
      Kunz, B. E., Warren, C. J., Jenner, F. E., et al., 2022. Critical Metal Enrichment in Crustal Melts: The Role of Metamorphic Mica. Geology, 50(11): 1219-1223. https://doi.org/10.1130/g50284.1
      Lei, M., 2010. Petrogenesis of Granites and Their Relationship to Tectonic Evolution of Orogene in the East Part of Qinling Orogen Belt (Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract).
      Lei, X. F., Romer, R. L., Glodny, J., et al., 2023. Geochemical Significance of Lithium and Boron Isotopic Heterogeneity Evolving during the Crystallization of Granitic Melts. Geology, 51(6): 581-585. https://doi.org/10.1130/g50983.1
      Li, G. M., Fu, J. G., Guo, W. K., et al., 2022. Discovery of the Gabo Granitic Pegmatite-Type Lithium Deposit in the Kulagangri Dome, Eastern Himalayan Metallogenic Belt, and Its Prospecting Implication. Acta Petrologica et Mineralogica, 41(6): 1109-1119 (in Chinese with English abstract).
      Li, H., Hong, T., Liu, S. K., et al., 2023. Characteristics of Early Paleozoic Granite-Pegmatite and Associated Lithium-Beryllium Mineralization in the Tugeman Area, Altun Orogenic System, Northwestern China. Ore Geology Reviews, 160: 105603. https://doi.org/10.1016/j.oregeorev.2023.105603
      Li, H., Hong, T., Yang, Z. Q., et al., 2020. Comparative Studying on Zircon, Cassiterite and Coltan U-Pb Dating and 40Ar/39 Ar Dating of Muscovite Rare-Metal Granitic Pegmatites: A Case Study of the Northern Tugeman Lithium-Beryllium Deposit in the Middle of Altyn Tagh. Acta Petrologica Sinica, 36(9): 2869-2892 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.09.16
      Li, H., Hong, T., Yang, Z. Q., et al., 2022. Multi-Stage Magmatism-Mineralization and Tectonic Setting of the North Tugeman Granitic Pegmatite Lithium-Beryllium Deposit in the Middle of Altyn Tagh. Acta Petrologica Sinica, 38(10): 3085-3103(in Chinese with English abstract). doi: 10.18654/1000-0569/2022.10.12
      Li, H, W., Zhao, Z., Chen, Z, Y., et al., 2021. Genetic Relationship between the Two-Period Magmatism and W Mineralization in the Dahutang Ore-Field, Jiangxi Province: Evidence from Zircon Geochemistry. Acta Petrologica Sinica, 37(5): 1508-1530 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.05.11
      Li, K., Gao, Y. B., Teng, J. X., et al., 2019. Metallogenic Geological Characteristics, Mineralization Age and Resource Potential of the Granite-Pegmatite-Type Rare Metal Deposits in Dahongliutan Area, Hetian County, Xinjiang. Northwestern Geology, 52(4): 206-221 (in Chinese with English abstract).
      Li, L. G., Wang, L. X., Zhu, Y. X., et al., 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244. https://doi.org/10.3799/dqkx.2022.141
      Li, L. G., Wang, L. X., Zhu, Y. X., et al., 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244(in Chinese with English abstract).
      Li, P., Li, J. K., Chen, Z. Y., et al., 2021. Compositional Evolution of the Muscovite of Renli Pegmatite-Type Rare-Metal Deposit, Northeast Hunan, China: Implications for Its Petrogenesis and Mineralization Potential. Ore Geology Reviews, 138: 104380. https://doi.org/10.1016/j.oregeorev.2021.104380
      Li, P., Li, J. K., Liu, X., et al., 2020. Geochronology and Source of the Rare-Metal Pegmatite in the Mufushan Area of the Jiangnan Orogenic Belt: A Case Study of the Giant Renli Nb-Ta Deposit in Hunan, China. Ore Geology Reviews, 116: 103237. https://doi.org/10.1016/j.oregeorev.2019.103237
      Li, P., Li, J. K., Pei, R. F., et al., 2017. Multistage Magmatic Evolution and Cretaceous Peak Metallogenic Epochs of Mufushan Composite Granite Mass: Constrains from Geochronological Evidence. Earth Science, 42(10): 1684-1696 (in Chinese with English abstract).
      Li, P., Zhou, F. C., Li, J. K., et al., 2020. Zircon U-Pb Ages and Hf Isotopic Compositions of the Concealed Granite of Renli-Chuanziyuan Deposit, NE Hunan and Geological Significance. Geotectonica et Metallogenia, 44(3): 486-500 (in Chinese with English abstract).
      Li, Q., Yang, F. Q., Yang, C. D., 2019. Geochronology and Geochemical Characteristics of Dakalasu Granite in Altay of Xinjiang, China and Their Tectonic Significance. Journal of Earth Sciences and Environment, 41(4): 396-413(in Chinese with English abstract).
      Li, Q. L., Li, X. H., Lan, Z. W., et al., 2013. Monazite and Xenotime U-Th-Pb Geochronology by Ion Microprobe: Dating Highly Fractionated Granites at Xihuashan Tungsten Mine, SE China. Contributions to Mineralogy and Petrology, 166(1): 65-80. https://doi.org/10.1007/s00410-013-0865-6
      Li, R. Z., Zhou, Z. B., Peng, B., et al., 2020. A Discussion on Geological Characteristics and Genetic Mechanism of Dagang Superlarge Lithium-Bearing Porcelain Stone Deposit in Yifeng County, Jiangxi Province. Mineral Deposits, 39(6): 1015-1029(in Chinese with English abstract).
      Li, S, Z., Zhang, Y, B., Wang, P, C., et al., 2017. Mesozoic Tectonic Transition in South China and Initiation of Paleo-Pacific Subduction. Earth Science Frontiers, 24(4): 213-225 (in Chinese with English abstract).
      Li, W, P., Wang, T., Wang, X., et al., 2000. Single Zircon Dating of the Huichizi Complex, North Qinling: Its Geological Significance. Regional Geology of China, 19(2): 172-174 (in Chinese with English abstract).
      Li, X. F., Tian, S. H., Wang, D. H., et al., 2020. Genetic Relationship between Pegmatite and Granite in Jiajika Lithium Deposit in Western Sichuan: Evidence from Zircon U-Pb Dating, Hf-O Isotope and Geochemistry. Mineral Deposits, 39(2): 273-304(in Chinese with English abstract).
      Li, X. H., Li, W. X., Li, Z. X., 2007. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(9): 981-991(in Chinese). doi: 10.1360/csb2007-52-9-981
      Li, X. H., Li, W. X., Wang, X. C., et al., 2009. Role of Mantle-Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range, South China: In-Situ Zircon Hf-O Isotopic Constraints. Science in China (Series D), 39(7): 872-887(in Chinese).
      Li, Z, H., Lin, S, L., Cong, F., et al., 2012. U-Pb Dating and Hf Isotopic Compositions of Quartz Diorite and Monzonitic Granite from the Tengchong-Lianghe Block, Western Yunnan, and It's Geological Implications. Acta Geologica Sinica, 86(7): 1047-1062 (in Chinese with English abstract).
      Lin, Q. T., Gong, P., 2002. Discussion on the Mineralization of Mesozoic Era Granitoid in Northwestern Fujian. Geology of Fujian, 21(2): 74-84 (in Chinese with English abstract).
      Lin, X. W., Zhang, Y. F., Wang, X., et al., 2017. Zircon U-Pb Dating of the Muzitawu Plutons from the Friendship Peak Region in Altay, Xinjiang and Its Geological Significance. Northwestern Geology, 50(3): 83-91(in Chinese with English abstract).
      Linnen, R. L., van Lichtervelde, M., Cerny, P., et al., 2012. Granitic Pegmatites as Sources of Strategic Metals. Elements, 8(4): 275-280. doi: 10.2113/gselements.8.4.275
      Liu, B, Q., Yu, J, H., Jiang, W., et al., 2023. Geochemistry of the Meta-Sedimentary Rocks of the Shuangqiaoshan Group and Their Genetic Link to Tungsten Mineralization in Northern Jiangxi, South China. Acta Geologica Sinica, 97(2): 433-447 (in Chinese with English abstract).
      Liu, B, X., 2014. Magmatism and Crustal Evolution in the Eastern North Qinling Terrain (Dissertation). University of Science and Technology of China, Hefei(in Chinese with English abstract).
      Liu, F., Cao, F., Zhang, Z. X., et al., 2014. Chronology and Geochemistry of the Granite near the Keketuohai No. 3 Pegmatite in Xinjiang. Acta Petrologica Sinica, 30(1): 1-15(in Chinese with English abstract).
      Liu, G., Liu, J. J., Yuan, F., et al., 2017. The Magmatic Evolution and Its Constraints on Uranium Mineralization in the Xiaohuacha Uranium Deposit, Shaanxi Province. Geoscience, 31(5): 990-1005(in Chinese with English abstract).
      Liu, H, 2013. Geochemical Study on Petrogenesis of Aral Granite and the Keketuohai No. 3 Pegmatite Vein, Altay Xinjiang (Dissertation). Kunming University of Technology, Kunming(in Chinese with English abstract).
      Liu, J. Y., 2003. Compound Massif and Complex Massif: The Two Basic Forms of the Massif Association of Granitoid and Their Significance. Contributions to Geology and Mineral Resources Research, 18(3): 143-148(in Chinese with English abstract).
      Liu, S. B., Yang, Y. Q., Wang, D. H., et al., 2019. Discovery and Significance of Granite Type Lithium Industrial Orebody in Jiajika Orefield, Sichuan Province. Acta Geologica Sinica, 93(6): 1309-1320(in Chinese with English abstract).
      Liu, W, Z., Zhang, H., Tang, H, F., et al., 2015. Molybdenite Re-Os Dating of the Asikaerte Be-Mo Deposit in Xinjiang, China and Its Genetic Implications. Geochimica, 44(2): 145-154 (in Chinese with English abstract).
      Liu, X. X., Zhang, J., Li, X. L., et al., 2023. Metallogeny of the Longtangou-Huoyangou Sn Deposit in North Qinling Orogeny: Geochronological and Petrogeochemical Evidence from Sn-Bearing Granite-Pegmatite. Acta Petrologica Sinica, 39(5): 1484-1500 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.05.16
      Liu, Y, J., Li, Z, L., Ma, D, S., 1982. Geochemical Study of Tungsten-Bearing Structures in South China. Science in China (Ser. B), 12(10): 939-950(in Chinese).
      Liu, Y., Xie, L., Wang, R. C., et al., 2018. Comparative Study of Petrogenesis and Mineralization Characteristics of Nb-Ta-Bearing and W-Bearing Granite in the Dahutang Deposit, Northern Jiangxi Province. Acta Geologica Sinica, 92(10): 2120-2137(in Chinese with English abstract).
      Liu, Z. C., Wu, F. Y., Liu, X. C., et al., 2020. The Mechanisms of Fractional Crystallization for the Himalayan Leucogranites. Acta Petrologica Sinica, 36(12): 3551-3571(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.01
      London, D., 1992. The Application of Experimental Petrology to the Genesis and Crystallization of Granitic Pegmatites. In: Martin, R. F., Černý, P., eds., Invited for Special Issue on Granitic Pegmatites. Canadian Mineralogist, 30: 499-540.
      London, D., 2005. Granitic Pegmatites: An Assessment of Current Concepts and Directions for the Future. Lithos, 80(1-4): 281-303. https://doi.org/10.1016/j.lithos.2004.02.009
      London, D., 2008. Pegmatites. Canadian Mineralogist Special Publication, Canada.
      London, D., 2014. A Petrologic Assessment of Internal Zonation in Granitic Pegmatites. Lithos, 184: 74-104. https://doi.org/10.1016/j.lithos.2013.10.025
      London, D., 2018. Ore-Forming Processes within Granitic Pegmatites. Ore Geology Reviews, 101: 349-383. https://doi.org/10.1016/j.oregeorev.2018.04.020
      London, D., Morgan, G. B., Hervig, R. L., 1989. Vapor-Undersaturated Experiments with Macusani Glass+H2O at 200 MPa, and the Internal Differentiation of Granitic Pegmatites. Contributions to Mineralogy and Petrology, 102(1): 1-17. https://doi.org/10.1007/bf01160186
      Lu, S. N., 2004. Comparison of the Pan-Cathaysian Orogeny with the Caledonian and Pan-African Orogenies. Regional Geology of China, 23(S2): 952-958(in Chinese with English abstract).
      Luan, S. W., Mao, Y. Y., Fan, L. M., et al., 1995. Mineralization and Prospection of Rare Metal in the Koktogay Area. Chengdu University of Science and Technology Press, Chengdu (in Chinese).
      Lü, Z, H., Zhang, H., Tang, Y., 2015. The Study of Genetic Relationship between Bieyesamasi No. L1 Pegmatite Li-Nb-Ta Ore Deposits and Wall Rock Granites, Xinjiang. Acta Mineralogica Sinica, 35(Suppl. 1): 323(in Chinese with English abstract).
      Lü, Z. H., Zhang, H., Tang, Y., 2021. Anatexis Origin of Rare Metal/Earth Pegmatites: Evidences from the Permian Pegmatites in the Chinese Altai. Lithos, 380-381: 105865. doi: 10.1016/j.lithos.2020.105865
      Lü, Z. H., Zhang, H., Tang, Y., et al., 2012. Petrogenesis and Magmatic-Hydrothermal Evolution Time Limitation of Kelumute No. 112 Pegmatite in Altay, Northwestern China: Evidence from Zircon U-Pb and Hf Isotopes. Lithos, 154: 374-391. https://doi.org/10.1016/j.lithos.2012.08.005
      Lü, Z. H., Zhang, H., Tang, Y., et al., 2018. Petrogenesis of Syn-Orogenic Rare Metal Pegmatites in the Chinese Altai: Evidences from Geology, Mineralogy, Zircon U-Pb Age and Hf Isotope. Ore Geology Reviews, 95: 161-181. https://doi.org/10.1016/j.oregeorev.2018.02.022
      Lynton, S. J., Walker, R. J., Candela, P. A., 2005. Lithium Isotopes in the System Qz-Ms-Fluid: An Experimental Study. Geochimica et Cosmochimica Acta, 69(13): 3337-3347. https://doi.org/10.1016/j.gca.2005.02.009
      Ma, C. Q., Li, Y. Q., 2017. Incremental Growth of Granitoid Plutons and Highly Crystalline Magmatic Differentiation. Acta Petrologica Sinica, 33(5): 1479-1488(in Chinese with English abstract).
      Ma, C. Q., Zou, B. W., Gao, K., et al., 2020. Crystal Mush Storage, Incremental Pluton Assembly and Granitic Petrogenesis. Earth Sciences, 45(12): 4332-4351 (in Chinese with English abstract).
      Ma, Y. C., Xu, X. W., Hong, T., et al., 2024. Multiphase Evolution of a Li-Pegmatite Field from the Tashisayi Area, Altyn Tagh, NW China: Insights from a Petrological, Geochemical, and Geochronological Study. Mineralium Deposita, 59(5): 863-884. https://doi.org/10.1007/s00126-023-01237-0
      Ma, Z. L., Zhang, H., Tang, Y., et al., 2015. Zircon U-Pb Geochronology and Hf Isotopes of Pegmatites from the Kaluan Mining Area in the Altay, Xinjiang and Their Genetic Relationship with the Halong Granite. Geochimica, 44(1): 9-26(in Chinese with English abstract).
      Mao, J. W., Wu, S. H., Song, S. W., et al., 2020. The World-Class Jiangnan Tungsten Belt: Geological Characteristics, Metallogeny, and Ore Deposit Model. China Science Bulletin, 65(33): 3746-3762 (in Chinese). doi: 10.1360/TB-2020-0370
      Mao, Y. J., Shao, Y. J., Xiong, Y. Q., et al., 2021. Magmatic-Hydrothermal Metallogenic System in Nb-Ta-W-Sn-Pb-Zn Dengfuxian Orefield, Eastern Hunan: Constraint from U-Pb Geochronology of Columbite-Tantalite. Journal of Central South University (Science and Technology), 52(9): 2959-2972 (in Chinese with English abstract).
      Matzel, J. E. P., Bowring, S. A., Miller, R. B., 2006. Time Scales of Pluton Construction at Differing Crustal Levels: Examples from the Mount Stuart and Tenpeak Intrusions, North Cascades, Washington. GSA Bulletin, 118(11-12): 1412-1430. https://doi.org/10.1130/b25923.1
      Michel, J., Baumgartner, L., Putlitz, B., et al., 2008. Incremental Growth of the Patagonian Torres Del Paine Laccolith over 90 k. y. . Geology, 36(6): 459-462. https://doi.org/10.1130/g24546a.1
      Ming, T. X., He, X. H., Tang, Z., et al., 2025. Mineralization Timing and Fluid Inclusion Characteristics of Na'e Beryllium Deposit in the Tengchong Block. Acta Geologica Sinica, 99(4): 1238-1255(in Chinese with English abstract).
      Mo, Z, S., Ye, B, D., Pan, W, Z., et al., 1980. Geology of the Nanling Granitoids. Geological Publishing House, Beijing (in Chinese).
      Mottram, C. M., Kellett, D. A., Barresi, T., et al., 2024. Tracking the Porphyry-Epithermal Mineralization Transition Using U-Pb Carbonate Dating. Geology, 52(9): 723-728. https://doi.org/10.1130/g52211.1
      Müller, A., Romer, R, L., Szuszkiewicz, A., et al., 2016. Can Pluton-Related and Pluton-Unrelated Granitic Pegmatites be Distinguished by Their Chemistry? Colorado: Second Eugene E. Foord Pegmatite Symposium: 67-69. In: 2nd Eugene, E., Foord Pegmatite Symposium. Golden, Co., 67-69.
      Müller, A., Romer, R. L., Pedersen, R. B., 2017. The Sveconorwegian Pegmatite Province—Thousands of Pegmatites without Parental Granites. The Canadian Mineralogist, 55(2): 283-315. https://doi.org/10.3749/canmin.1600075
      Neymark, L. A., Holm-Denoma, C. S., Larin, A. M., et al., 2021. LA-ICPMS U-Pb Dating Reveals Cassiterite Inheritance in the Yazov Granite, Eastern Siberia: Implications for Tin Mineralization. Mineralium Deposita, 56(6): 1177-1194. https://doi.org/10.1007/s00126-020-01038-9
      Nie, X. L., Wang, S. L., Liu, S., et al., 2022. Geological and Geochemical Characteristics of the Xikeng Lithium Deposit and the 40Ar/39Ar Chronology of Lepidolite of the Deposit in Jiangxi Province, China. Acta Mineralogica Sinica, 42(3): 285-294(in Chinese with English abstract).
      Padilla, A. J., Gualda, G. A. R., 2016. Crystal-Melt Elemental Partitioning in Silicic Magmatic Systems: An Example from the Peach Spring Tuff High-Silica Rhyolite, Southwest USA. Chemical Geology, 440: 326-344. https://doi.org/10.1016/j.chemgeo.2016.07.004.
      Pan, D. P., Wang, D., Wang, X. L., et al., 2017. Petrogenesis of Granites in Shimensi in Northwestern Jiangxi Province and Its Implications for Tungsten Deposits. Geology in China, 44(1): 118-135 (in Chinese with English abstract).
      Partington, G. A., McNaughton, N. J., Williams, I. S., 1995. A Review of the Geology, Mineralization, and Geochronology of the Greenbushes Pegmatite, Western Australia. Economic Geology, 90(3): 616-635. https://doi.org/10.2113/gsecongeo.90.3.616
      Patchett, P. J., White, W. M., Feldmann, H., et al., 1984. Hafnium/Rare Earth Element Fractionation in the Sedimentary System and Crustal Recycling into the Earth's Mantle. Earth and Planetary Science Letters, 69(2): 365-378. https://doi.org/10.1016/0012-821x(84)90195-x
      Patiño Douce, A. E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4): 689-710. https://doi.org/10.1093/petroj/39.4.689
      Pei, R, F., 1995. Comagmatic Complementary Differentiation and Metallogeny. Mineral Deposits, 14(4): 376-379 (in Chinese with English abstract).
      Peng, H. M., 2015. Petrogenesis of Late Meosozoic Granitoid Rocksin Dahutang Tungsten Ore Field, Jiangxi Province(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Peng, S. X., Cheng, J. X., Ding, J. G., et al., 2015. Relationship between the Sequences of Granite around Alar Biotite Granite and Pegmatite Causes, Altay, Xinjiang. Northwestern Geology, 48(3): 202-213(in Chinese with English abstract).
      Petford, N., Cruden, A. R., McCaffrey, K. J. W., et al., 2000. Granite Magma Formation, Transport and Emplacement in the Earth's Crust. Nature, 408(6813): 669-673. https://doi.org/10.1038/35047000
      Qiao, G. B., Zhang, H. D., Wu, Y. Z., et al., 2015. Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun: Constraints from SHRIMP Zircon U-Pb Geochronology and Geochemical Characteristics. Acta Geologica Sinica, 89(7): 1180-1194(in Chinese with English abstract).
      Qin, C., 2018. Preliminary Study of Mineralization Potentiality of Shiziling Muscovite Granite, Jiangxi Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Qin, K. Z., Shen, M. D., Tang, D. M., et al., 2013. Types, Intrusive and Mineralization Ages of Pegmatite Rare-Element Deposits in Chinese Altay. Xinjiang Geology, 31(Suppl. 1): 1-7(in Chinese with English abstract).
      Qin, K. Z., Zhao, J. X., He, C. T., et al., 2021b. Discovery of the Qongjiagang Giant Lithium Pegmatite Deposit in Himalaya, Tibet, China. Acta Petrologica Sinica, 37(11): 3277-3286 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.02
      Qin, K. Z., Zhou, Q. F., Tang, D. M., et al., 2019. Types, Internal Structural Patterns, Mineralization and Prospects of Rare Element Pegmatites in East Qinling Mountain in Comparison with Features of Chinese Altay. Mineral Deposits, 38(5): 970-982 (in Chinese with English abstract).
      Qin, K. Z., Zhou, Q. F., Tang, D. M., et al., 2021a. The Emplacement Mechanism, Melt Fluid Evolution, Rare Element Metallogenesis and Puzzles of the Koktokay No. 3 Pegmatite Rare Elemental Deposit, Altai. Acta Geologica Sinica, 95(10): 3039-3053 (in Chinese with English abstract).
      Ren, B. Q., Zhang, H., Tang, Y., et al., 2011. LA-ICPMS U-Pb Zircon Geochronology of the Altai Pegmatites and Its Geological Significance. Acta Mineralogica Sinica, 31(3): 587-596(in Chinese with English abstract).
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam, 1-64. https://doi.org/10.1016/b0-08-043751-6/03016-4
      Rui, Z, Y., 1962. Petrological Characteristics of the Small Scale of Intrusives around in Gui-Chen-Yi Area of Southern Hunan Province. Journal of Chengdu College of Geology, 2: 11-32 (in Chinese).
      Selway, J. B., Breaks, F. W., Tindle, A. G., 2005. A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits. Exploration and Mining Geology, 14(1-4): 1-30. https://doi.org/10.2113/gsemg.14.1-4.1
      Shearer, C. K., Papike, J. J., Jolliff, B. L., 1992. Petrogenetic Links among Granites and Pegmatites in the Harney Peak Rare-Element Granite-Pegmatite System, Black Hills, South Dakota. The Canadian Mineralogist, 30(3): 785-809.
      Shen, P., Pan, H. D., Li, C. H., et al., 2022. Newly-Recognized Triassic Highly Fractionated Leucogranite in the Koktokay Deposit (Altai, China): Rare-Metal Fertility and Connection with the No. 3 Pegmatite. Gondwana Research, 112: 24-51. https://doi.org/10.1016/j.gr.2022.09.007
      Simmons, W., Falster, A., Webbe, K., 2016. Bulk Composition of Mt. Mica Pegmatite, Maine, USA.
      Simon, L., Lécuyer, C., 2005. Continental Recycling: The Oxygen Isotope Point of View. Geochemistry, Geophysics, Geosystems, 6(8): 1-10. https://doi.org/10.1029/2005gc000958
      Simons, B., Andersen, J. C. Ø., Shail, R. K., et al., 2017. Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the Peraluminous Early Permian Variscan Granites of the Cornubian Batholith: Precursor Processes to Magmatic-Hydrothermal Mineralisation. Lithos, 278: 491-512. https://doi.org/10.1016/j.lithos.2017.02.007
      Song, G. S., Xu, F., Wang, M. Z., et al., 2015. Occurrence State of Ziyugou Pegmatite Rubidium Mine in Danfeng Area, Shaanxi Province. Modern Mining, 31(10): 106-109 (in Chinese with English abstract).
      Song, S. G., Niu, Y. L., Wei, C. J., et al., 2010. Metamorphism, Anatexis, Zircon Ages and Tectonic Evolution of the Gongshan Block in the Northern Indochina Continent—An Eastern Extension of the Lhasa Block. Lithos, 120(3-4): 327-346. https://doi.org/10.1016/j.lithos.2010.08.021.
      Stewart, D. B., 1978. Petrogenesis of Lithium-Rich Pegmatites. American Mineralogist, 63(9-10): 970-980.
      Sun, K. K., Chen, B., Chen, J. S., et al., 2017. The Petrogenesis of the Jiuling Granodiorite from the Dahutang Deposit, Jiangxi Province and Its Tectonic Implications. Acta Petrologica Sinica, 33(3): 907-924(in Chinese with English abstract).
      Suzuki, K., Adachi, M., Kajizuka, I., 1994. Electron Microprobe Observations of Pb Diffusion in Metamorphosed Detrital Monazites. Earth and Planetary Science Letters, 128(3-4): 391-405. https://doi.org/10.1016/0012-821x(94)90158-9
      Szymanowski, D., Wotzlaw, J. F., Ellis, B. S., et al., 2017. Protracted Near-Solidus Storage and Pre-Eruptive Rejuvenation of Large Magma Reservoirs. Nature Geoscience, 10(10): 777-782. https://doi.org/10.1038/ngeo3020
      Tan, K. B., Guo, Q. M., Guo, Y. M., 2021. Age and Tectonic Significance of Granite in 509 Banxi Lithium Beryllium Polymetallic Deposit in Hetian, Xinjiang. Xinjiang Nonferrous Metals, 44(2): 6-10 (in Chinese with English abstract).
      Tang, J. L., Ke, Q., Xu, X. W., et al., 2022. Magma Evolution and Mineralization of Longmenshan Lithium-Beryllium Pegmatite in Dahongliutan Area, West Kunlun. Acta Petrologica Sinica, 38(3): 655-675(in Chinese with English abstract). doi: 10.18654/1000-0569/2022.03.05
      Tang, Y., Wang, D. B., Liao, S. Y., et al., 2016. Geochronological Characterization and Regional Tectonic Implication of the Leucogranites in the Southern Segment of Gaoligong Metamorphic Zone, Western Yunnan. Acta Petrologica Sinica, 32(8): 2347-2366(in Chinese with English abstract).
      Tang, Y., Zhao, J. Y., Zhang, H., et al., 2017. Precise Columbite-(Fe) and Zircon U-Pb Dating of the Nanping No. 31 Pegmatite Vein in Northeastern Cathaysia Block, SE China. Ore Geology Reviews, 83: 300-311. https://doi.org/10.1016/j.oregeorev.2016.10.040
      Tao, Y., Deng, X, Z., Xiong, F., 2015a. U-Pb Age of Zircon Pegmatite from Huanglonggou, Longling. Acta Mineralogica Sinica, 35(Suppl. 1): 344-345 (in Chinese with English abstract).
      Tao, Y., Xiong, F., Deng, X, Z., 2015b. Geochemical Characteristics of Danzhu Pegmatite in Gongshan, Western Yunnan. Acta Mineralogica Sinica, 35(Suppl. 1): 342-343 (in Chinese with English abstract).
      Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006. Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota. American Mineralogist, 91(10): 1488-1498. https://doi.org/10.2138/am.2006.2083
      Tomascak, P. B., Carlson, R. W., Shirey, S. B., 1999. Accurate and Precise Determination of Li Isotopic Compositions by Multi-Collector Sector ICP-MS. Chemical Geology, 158(1-2): 145-154. https://doi.org/10.1016/S0009-2541(99)00022-4
      Tuttle, O. F., Bowen, N. L., 1958. Origin of Granite in the Light of Experimental Studies in the System NaAl-Si3O8-KALSi3O8-SiO2-H2O. Memoir of Geological Society of America, 74. https://doi.org/10.1130/mem74-p1
      Vervoort, J. D., Jonathan Patchett, P., 1996. Behavior of Hafnium and Neodymium Isotopes in the Crust: Constraints from Precambrian Crustally Derived Granites. Geochimica et Cosmochimica Acta, 60(19): 3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3
      Vielzeuf, D., Schimidt, M, W., 2001. Melting Relations in Hydrous Systems Revisited: Application to Metapelites, Metagreywackes and Metabasalts. Contributions to Mineralogy and Petrology, 141(3): 251-267. https://doi.org/10.1007/s004100100237
      Villaros, A., Buick, I. S., Stevens, G., 2012. Isotopic Variations in S-Type Granites: An Inheritance from a Heterogeneous Source? Contributions to Mineralogy and Petrology, 163(2): 243-257. https://doi.org/10.1007/s00410-011-0673-9
      Villaros, A., Pichavant, M., 2019. Mica-Liquid Trace Elements Partitioning and the Granite-Pegmatite Connection: The St-Sylvestre Complex (Western French Massif Central). Chemical Geology, 52: 119265. https://doi.org/10.1016/j.chemgeo.2019.07.040
      Wang, C. L., Qin, K. Z., Tang, D. M., et al., 2015. Geochronology and Hf Isotope of Zircon for the Arskartor Be-Nb-Mo Deposit in Altay and Its Geological Implications. Acta Petrologica Sinica, 31(8): 2337-2352(in Chinese with English abstract).
      Wang, D., Wang, X. L., Cai, Y., et al., 2017a. Heterogeneous Conservation of Zircon Xenocrysts in Late Jurassic Granitic Intrusions within the Neoproterozoic Jiuling Batholith, South China: A Magma Chamber Growth Model in Deep Crustal Hot Zones. Journal of Petrology, 58(9): 1781-1810. https://doi.org/10.1093/petrology/egx074
      Wang, R. C., Wu, F. Y., Xie, L., et al., 2017b. A Preliminary Study of Rare-Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet. Science China Earth Sciences, 60(9): 1655-1663. https://doi.org/10.1007/s11430-017-9075-8
      Wang, D, H., Wang, C, H., Sun, Y., et al., 2017. New Progresses and Discussion on the Survey and Research of Li, Be, Ta Ore Deposits in China. Goelogical Survey of China, 4(5): 1-8 (in Chinese with English abstract).
      Wang, H., Gao, H., Wang, S, M., et al., 2022. Zircon and Columbite-Tantalite U-Pb Geochronology and Hf Isotope Compositions of Li-Be Rare Metal Pegmatite and It's Geological Significance in Muji Area, Weste Kunlun, China. Acta Petrologica Sinica, 38(7): 1937-1951 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.07.08
      Wang, H., Li, P., Ma, H. D., et al., 2017. Discovery of the Bailongshan Superlarge Lithium-Rubidium Deposit in Karakorum, Hetian, Xinjiang, and Its Prospecting Implication. Geotectonica et Metallogenia, 41(6): 1053-1062(in Chinese with English abstract).
      Wang, H., Ma, H. D., Zhang, S., et al., 2023. Discovery of the Huanglongling Giant Lithium Pegmatite Deposit in Altyn Tagh, Xinjiang, China. Acta Petrologica Sinica, 39(11): 3307-3318 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.11.06
      Wang, H., Xu, Y. G., Yan, Q. H., et al., 2021. Research Progress on Bailongshan Pegmatite Type Lithium Deposit, Xinjiang. Acta Geologica Sinica, 95(10): 3085-3098. https://doi.org/10.19762/j.cnki.dizhixuebao.2021083
      Wang, H., Yang, Y. H., Yang, J. H., 2022. A Review of Progress in Microbeam Lu-Hf Isotopic Analysis on Minerals. Rock and Mineral Analysis, 41(6): 881-905 (in Chinese with English abstract).
      Wang, J. B., Hou, X. H., Li, W. H., et al., 2020. Metallogenic Characteristics and Metallogenic Model of the Pegmatite Type Uranium Deposit in Danfeng Area, Eastern Qinling Mountains. Earth Science, 45(1): 61-71(in Chinese with English abstract).
      Wang, J. B., Li, W. H., Zhang, L., 2015. The Geological Characteristics of Pegmatite on the North Side of the Shangdan Zone in the East Qinling and Their Relationship with Uranium Mineralization. Geological Review, 61(Suppl. 1): 542-543 (in Chinese with English abstract).
      Wang, J, B., Qin, J, F., Hu, P., et al., 2018. Zircon U-Pb Ages and Geochemical Characteristics of the Two-Stage Granitic Magamtism from the Kuanping Pluton in the Northern Qinling Mountains: Petrogenesis and Tectonic Implication. Geological Review, 64(1): 127-140(in Chinese with English abstract).
      Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014a. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206: 147-163. https://doi.org/10.1016/j.lithos.2014.07.026
      Wang, T., Hong, D. W., Jahn, B. M., et al., 2006. Timing, Petrogenesis, and Setting of Paleozoic Synorogenic Intrusions from the Altai Mountains, Northwest China: Implications for the Tectonic Evolution of an Accretionary Orogen. The Journal of Geology, 114(6): 735-751. https://doi.org/10.1086/507617
      Wang, T., Jahn, B. M., Kovach, V. P., et al., 2014b. Mesozoic Intraplate Granitic Magmatism in the Altai Accretionary Orogen, NW China: Implications for the Orogenic Architecture and Crustal Growth. American Journal of Science, 314(1): 1-42. https://doi.org/10.2475/01.2014.01
      Wang, T., Tong, Y., Guo, L., et al., 2020. Geological Survey and Mapping Methods of Intrusive Rocks. Geological Publishing House, Beijing(in Chinese).
      Wang, T., Tong, Y., Jahn, B. M., et al., 2007. SHRIMP U-Pb Zircon Geochronology of the Altai No. 3 Pegmatite, NW China, and Its Implications for the Origin and Tectonic Setting of the Pegmatite. Ore Geology Reviews, 32(1-2): 325-336. https://doi.org/10.1016/j.oregeorev.2006.10.001
      Wang, T., Wang, X, X., Tian, W., et al., 2009. North Qinling Paleozoic Granite Association and Their Variation in Space and Time: Implications for Orogenic Processes in the Orogens of Central China. Science in China (Series D), 39(7): 1359-1381 (in Chinese).
      Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2014c. Geochemical Zonation across a Neoproterozoic Orogenic Belt: Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China. Precambrian Research, 242: 154-171. https://doi.org/10.1016/j.precamres.2013.12.023
      Wang, X. L., Zhou, J. C., Wan, Y. S., et al., 2013. Magmatic Evolution and Crustal Recycling for Neoproterozoic Strongly Peraluminous Granitoids from Southern China: Hf and O Isotopes in Zircon. Earth and Planetary Science Letters, 366: 71-82. https://doi.org/10.1016/j.epsl.2013.02.011
      Wang, Y., 2008. Some Further Discussions on the Genetic Type of the Early Yanshanian (Jurassic) Granitoids in the Nanling Area, SE China. Geological Review, 54(2): 162-174 (in Chinese with English abstract).
      Wang, Z., Chen, B., Ma, X., 2014. Petrogenesis of the Late Mesozoic Guposhan Composite Plutons from the Nanling Range, South China: Implications for W-Sn Mineralization. American Journal of Science, 314(1): 235-277. https://doi.org/10.2475/01.2014.07
      Wang, Z, G., Zhao, Z, H., Zou, T, R., et al., 1998. Geochemistry of Altay Granitoids. Science Press, Beijing (in Chinese).
      Webber, K. L., Simmons, W. B., Falster, A. U., et al., 2019. Anatectic Pegmatites of the Oxford County Pegmatite Field, Maine, USA. The Canadian Mineralogist, 57(5): 811-815. https://doi.org/10.3749/canmin.ab00028
      Webster, J. D., Thomas, R., Rhede, D., et al., 1997. Melt Inclusions in Quartz from an Evolved Peraluminous Pegmatite: Geochemical Evidence for Strong Tin Enrichment in Fluorine-Rich and Phosphorus-Rich Residual Liquids. Geochimica et Cosmochimica Acta, 61(13): 2589-2604. https://doi.org/10.1016/S0016-7037(97)00123-3
      Wei, W. F., Shen, N. P., Yan, B., et al., 2018. Petrogenesis of Ore-Forming Granites with Implications for W-Mineralization in the Super-Large Shimensi Tungsten-Dominated Polymetallic Deposit in Northern Jiangxi Province, South China. Ore Geology Reviews, 95: 1123-1139. https://doi.org/10.1016/j.oregeorev.2017.12.022
      Wei, X. P., Wang, H., Hu, J., et al., 2017. Geochemistry and Geochronology of the Dahongliutan Two-Mica Granite Pluton in Western Kunlun Orogen: Geotectonic Implications. Geochimica, 46(1): 66-80(in Chinese with English abstract).
      Wei, X. P., Wang, H., Zhang, X. Y., et al., 2018. Petrogenesis of Triassic High-Mg Diorites in Western Kunlun Orogen and Its Tectonic Implication. Geochimica, 47(4): 363-379(in Chinese with English abstract).
      Wen, C. H., Luo, X. Y., Chen, J. F., et al., 2019. Relationship between Yanshanian Magmatic Activity and Rare Metal Mineralization in Mufushan Area of Northeast Hunan. Geological Survey of China, 6(6): 19-28(in Chinese with English abstract). .
      Wise, M. A., Müller, A., Simmons, W. B., 2022. A Proposed New Mineralogical Classification System for Granitic Pegmatites. The Canadian Mineralogist, 60(2): 229-248. https://doi.org/10.3749/canmin.1800006
      Wu, B, Q., Zou, T, R., 1989. Discuss on the Genesis of Altai Pegmatite. Geology and Mineral Meposit of Xinjiang, 1: 60-70 (in Chinese with English abstract).
      Wu, F. Y., Guo, C. L., Hu, F. Y., et al., 2023. Petrogenesis of the Highly Fractionated Granites and Their Mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39(1): 1-36(in Chinese with English abstract). doi: 10.18654/1000-0569/2023.01.01
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science in China (Ser. D), 47(7): 745-765 (in Chinese).
      Wu, X. M., Zhou, M. J., Luo, X. C., et al., 2016. The Metallogenic Conditions and Prospecting Potential of Lithium and Rare Metals in Northwestern Jiangxi. East China Geology, 37(4): 275-283 (in Chinese with English abstract).
      Wunder, B., Meixner, A., Romer, R. L., et al., 2007. Lithium Isotope Fractionation between Li-Bearing Staurolite, Li-Mica and Aqueous Fluids: An Experimental Study. Chemical Geology, 238(3/4): 277-290. https://doi.org/10.1016/j.chemgeo.2006.12.001
      Wunder, B., Meixner, A., Romer, R. L., et al., 2011. Li-Isotope Fractionation between Silicates and Fluids: Pressure Dependence and Influence of the Bonding Environment. European Journal of Mineralogy, 23(3): 333-342. https://doi.org/10.1127/0935-1221/2011/0023-2095
      Xia, X. B., Li, G. M., Zhang, L. K., et al., 2022. Geological Characteristics of and Prospecting Strategy for the Xianglin Be-Sn Polymetallic Ore Deposit in the Cuonadong Gneiss Dome in Southern Tibet. Earth Science Frontiers, 29(1): 93-10(in Chinese with English abstract).
      Xia, Y. Q., Tuo, M. J., Li, N., et al., 2024. Geochemical Characteristics and Geological Significance of Biotite in Granite of Dahongliutan Area in the West Kunlun Orogen. Chinese Journal of Geology, 59(2): 404-419 (in Chinese with English abstract).
      Xie, L., Liu, Y., Wang, R. C., et al., 2019. Li-Nb-Ta Mineralization in the Jurassic Yifeng Granite-Aplite Intrusion within the Neoproterozoic Jiuling Batholith, South China: A Fluid-Rich and Quenching Ore-Forming Process. Journal of Asian Earth Sciences, 185: 104047. https://doi.org/10.1016/j.jseaes.2019.10404
      Xie, L., Tao, X. Y., Wang, R. C., et al., 2020. Highly Fractionated Leucogranites in the Eastern Himalayan Cuonadong Dome and Related Magmatic Be-Nb-Ta and Hydrothermal Be-W-Sn Mineralization. Lithos, 354: 105286. https://doi.org/10.1016/j.lithos.2019.105286
      Xiong, Y. Q., Jiang, S. Y., Wen, C. H., et al., 2020. Granite-Pegmatite Connection and Mineralization Age of the Giant Renli Ta-Nb Deposit in South China: Constraints from U-Th-Pb Geochronology of Coltan, Monazite, and Zircon. Lithos, 358: 105422. https://doi.org/10.1016/j.lithos.2020.105422
      Xu, C., Li, J. K., Shi, G. H., et al., 2019. Zircon U-Pb Age and Hf Isotopic Composition of Porphyaceous Biotite Granite in South Margin of Mufushan and Their Geological Implications. Mineral Deposits, 38(5): 1053-1068(in Chinese with English abstract).
      Xu, H., Li, X. F., Dou, S., et al., 2023. Petrogenesis and Tectonic Setting of the Lüyintang Granite Pegmatites in Changning County, Westren Yunnan: Constraints from Geochemistry, Zircon U-Pb Age and Hf Isotopes. Geotectonica et Metallogenia, 47(4): 839-855 (in Chinese with English abstract).
      Xu, X. W., Hong, T., Li, H., et al., 2020. Concept of High-Temperature Granite-Pegmatite Li-Be Metallogenic System with a Primary Study in the Middle Altyn-Tagh. Acta Petrologica Sinica, 36(12): 3572-3592 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.02
      Xu, X. W., Hong, T., Zhang, P., et al., 2024. Metallogeny and Resource Potential of Lithium-Beryllium Granites and Pegmatites in the Altyn Tagh. Acta Petrologica Sinica, 40(9): 2679-2702(in Chinese with English abstract). doi: 10.18654/1000-0569/2024.09.06
      Xu, X. W., Li, H., Shi, F. P., et al., 2019. Metallogenic Characteristics and Prospecting of Granitic Pegmatite-Type Rare Metal Deposits in the Tugeman Area, Middle Part of Altyn Tagh. Acta Petrologica Sinica, 35(11): 3303-3316(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.03
      Xu, Y. G., Yang, Q. J., Lan, J. B., et al., 2012. Temporal-Spatial Distribution and Tectonic Implications of the Batholiths in the Gaoligong-Tengliang-Yingjiang Area, Western Yunnan: Constraints from Zircon U-Pb Ages and Hf Isotopes. Journal of Asian Earth Sciences, 53: 151-175. https://doi.org/10.1016/j.jseaes.2011.06.018
      Xu, Z., Zhang, F, S., Zhang, F, R., et al., 2024. U-Pb Dating of Monazite from the Beryllium Mineralized Pegmatite and Its Geological Significance in the Guyangzhai Area at the Southern Margin of Jiuling, Jiangxi. Journal of East China University of Technology (Natural Science), 47(1): 13-21 (in Chinese with English abstract).
      Xu, Z. Q., Zhu, W. B., Zheng, B. H., et al., 2023. New Ore-Controlling Theory of "Multilayered Domal Granitic Sheets" of the Jiajika Pegmatite-Type Lithium Deposit: The Major Discoveries of the "Jiajika Pegmatite-Type Lithium Deposit Scientific Drilling Project (JSD)". Acta Geologica Sinica, 97(10): 3133-3146 (in Chinese with English abstract).
      Yan, J. W., Liu, F., Shen, Y., et al., 2020. Constraints on Timing of Magmatic Activity and Formation of Pegmatite in the Koktokay Pegmatite Field, Xinjiang. Acta Geoscientica Sinica, 41(5): 663-674 (in Chinese with English abstract).
      Yan, Q. H., Chen, C., Ming, T. X., et al., 2024. Discovery of the Peili Pegmatitic Lithium Deposit in Gaoligong Area, Western Yunnan Province and Its Implication. Acta Petrologica Sinica, 40(2): 539-552(in Chinese with English abstract). doi: 10.18654/1000-0569/2024.02.10
      Yan, Q. H., Wang, H., Chi, G. X., et al., 2022. Recognition of a 600-km-Long Late Triassic Rare-Metal (Li-Rb-Be-Nb-Ta) Pegmatite Belt in the Western Kunlun Orogenic Belt, Western China. Economic Geology, 117(1): 213-236. https://doi.org/10.5382/econgeo.4858
      Yang, F. Q., Zhang, Z. L., Wang, R., et al., 2018. Geological Characteristics and Metallogenesis of Rare Metal Deposits in Altay, Xinjiang. Geotectonia et Metallogenia, 42(6): 1010-1026 (in Chinese with English abstract).
      Yang, J. H., Kang, L. F., Peng, J. T., et al., 2018. In-Situ Elemental and Isotopic Compositions of Apatite and Zircon from the Shuikoushan and Xihuashan Granitic Plutons: Implication for Jurassic Granitoid-Related Cu-Pb-Zn and W Mineralization in the Nanling Range, South China. Ore Geology Reviews, 93: 382-403. https://doi.org/10.1016/j.oregeorev.2017.12.023
      Yang, P., Rivers, T., 2000. Trace Element Partitioning between Coexisting Biotite and Muscovite from Metamorphic Rocks, Western Labrador: Structural, Compositional and Thermal Controls. Geochimica et Cosmochimica Acta, 64(8): 1451-1472. https://doi.org/10.1016/S0016-7037(99)00425-1
      Yang, W. B., 2012. Magmatic-Hydrothermal Evolution of Alkaline Granite and Rare Metal Mineralization: A Case Study of Balci Deposit in Inner Mongolia (Dissertation). University of Chinese Academy of Sciences, Beijing(in Chinese with English abstract).
      Yang, Y. H., Wu, S. T., Che, X. D., et al., 2024. In-Situ Isotopic Dating and Tracing of the Rare-Metal Minerals in Ore Deposit. Acta Petrologica Sinica, 40(4): 1023-1043(in Chinese with English abstract). . doi: 10.18654/1000-0569/2024.04.01
      Yang, Y. Q., Wang, D. H., Liu, S. B., et al., 2020. The Co-Occurrence Mechanism of Two Types of Spodumene Ore Bodies and Their Prospecting Significance in Jiajikan, Sichuan Province. Acta Geologica Sinica, 94(1): 287-302(in Chinese with English abstract).
      Yang, Z. L., Qiu, J. S., Xing, G. F., et al., 2014. Petrogenesis and Magmatic Evolution of the Yashan Granite Pluton in Yichun, Jiangxi Province, and Their Constraints on Mineralization. Acta Geologica Sinica, 88(5): 850-868(in Chinese with English abstract).
      Yu, Y., Li, Z. F., Bai, L. A., et al., 2022. Metallogenic Regularity and Prospecting Direction of Pegmatitic Rare-Mental Deposits in Western Yunnan. Acta Petrologica Sinica, 38(7): 2052-2066(in Chinese with English abstract). doi: 10.18654/1000-0569/2022.07.14
      Yuan, F., Jiang, S. Y., Liu, J. J., et al., 2020. Origin and Evolution of Uraniferous Pegmatite: A Case Study from the Xiaohuacha Granite-Pegmatite System and Related Country Rocks in the Shangdan Uranium Mineralization District of North Qinling Orogenic Belt, China. Lithos, 356: 105379. https://doi.org/10.1016/j.lithos.2020.105379
      Yuan, F. Liu, J. J., Lü, G. X., et al., 2017. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Granites and Pegmatites from the Guangshigou Uranium Deposit in the Northern Qinling Orogen, China. Earth Science Frontiers, 24(6): 25-45(in Chinese with English abstract).
      Yuan, K. R., Zou, J. F., 1992. Extending Progress in the Prediction of Hidden Granites and the Exploration of Deep Ore Deposits and It's Prospect. Journal of Guilin University of Technology, 12(3): 227-234(in Chinese with English abstract).
      Zagorsky, V. Y., Vladimirov, A. G., Makagon, V. M., et al., 2014. Large Fields of Spodumene Pegmatites in the Settings of Rifting and Postcollisional Shear-Pull-Apart Dislocations of Continental Lithosphere. Russian Geology and Geophysics, 55(2): 237-251. https://doi.org/10.1016/j.rgg.2014.01.008
      Zeng, R. L., Zhang, J. R., He, L., et al., 2023. Chronology and Genesis of the Tong'an Granitic Aplite in Yifeng, Jiangxi Province. Acta Geologica Sinica, 97(11): 3750-3765(in Chinese with English abstract).
      Zeng, W., Zhou, H. Y., Sun, F. Y., et al., 2021. Cassiterite U-Pb Age of Rare Metal Pegmatites in Guanpo Area, North Qinling, China. Geological Bulletin of China, 40(12): 2179-2182(in Chinese with English abstract).
      Zhang, C. L., Liu, L., Wang, T., et al., 2013. Granitic Magmatism Related to Early Paleozoic Continental Collision in North Qinling. Chinese Science Bulletin, 58(23): 2323-2329(in Chinese). doi: 10.1360/csb2013-58-23-2323
      Zhang, F. S., Xu, J., Zhang, J., et al., 2020. Geochemical Characteristics, Zircon U-Pb Age and Geological Significance of New Proterozoic Granites in Jiuling Area, Jiangxi Province. Journal of East China University of Technology (Natural Science), 43(1): 12-20(in Chinese with English abstract).
      Zhang, H., He, P., Lu, X. Z., et al., 2022. Discovery and Significance of Rare and Rare Earth Metal Deposits in the South of Washixia, Northern Margin of Altun. Modern Mining, 38(1): 34-36, 87(in Chinese with English abstract).
      Zhang, H., Li, G. S., 2024. Metallogenic Mechanism of the Koktokay Pegmatite-Type Rare-Metal Deposit, Northwest China. Acta Petrologica Sinica, 40(9): 2769-2785(in Chinese with English abstract). doi: 10.18654/1000-0569/2024.09.10
      Zhang, H., Liu, H., 2013. The Pegmatite Vein No. 3 in Keketuohai, Xinjiang is the Product of the Late Magma Evolution of Aral Granite? Acta Mineralogica Sinica, 33(Suppl. 2): 279(in Chinese with English abstract).
      Zhang, H., Lü, Z, H., Tang, Y., 2019. Metallogeny and Prospecting Model as Well as Prospecting Direction of Pegmatite-Type Rare Metal Ore Deposits in Altay Orogenic Belt, Xinjiang. Mineral Deposits, 38(4): 792-814(in Chinese with English abstract).
      Zhang, H. J., Tian, S. H., Wang, D. H., et al., 2022. Lithium Isotopic Constraints on the Petrogenesis of the Jiajika Two-Mica Granites and Associated Li Mineralization. Ore Geology Reviews, 150: 105174. https://doi.org/10.1016/j.oregeorev.2022.105174
      Zhang, L., Liang, L., 2018. Genesis of Pegmatite and Aplite: Rare Metal Granite Study of Limu in Guangxi. Journal of Guilin University of Technology, 38(2): 175-188(in Chinese with English abstract).
      Zhang, S., Liu, J. J., Yuan, F., et al., 2019. Zircon U-Pb Geochronology and Geochemistry of Granites and Pegmatites, and Metallogenesis of Related Uranium from the Chenjiazhuang Deposit, Shaanxi Province. Earth Science Frontiers, 26(5): 270-289(in Chinese with English abstract).
      Zhang, X., Wu, Y. B., Fu, B., et al., 2024. Refining Granite Generation by Interrogation of Zircon and Monazite U-Th-Pb and Hf/Nd-O Isotopes. Chemical Geology, 653: 122051. https://doi.org/10.1016/j.chemgeo.2024.122051
      Zhang, X., Zhang, H., Ma, Z. L., et al., 2016. A New Model for the Granite-Pegmatite Genetic Relationships in the Kaluan-Azubai-Qiongkuer Pegmatite-Related Ore Fields, the Chinese Altay. Journal of Asian Earth Sciences, 124: 139-155. https://doi.org/10.1016/j.jseaes.2016.04.020.
      Zhang, Y., Pan, J. Y., Ma, D. S., 2020. Lithium Element Enrichment and Inspiration for Prospecting for Rare-Metal Mineralization in the Dahutang Tungsten Deposit: Constraints from Mineralogy and Geochemistry of Hydrothermal Alteration. Acta Geologica Sinica, 94(11): 3321-3342(in Chinese with English abstract).
      Zhang, Y. F., Lin, X. W., Guo, Q. M., et al., 2015. LA-ICP-MS Zircon U-Pb Dating and Geochemistry of Aral Granitic Plutons in Koktokay Area in the Southern Altay Margin and Their Source Significace. Acta Geologica Sinica, 89(2): 339-354(in Chinese with English abstract).
      Zhang, Z., Liang, T., Feng, Y. G., et al., 2019. Geologicial Feature and Chronology Study of Kangxiwar Beryl-Bearing Muscovite Pegmatite in Weste Kunlun Orogen, Xinjiang. Northwestern Geology, 52(1): 75-88(in Chinese with English abstract).
      Zhang, Z. J., Zhang, X., Badal, J., 2008. Composition of the Crust beneath Southeastern China Derived from an Integrated Geophysical Data Set. Journal of Geophysical Research: Solid Earth, 113(B4). https://doi.org/10.1029/2006JB004503
      Zhang, Z. Y., Hou, Z. Q., Peng, H. M., et al., 2015. Exsolution of Primary Fluids from Magma in the Superlarge Dahutang Tungsten Deposit of Jiangxi Province: Records from the Pegmatoid Shell. Geological Bulletin of China, 34(S1): 487-500(in Chinese with English abstract).
      Zhao, H., Chen, B., Huang, C., et al., 2022. Geochemical and Sr-Nd-Li Isotopic Constraints on the Genesis of the Jiajika Li-Rich Pegmatites, Eastern Tibetan Plateau: Implications for Li Mineralization. Contributions to Mineralogy and Petrology, 177(1): 4. https://doi.org/10.1007/s00410-021-01869-3
      Zhao, J. X., He, C. T., Qin, K. Z., et al., 2021. Geochronology, Source Features and the Characteristics of Fractional Crystallization in Pegmatite at the Qongjiagang Giant Pegmatite-Type Lithium Deposit, Himalaya, Tibet. Acta Petrologica Sinica, 37(11): 3325-3347(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.06
      Zhao, R. Y., Li, W. H., Jiang, C. Y., et al., 2014. The LA-ICP-MS Zircon U-Pb Dating, Petro-Geochemical Characteristics of Huanglongmiao Monzogranite in Danfeng Area in Eastern Qinling MTS. and Their Geological Significance. Geological Review, 60(5): 1123-1132(in Chinese with English abstract).
      Zhao, Z. H., 1988a. Preliminary Report on the Discovery of Quadruple Distribution Effect of Rare Earth Elements in Granite. Geology Geochemistry, 16(1): 71-72(in Chinese).
      Zhao, Z, H., 1988b. REE Tetrad Effects: An Important Geochemical Index for Fluit/Rock(Melt) Interaction. Symposium Abstract of Chinese Society for Mineralogy, Petrology and Geochemistry. Scientific and Technical Literature Press of China, Chongqing, 47-49(in Chinese).
      Zhao, Z. H., 2016. Geochemical Principles of Trace Elements(2nd ed. ). Science Press, Beijing(in Chinese).
      Zhao, Z. H., Bao, Z. W., Zhang, B. Y., 1998. Geochemical Characteristics of Mesozoic Basalts in Southern Hunan. Science in China (Series D), 28(Suppl. 2): 7-14(in Chinese).
      Zhao, Z. H., Bao, Z. W., Zhang, B. Y., et al., 2000. The Crust-Mantle Interaction Background of Shizhuyuan Super-Large Tungsten Polymetallic Deposit. Science in China (Series D), 30(Suppl. 1): 161-168(in Chinese).
      Zhao, Z. H., Chen, H. Y., Han, J. S., 2022. Rare Metal Mineralization of the Mesozoic Pegmatite in Altay Orogeny, Northern Xinjiang. Acta Scientiarum Naturalium Universitatis Sunyatseni, 61(1): 1-26(in Chinese with English abstract).
      Zhao, Z. H., Masuda, A., Shabani, M. B., 1993. REE Tetrad Effects in Rare-Metal Granites. Chinese Journal of Geochemistry, 12(3): 206-219. https://doi.org/10.1007/bf02843360 (in Chinese).
      Zhao, Z. H., Xiong, X. L., Han, X. D., et al., 2002. Controls on the REE Tetrad Effect in Granites: Evidence from the Qianlishan and Baerzhe Granites, China. Geochemical Journal, 36(6): 527-543. https://doi.org/10.2343/geochemj.36.527
      Zhao, Z. H., Yan, S., 2023. Some Issues Relevant to Rare Metal Metallogeny of Granitic Pegmatites. Geotectonica et Metallogenia, 47(1): 1-41(in Chinese with English abstract).
      Zhao, Z. H., Zeng, T., Zeng, T., 1992. Tetrad Effects of Rare-Earth Elements in Rare-Metal Granites. Geochimica, 21(3): 221-233(in Chinese with English abstract).
      Zhou, F. C., Li, J. K., Liu, X., et al., 2019. Geochemical Characteristics and Genetic Significance of Ore Bodies in Renli Nb-Ta Deposit, Hunan Province. Acta Geologica Sinica, 93(6): 1392-1404(in Chinese with English abstract).
      Zhou, J. T., Wang, G. B., He, S. F., et al., 2011. Diagenesis and Mineralization of Ganfang Rock in Yifeng, Jiangxi Province. Journal of East China Institute of Technology (Natural Science), 34(4): 345-351, 358(in Chinese with English abstract).
      Zhou, Q, F., Qin, K, Z., Tang, D, M., et al., 2015. Formation Age and Evolution Time Span of the Koktokay No. 3 Pegmatite, Altay, NW China: Evidence from U-Pb Zircon and 40Ar-39Ar Muscovite Ages. Resource Geology, 65(3): 210-231. doi: 10.1111/rge.12067
      Zhou, Q. F., Qin, K. Z., Liu, Y. C., et al., 2024. Cassiterite of the Kuqu Spodumene-Bearing Pegmatites in the Eastern Himalaya, Tibet, and Its Implication. Acta Petrologica Sinica, 40(2): 433-449(in Chinese with English abstract). doi: 10.18654/1000-0569/2024.02.04
      Zhou, Q. F., Qin, K. Z., Tang, D. M., 2021. Mineralogy of Columbite-Group Minerals from the Rare-Element Pegmatite Dykes in the East-Qinling Orogen, Central China: Implications for Formation Times and Ore Genesis. Journal of Asian Earth Sciences, 218: 104879. https://doi.org/10.1016/j.jseaes.2021.104879.
      Zhou, Q. F., Qin, K. Z., Tang, D. M., et al., 2021. The Features of Geology and Rare-Elemental Enrichmentof the East Qinling Pegmatite District. Acta Geologica Sinica, 95(10): 3115-3126(in Chinese with English abstract).
      Zhou, X., Zhou, Y., Sun, B. W., et al., 2021. Cassiterite U-Pb Dating of No. 134 Pegmatite Vein in the Jiajika Rare Metal Deposit, Western Sichuan and Its Geological Significances. Rock and Mineral Analysis, 40(1): 156-164(in Chinese with English abstract).
      Zhou, X. H., Zhang, Y. J., Liao, S. B., et al., 2012. LA-ICP-MS Zircon U-Pb Geochronology of Volcanic Rocks in the Shuangqiaoshan Group at Anhui-Jiangxi Boundary Region and Its Geological Implication. Geological Journal of China Universities, 18(4): 609-622(in Chinese with English abstract).
      Zhu, J. C., Li, R. K., Zhou, F. Y., et al., 1996. Genesis of Asymmetrically Layered Pegmatiteaplite Dykes of Shuiximiao Mine, Limu District, Guangxi. Geochimica, 25(1): 1-9(in Chinese with English abstract).
      Zhu, J. C., Wu, C. N., Liu, C. S., et al., 2000. Magmatic-Hydrothermal Evolution and Genesis of Koktokay No. 3 Rare Metal Pegmatite Dyke, Altai, China. Geological Journal of China Universities, 6(1): 40-52(in Chinese with English abstract).
      Zhu, Y. F., Zeng, Y. S., 2002. Rb-Sr Isochron Age of Keketuohai No. 3 Pegmatite. Mineral Deposits, 21(Suppl. 1): 1110-1111 (in Chinese with English abstract).
      Zhu, Z. Y., Wang, R. C., Che, X. D., et al., 2015. Magmatic-Hydrothermal Rare-Element Mineralization in the Songshugang Granite (Northeastern Jiangxi, China): Insights from an Electron-Microprobe Study of Nb-Ta-Zr Minerals. Ore Geology Reviews, 65: 749-760. https://doi.org/10.1016/j.oregeorev.2014.07.021
      Zou, G. F., Mao, Y., Lin, S. L., et al., 2013a. Zircon U-Pb Age and Geochemistry of Mengyang Intrusion and Its Tectonic Implications in the Lianghe, Western Yunnan. Journal of Mineralogy and Petrology, 33(1): 87-99(in Chinese with English abstract).
      Zou, G. F., Mao, Y., Zou, X., et al., 2013b. Zircon U-Pb Age and Geochemistry of Jiangdong Intrusion and Its Tectonic Implications in the Mangshi, Western Yunnan. Acta Geologica Sinica, 87(11): 1635-1646(in Chinese with English abstract).
      Zou, T. R., Li, Q. C., 2006. Rare and Rare Earth Metallic Deposits in Xinjiang, China. Geological Publishing House, Beijing(in Chinese).
      Zuo, W. Q., Sha, Y. Z., Chen, B., et al., 2010. U-Pb Istopic Dating of Zircon from Damaogou Granite Stock of Guangshigou Uranium Deposit in Danfeng Area and It's Significance. Uranium Geology, 26(4): 222-227(in Chinese with English abstract).
      柏万灵, 1994. 滇西高黎贡山地区宝石伟晶岩. 矿产与地质, 8(4): 282-286.
      曹华文, 2015. 滇西腾-梁锡矿带中-新生代岩浆岩演化与成矿关系研究. 北京: 中国地质大学(北京).
      陈斌, 马星华, 王志强, 等, 2011. 南岭地区千里山复式岩体中补体与主体成因联系及其成矿意义. 矿物学报, 31(增刊1): 9-11.
      陈剑锋, 张辉, 张锦煦, 等, 2018. 新疆可可托海3号伟晶岩脉锆石U-Pb定年、Hf同位素特征及地质意义. 中国有色金属学报, 28(9): 1832-1844.
      陈洁, 李建康, 2024. 伟晶岩锂同位素研究进展及其对锂成矿过程的指示. 地质学报, 98(5): 1600-1614.
      陈雷, 聂潇, 刘凯, 等, 2023. 东秦岭官坡地区火炎沟伟晶岩型锡铌钽矿床矿物学和年代学特征. 地学前缘, 30(5): 40-58.
      陈祥云, 吴俊华, 唐维新, 等, 2023. 赣西地区新探明巨量花岗岩型锂矿资源. 地球科学, 48(10): 3957-3960.
      陈有炘, 高峰, 裴先治, 等, 2017. 新疆阿尔泰地区辉腾花岗岩体年代学、地球化学特征及构造意义. 岩石学报, 33(10): 3076-3090.
      丛峰, 林仕良, 唐红峰, 等, 2010. 滇西梁河三叠纪花岗岩的锆石微量元素、U-Pb和Hf同位素组成. 地质学报, 84(8): 1155-1164.
      地矿部南岭项目花岗岩专题组, 1989. 南岭花岗岩地质及其成因和成矿作用. 北京: 地质出版社.
      丁建刚, 杨成栋, 杨富全, 等, 2020. 新疆阿尔泰别也萨麻斯稀有金属矿床含矿伟晶岩与花岗岩围岩成因关系. 地球科学与环境学报, 42(1): 71-85.
      丁坤, 梁婷, 周义, 等, 2020. 西昆仑大红柳滩黑云母二长花岗岩岩石成因: 来自锆石U-Pb年龄及Li-Hf同位素的证据. 西北地质, 53(1): 24-34.
      丁欣, 李建康, 丁建刚, 等, 2016. 新疆阿斯喀尔特Be-Nb-Mo矿床Re-Os同位素年龄及地质意义. 桂林理工大学学报, 36(1): 60-65.
      董美玲, 董国臣, 莫宣学, 等, 2013. 滇西保山地块中-新生代岩浆作用及其构造意义. 岩石学报, 29(11): 3901-3913.
      段政, 邢光福, 廖圣兵, 等, 2017. 江南造山带东段九岭新元古代复式花岗岩源区性质的差异: 来自地球化学及锆石Hf同位素的制约. 岩石学报, 33(11): 3610-3634.
      凤永刚, 梁婷, 岑炬标, 等, 2024. 东秦岭稀有金属伟晶岩成矿规律. 岩石学报, 40(9): 2703-2728.
      付小方, 黄韬, 郝雪峰, 等, 2023. 川西花岗细晶岩-伟晶岩型锂矿含矿性评价与示矿标志. 地学前缘, 30(5): 227-243.
      付小方, 梁斌, 邹付戈, 等, 2021. 川西甲基卡锂等稀有多金属矿田成矿地质特征与成因分析. 地质学报, 95(10): 3054-3068
      龚敏, 吴俊华, 季浩, 等, 2023. 赣西大港花岗岩型锂矿床锂赋存状态及成岩成矿年代学. 地球科学, 48(12): 4370-4386.
      苟树林, 于津海, 蔡元峰, 等, 2023. 江南造山带基底变质沉积岩中锂元素分布和富集机制及对锂成矿的制约. 地质学报, 97(11): 3696-3724.
      郭春丽, 张斌武, 郑义, 等, 2024. 中国花岗岩型锂矿床: 重要特征、成矿条件及形成机制. 岩石学报, 40(2): 347-403.
      郭伟康, 李光明, 付建刚, 等, 2023. 喜马拉雅成矿带嘎波伟晶岩型锂矿成矿时代、岩浆演化及成矿指示意义. 地学前缘, 30(5): 275-297.
      郝雪峰, 付小方, 梁斌, 等, 2015. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义. 矿床地质, 34(6): 1199-1208.
      何晗晗, 艾尔肯·吐尔孙, 王登红, 等, 2020. 新疆别也萨麻斯矿区钽锰矿的矿物学特征及其TIMS U-Pb定年. 岩矿测试, 39(4): 609-619.
      何小虎, 游亚元, 明添学, 等, 2024. 滇西晚白垩世-始新世花岗伟晶岩型稀有金属成矿事件: 来自铌钽铁矿、独居石、锆石U-Pb年代学的约束. 岩石学报, 40(2): 510-538.
      侯江龙, 李建康, 张玉洁, 等, 2018. 四川甲基卡锂矿床花岗岩体Li同位素组成及其对稀有金属成矿的制约. 地球科学, 43(6): 2042-2054. doi: 10.3799/dqkx.2018.595
      黄小强, 李鹏, 张立平, 等, 2021. 湖南仁里稀有金属矿田36号伟晶岩地球化学特征、成矿时代及其意义. 矿床地质, 40(6): 1248-1266.
      霍海龙, 张达, 吴淦国, 等, 2018. 赣东北景德镇双桥山群火山碎屑凝灰岩锆石U-Pb年龄及Hf同位素特征. 矿物岩石地球化学通报, 37(1): 103-110.
      姜鹏飞, 李鹏, 李建康, 等, 2021. 幕阜山东部麦埚铍矿床伟晶岩锆石U-Pb年龄、Hf同位素组成及其地质意义. 矿床地质, 40(4): 723-739.
      蒋少涌, 彭宁俊, 黄兰椿, 等, 2015. 赣北大湖塘矿集区超大型钨矿地质特征及成因探讨. 岩石学报, 31(3): 639-655.
      江小强, 2020. 江西黄山铌钽矿床成矿岩体地球化学特征及成因分析(硕士学位论文). 成都: 成都理工大学.
      孔会磊, 任广利, 李文渊, 等, 2023. 西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义. 西北地质, 56(2): 61-79.
      雷敏, 2010. 秦岭造山带东部花岗岩成因及其与造山带构造演化的关系. 北京: 中国地质科学院.
      李光明, 付建刚, 郭伟康, 等, 2022. 西藏喜马拉雅成矿带东段嘎波伟晶岩型锂矿的发现及其意义. 岩石矿物学杂志, 41(6): 1109-1119.
      李杭, 洪涛, 杨智全, 等, 2020. 稀有金属花岗伟晶岩锆石、锡石与铌钽铁矿U-Pb和白云母40Ar/39Ar测年对比研究: 以阿尔金中段吐格曼北锂铍矿床为例. 岩石学报, 36(9): 2869-2892.
      李杭, 洪涛, 杨智全, 等, 2022. 阿尔金中段吐格曼北花岗伟晶岩型锂铍矿床多阶段岩浆-成矿作用. 岩石学报, 38(10): 3085-3103.
      李宏伟, 赵正, 陈振宇, 等, 2021. 江西大湖塘矿田两期岩浆作用与钨成矿的关系: 来自锆石矿物地球化学的证据. 岩石学报, 37(5): 1508-1530.
      李侃, 高永宝, 滕家欣, 等. 2019. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向. 西北地质, 52(4): 206-221.
      李乐广, 王连训, 朱煜翔, 等, 2023. 华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程. 地球科学, 48(9): 3221-3244. doi: 10.3799/dqkx.2022.141
      李鹏, 李建康, 裴荣富, 等, 2017. 幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰: 年代学依据. 地球科学, 42(10): 1684-1696. doi: 10.3799/dqkx.2017.114
      李鹏, 周芳春, 李建康, 等, 2020. 湘东北仁里-传梓源铌钽矿床隐伏花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义. 大地构造与成矿学, 44(3): 486-500.
      李强, 杨富全, 杨成栋, 2019. 新疆阿尔泰大喀拉苏花岗岩年代学、地球化学特征及其构造意义. 地球科学与环境学报, 41(4): 396-413.
      李仁泽, 周正兵, 彭波, 等, 2020. 江西宜丰县大港超大型含锂瓷石矿床地质特征及成因机制探讨. 矿床地质, 39(6): 1015-1029.
      李三忠, 臧艺博, 王鹏程, 等, 2017. 华南中生代构造转换和古太平洋俯冲启动. 地学前缘, 24(4): 213-225.
      李伍平, 王涛, 王晓霞, 等, 2000. 北秦岭灰池子复式岩体单颗粒锆石年龄. 中国区域地质, 19(2): 172-174.
      李贤芳, 田世洪, 王登红, 等, 2020. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U-Pb定年、Hf-O同位素和地球化学证据. 矿床地质, 39(2): 273-304.
      李献华, 李武显, 李正祥, 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52(9): 981-991.
      李献华, 李武显, 王选策, 等, 2009. 幔源岩浆在南岭燕山早期花岗岩形成中的作用: 锆石原位Hf-O同位素制约. 中国科学(D辑), 39(7): 872-887.
      李再会, 林仕良, 丛峰, 等, 2012. 滇西腾冲-梁河地块石英闪长岩-二长花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义. 地质学报, 86(7): 1047-1062.
      林仟同, 龚萍, 2002. 闽西北地区中生代花岗岩类成矿作用探讨. 福建地质, 21(2): 74-84.
      蔺新望, 张亚峰, 王星, 等, 2017. 新疆阿尔泰友谊峰地区木孜他乌岩体锆石U-Pb年龄及地质意义. 西北地质, 50(3): 83-91.
      刘冰琪, 于津海, 蒋威, 等, 2023. 赣北双桥山群变沉积岩的地球化学特征及与钨多金属成矿的关系. 地质学报, 97(2): 433-447.
      刘炳祥, 2014. 北秦岭地体东段岩浆作用与地壳演化(博士学位论文). 合肥: 中国科学技术大学.
      刘锋, 曹峰, 张志欣, 等, 2014. 新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究. 岩石学报, 30(1): 1-15.
      刘刚, 刘家军, 袁峰, 等, 2017. 陕西小花岔铀矿床岩浆演化及其对铀成矿作用的制约. 现代地质, 31(5): 990-1005.
      刘宏, 2013. 新疆阿尔泰阿拉尔花岗岩与可可托海3号伟晶岩脉成因关系地球化学研究(硕士学位论文). 昆明: 昆明理工大学.
      刘家远, 2003. 复式岩体和杂岩体: 花岗岩类岩体组合的两种基本形式及其意义. 地质找矿论丛, 18(3): 143-148.
      刘善宝, 杨岳清, 王登红, 等, 2019. 四川甲基卡矿田花岗岩型锂工业矿体的发现及意义. 地质学报, 93(6): 1309-1320.
      刘文政, 张辉, 唐红峰, 等, 2015. 新疆阿斯喀尔特铍钼矿床中辉钼矿Re-Os定年及成因意义. 地球化学, 44(2): 145-154.
      刘新星, 张娟, 李肖龙, 等, 2023. 北秦岭卢氏龙潭沟-火炎沟锡矿床成矿作用探讨: 来自花岗伟晶岩年代学、岩石地球化学的证据. 岩石学报, 39(5): 1484-1500.
      刘英俊, 李兆麟, 马东升, 1982. 华南含钨建造的地球化学研究. 中国科学(B辑), 12(10): 939-950.
      刘莹, 谢磊, 王汝成, 等, 2018. 赣北大湖塘矿床的含铌钽与含钨花岗岩成岩成矿特征对比研究. 地质学报, 92(10): 2120-2137.
      刘志超, 吴福元, 刘小驰, 等, 2020. 喜马拉雅淡色花岗岩结晶分异机制概述. 岩石学报, 36(12): 3551-3571.
      陆松年, 2004. 初论"泛华夏造山作用" 与加里东和泛非造山作用的对比. 地质通报, 23(S2): 952-958.
      栾世伟, 毛玉元, 范良明, 等, 1995. 可可托海地区稀有金属成矿与找矿. 成都: 成都科技大学出版社: 63-148.
      吕正航, 张辉, 唐勇, 2015. 新疆别也萨麻斯L1号伟晶岩脉Li-Nb-Ta矿床与围岩花岗岩成因关系研究. 矿物学报, 35(增刊1): 323.
      马昌前, 李艳青, 2017. 花岗岩体的累积生长与高结晶度岩浆的分异. 岩石学报, 33(5): 1479-1488.
      马昌前, 邹博文, 高珂, 等, 2020. 晶粥储存、侵入体累积组装与花岗岩成因. 地球科学, 45(12): 4332-4351. doi: 10.3799/dqkx.2020.316
      马占龙, 张辉, 唐勇, 等, 2015. 新疆卡鲁安矿区伟晶岩锆石U-Pb定年、铪同位素组成及其与哈龙花岗岩成因关系研究. 地球化学, 44(1): 9-26.
      毛景文, 吴胜华, 宋世伟, 等, 2020. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型. 科学通报, 65(33): 3746-3762.
      毛禹杰, 邵拥军, 熊伊曲, 等, 2021. 湘东邓阜仙Nb-Ta-W-Sn-Pb-Zn岩浆热液成矿系统: 铌钽锰矿U-Pb年代学约束. 中南大学学报(自然科学版), 52(9): 2959-2972.
      明添学, 何小虎, 唐忠, 等, 2025. 腾冲地块那俄铍矿床成矿时代和流体包裹体特征. 地质学报, 99(4): 1238-1255.
      莫柱孙, 1980. 南岭花岗岩地质学. 北京: 地质出版社.
      聂晓亮, 王水龙, 刘爽, 等, 2022. 江西茜坑锂矿床地质地球化学特征与锂云母40Ar/39Ar年代学研究. 矿物学报, 42(3): 285-294.
      潘大鹏, 王迪, 王孝磊, 2017. 赣西北大湖塘石门寺钨矿区花岗岩的成因及其对钨矿的指示意义. 中国地质, 44(1): 118-135.
      裴荣富, 1995. 共(源)岩浆补余分异作用与成矿. 矿床地质, 14(4): 376-379.
      彭花明, 2015. 江西大湖塘钨矿含矿花岗岩成因研究(博士学位论文). 北京: 中国地质大学.
      彭素霞, 程建新, 丁建刚, 等, 2015. 阿尔泰阿拉尔岩体周缘花岗岩序列与伟晶岩成因关系探讨. 西北地质, 48(3): 202-213.
      乔耿彪, 张汉德, 伍跃中, 等, 2015. 西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约. 地质学报, 89(7): 1180-1194.
      秦程, 2018. 江西宜丰狮子岭白云母花岗岩成矿潜力研究(硕士学位论文). 北京: 中国地质大学.
      秦克章, 申茂德, 唐冬梅, 等, 2013. 阿尔泰造山带伟晶岩型稀有金属矿化类型与成岩成矿时代. 新疆地质, 31(增刊1): 1-7.
      秦克章, 赵俊兴, 何畅通, 等, 2021b. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义. 岩石学报, 37(11): 3277-3286.
      秦克章, 周起凤, 唐冬梅, 等, 2019. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景: 兼与阿尔泰地区对比. 矿床地质, 38(5): 970-982.
      秦克章, 周起凤, 唐冬梅, 等, 2021a. 阿尔泰可可托海3号脉花岗伟晶岩侵位机制、熔-流体演化、稀有金属富集机理及待解之谜. 地质学报, 95(10): 3039-3053.
      任宝琴, 张辉, 唐勇, 2011. 阿尔泰造山带伟晶岩年代学及其地质意义. 矿物学报, 31(3): 587-596.
      芮宗瑶, 1962. 湘南桂、郴、宜一带小侵入体的岩石特征及其与成矿作用的共生关系. 成都地质学院学报(2): 11-32.
      宋公社, 杨文博, 许锋, 等, 2018. 东秦岭宽坪花岗岩体及其附近含铷伟晶岩的成矿机理. 现代矿业, 34(11): 29-34.
      孙克克, 陈斌, 陈军胜, 等, 2017. 江西大湖塘矿区九岭花岗闪长岩的成因及其构造意义. 岩石学报, 33(3): 907-924.
      谭克彬, 郭岐明, 郭勇明, 2021. 新疆和田509道班西锂铍多金属矿床花岗岩U-Pb年龄及其构造意义. 新疆有色金属, 44(2): 6-10.
      唐俊林, 柯强, 徐兴旺, 等, 2022. 西昆仑大红柳滩地区龙门山锂铍伟晶岩区岩浆演化与成矿作用. 岩石学报, 38(3): 655-675.
      唐渊, 王冬兵, 廖世勇, 等, 2016. 滇西高黎贡变质岩带南段淡色花岗岩脉年代学特征及构造意义. 岩石学报, 32(8): 2347-2366.
      陶琰, 邓贤泽, 熊风, 2015b. 云南龙陵黄龙沟伟晶岩锆石U-Pb年龄. 矿物学报, 35(增刊1): 344-345.
      陶琰, 熊风, 邓贤泽, 2015a. 滇西贡山丹珠伟晶岩地球化学特征. 矿物学报, 35(增刊1): 342-343.
      王春龙, 秦克章, 唐冬梅, 等, 2015. 阿尔泰阿斯喀尔特Be-Nb-Mo矿床年代学、锆石Hf同位素研究及其意义. 岩石学报, 31(8): 2337-2352.
      王登红, 王成辉, 孙艳, 等, 2017. 我国锂铍钽矿床调查研究进展及相关问题简述. 中国地质调查, 4(5): 1-8.
      王浩, 杨岳衡, 杨进辉, 2022. 矿物微区Lu-Hf同位素分析技术研究进展. 岩矿测试, 41(6): 881-905.
      王核, 高昊, 王赛蒙, 等, 2022. 新疆西昆仑木吉地区锂铍稀有金属伟晶岩锆石及铌钽铁矿U-Pb年代学、Hf同位素组成及其地质意义. 岩石学报, 38(7): 1937-1951.
      王核, 马华东, 张嵩, 等, 2023. 新疆阿尔金地区黄龙岭超大型伟晶岩型锂矿床的发现及找矿意义. 岩石学报, 39(11): 3307-3318.
      王核, 徐义刚, 闫庆贺, 等, 2021. 新疆白龙山伟晶岩型锂矿床研究进展. 地质学报, 95(10): 3085-3098.
      王核, 李沛, 马华东, 等, 2017. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义. 大地构造与成矿学, 41(6): 1053-1062.
      王江波, 侯晓华, 李万华, 等, 2020. 东秦岭丹凤地区伟晶岩型铀矿矿化特征与成矿模式. 地球科学, 45(1): 61-71. doi: 10.3799/dqkx.2018.302
      王江波, 李卫红, 张良, 2015. 东秦岭商丹带北侧伟晶岩地质特征与铀成矿关系探讨. 地质论评, 61(增刊1): 542-543.
      王江波, 秦江锋, 胡鹏, 等, 2018. 北秦岭早古生代宽坪岩体两期花岗质岩浆锆石U-Pb年代学、地球化学及其地质意义. 地质论评, 64(1): 127-140.
      王汝成, 吴福元, 谢磊, 等, 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究. 中国科学(D辑), 47(8): 871-880.
      王涛, 童英, 郭磊, 等, 2020. 侵入岩地质调查与填图方法. 北京: 地质出版社.
      王涛, 王晓霞, 田伟, 等, 2009. 北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示. 中国科学(D辑), 39(7): 949-971.
      汪洋, 2008. 南岭燕山早期花岗岩成因类型的进一步探讨. 地质论评, 54(2): 162-174.
      王中刚, 1998. 阿尔泰花岗岩类地球化学. 北京: 科学出版社.
      魏小鹏, 王核, 胡军, 等, 2017. 西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义. 地球化学, 46(1): 66-80.
      魏小鹏, 王核, 张晓宇, 等, 2018. 西昆仑东部晚三叠世高镁闪长岩的成因及其地质意义. 地球化学, 47(4): 363-379.
      文春华, 罗小亚, 陈剑锋, 等, 2019. 湘东北幕阜山地区燕山期岩浆演化与稀有金属成矿的关系. 中国地质调查, 6(6): 19-28.
      吴福元, 郭春丽, 胡方泱, 等, 2023. 南岭高分异花岗岩成岩与成矿. 岩石学报, 39(1): 1-36.
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学(D辑), 47(7): 745-765.
      吴学敏, 周敏娟, 罗喜成, 等, 2016. 江西西北部锂及稀有金属成矿条件及找矿潜力分析. 华东地质, 37(4): 275-283.
      夏祥标, 李光明, 张林奎, 等, 2022. 西藏错那洞穹隆祥林铍锡多金属矿地质特征及找矿方向. 地学前缘, 29(1): 93-106.
      夏永旗, 庹明洁, 李诺, 等, 2024. 西昆仑大红柳滩花岗岩中黑云母地球化学特征及地质意义. 地质科学, 59(2): 404-419.
      许畅, 李建康, 施光海, 等, 2019. 幕阜山南缘似斑状黑云母花岗岩锆石U-Pb年龄、Hf同位素组成及其地质意义. 矿床地质, 38(5): 1053-1068.
      徐恒, 李晓峰, 豆松, 等, 2023. 滇西昌宁绿茵塘岩体花岗伟晶岩成因与构造背景研究: 来自地球化学、锆石U-Pb年代学及Hf同位素的约束. 大地构造与成矿学, 47(4): 839-855.
      徐兴旺, 洪涛, 李杭, 等, 2020. 初论高温花岗岩-伟晶岩锂铍成矿系统: 以阿尔金中段地区为例. 岩石学报, 36(12): 3572-3592.
      徐兴旺, 洪涛, 张朋, 等, 2024. 阿尔金锂铍花岗岩-伟晶岩成矿规律与资源潜力. 岩石学报, 40(9): 2679-2702.
      徐兴旺, 李杭, 石福品, 等, 2019. 阿尔金中段吐格曼地区花岗伟晶岩型稀有金属成矿特征与找矿预测. 岩石学报, 35(11): 3303-3316.
      徐喆, 张福神, 张芳荣, 等, 2024. 江西九岭南缘古阳寨地区铍矿化伟晶岩独居石U-Pb定年及其地质意义. 东华理工大学学报(自然科学版), 47(1): 13-21.
      许志琴, 朱文斌, 郑碧海, 等, 2023. 川西甲基卡伟晶岩型锂矿的"多层次穹状花岗岩席"控矿新理论: 记"川西甲基卡锂矿科学钻探"创新成果. 地质学报, 97(10): 3133-3146.
      闫军武, 刘锋, 申颖, 等, 2020. 新疆可可托海伟晶岩田岩浆活动时限与伟晶岩形成. 地球学报, 41(5): 663-675, 96-98.
      闫庆贺, 陈晨, 明添学, 等, 2024. 滇西高黎贡山地区培里伟晶岩型锂矿化的发现及其意义. 岩石学报, 40(2): 539-552.
      杨富全, 张忠利, 王蕊, 等, 2018. 新疆阿尔泰稀有金属矿地质特征及成矿作用. 大地构造与成矿学, 42(6): 1010-1026.
      杨武斌, 2012. 碱性花岗岩的岩浆: 热液演化与稀有金属成矿: 以内蒙古巴尔哲矿床研究为例. 北京: 中国科学院大学.
      杨岳衡, 吴石头, 车旭东, 等, 2024. 稀有金属矿物微区同位素定年与示踪. 岩石学报, 40(4): 1023-1043.
      杨岳清, 王登红, 刘善宝, 等, 2020. 四川甲基卡两类锂辉石矿体共存机制及其找矿意义. 地质学报, 94(1): 287-302.
      杨泽黎, 邱检生, 邢光福, 等, 2014. 江西宜春雅山花岗岩体的成因与演化及其对成矿的制约. 地质学报, 88(5): 850-868.
      余勇, 李祖福, 白令安, 等, 2022. 滇西伟晶岩型稀有金属矿床成矿规律与找矿方向. 岩石学报, 38(7): 2052-2066.
      袁峰, 刘家军, 吕古贤, 等, 2017. 北秦岭光石沟铀矿区花岗岩、伟晶岩锆石U-Pb年代学、地球化学及成因意义. 地学前缘, 24(6): 25-45.
      袁奎荣, 邹进福, 1992. 隐伏花岗岩预测及深部找矿的进展和展望. 桂林冶金地质学院学报, 12(3): 227-234.
      曾闰灵, 章敬若, 贺玲, 等, 2023. 江西宜丰同安花岗细晶岩年代学及其成因研究. 地质学报, 97(11): 3750-3765.
      曾威, 周红英, 孙丰月, 等, 2021. 北秦岭官坡地区稀有金属伟晶岩锡石U-Pb年龄. 地质通报, 40(12): 2179-2182.
      张成立, 刘良, 王涛, 等, 2013. 北秦岭早古生代大陆碰撞过程中的花岗岩浆作用. 科学通报, 58(23): 2323-2329.
      张福神, 徐进, 张娟, 等, 2020. 江西九岭地区新元古代花岗岩地球化学特征、锆石U-Pb年龄及地质意义. 东华理工大学学报(自然科学版), 43(1): 12-20.
      张焕, 何鹏, 芦西战, 等, 2022. 阿尔金北缘瓦石峡南部稀有金属、稀土矿点的发现及意义. 现代矿业, 38(1): 34-36, 87.
      张辉, 李国胜, 2024. 新疆可可托海式伟晶岩型稀有金属矿床成矿机制. 岩石学报, 40(9): 2769-2785.
      张辉, 刘宏, 2013. 新疆可可托海3号伟晶岩脉是阿拉尔花岗岩岩浆演化晚期的产物? 矿物学报, 33(增刊2): 279.
      张辉, 吕正航, 唐勇, 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质, 38(4): 792-814.
      张玲, 梁磊, 2018. 伟晶岩与细晶岩的成因: 以广西栗木稀有金属花岗岩地区为例. 桂林理工大学学报, 38(2): 175-188.
      张帅, 刘家军, 袁峰, 等, 2019. 陕西商丹陈家庄铀矿区花岗岩体和伟晶岩脉的U-Pb年龄、地球化学特征与铀成矿作用. 地学前缘, 26(5): 270-289.
      张亚峰, 蔺新望, 郭岐明, 等, 2015. 阿尔泰南缘可可托海地区阿拉尔花岗岩体LA-ICP-MS锆石U-Pb定年、岩石地球化学特征及其源区意义. 地质学报, 89(2): 339-354.
      张勇, 潘家永, 马东升, 2020. 赣西北大湖塘钨矿富锂-云母化岩锂元素富集机制及其对锂等稀有金属找矿的启示. 地质学报, 94(11): 3321-3342.
      张泽, 梁婷, 凤永刚, 等, 2019. 新疆西昆仑造山带康西瓦含绿柱石白云母伟晶岩的地质特征与年代学研究. 西北地质, 52(1): 75-88.
      张智宇, 侯增谦, 彭花明, 等, 2015. 江西大湖塘超大型钨矿初始岩浆流体出溶: 来自似伟晶岩壳的记录. 地质通报, 34(增刊1): 487-500.
      赵俊兴, 何畅通, 秦克章, 等, 2021. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征. 岩石学报, 37(11): 3325-3347.
      赵如意, 李卫红, 姜常义, 等, 2014. 东秦岭丹凤地区黄龙庙二长花岗岩LA-ICP-MS锆石U-Pb年龄、岩石地球化学特征及其地质意义. 地质论评, 60(5): 1123-1132.
      赵振华, 1988a. 花岗岩中发现稀土元素四重分布效应的初步报道. 地质地球化学, 16(1): 71-72.
      赵振华, 1988b. 稀土元素的四重分布: 水(流体)与原始(熔体)的相互作用的重要地球化学证据. 重庆: 中国科学技术文献出版社, 47-49.
      赵振华, 2016. 微量元素地球化学原理(2版). 北京: 科学出版社.
      赵振华, 包志伟, 张伯友, 1998. 湘南中生代玄武岩类地球化学特征. 中国科学(D辑), 28(增刊2): 7-14.
      赵振华, 包志伟, 张伯友, 等, 2000. 柿竹园超大型钨多金属矿床形成的壳幔相互作用背景. 中国科学(D辑), 30(增刊1): 161-168.
      赵振华, 陈华勇, 韩金生, 2022. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用. 中山大学学报(自然科学版), 61(1): 1-26.
      赵振华, 严爽, 2023. 花岗伟晶岩成矿有关的几个问题讨论. 大地构造与成矿学, 47(1): 1-41.
      赵振华, 增田彰正, 夏巴尼, 1992. 稀有金属花岗岩的稀土元素四分组效应. 地球化学, 21(3): 221-233.
      中国科学院地球化学研究所, 1979. 华南花岗岩类的地球化学. 北京: 科学出版社.
      周芳春, 李建康, 刘翔, 等, 2019. 湖南仁里铌钽矿床矿体地球化学特征及其成因意义. 地质学报, 93(6): 1392-1404.
      周建廷, 王国斌, 何淑芳, 等, 2011. 江西宜丰地区甘坊岩体成岩成矿作用分析. 东华理工大学学报(自然科学版), 34(4): 345-351, 358.
      周起凤, 秦克章, 刘宇超, 等, 2024. 喜马拉雅东段库曲锂辉石伟晶岩锡石研究及指示意义. 岩石学报, 40(2): 433-449.
      周起凤, 秦克章, 唐冬梅, 等, 2021. 东秦岭古生代伟晶岩稀有金属成矿特色与成矿条件分析. 地质学报, 95(10): 3115-3126.
      周效华, 张彦杰, 廖圣兵, 等, 2012. 皖赣相邻地区双桥山群火山岩的LA-ICP-MS锆石U-Pb年龄及其地质意义. 高校地质学报, 18(4): 609-622.
      周雄, 周玉, 孙宝伟, 等, 2021. 四川甲基卡稀有金属矿床134号脉锡石U-Pb定年与地质意义. 岩矿测试, 40(1): 156-164.
      朱金初, 李人科, 周凤英, 等, 1996. 广西栗木水溪庙不对称层状伟晶岩-细晶岩岩脉的成因讨论. 地球化学, 25(1): 1-9.
      朱金初, 吴长年, 刘昌实, 等, 2000. 新疆阿尔泰可可托海3号伟晶岩脉岩浆—热液演化和成因. 高校地质学报, 6(1): 40-52.
      朱永峰, 曾贻善, 2002. 可可托海3号脉伟晶岩铷-锶同位素等时线年龄. 矿床地质, 21(增刊1): 1110-1111.
      邹光富, 毛英, 林仕良, 等, 2013b. 滇西粱河勐养花岗岩的锆石U-Pb年龄、地球化学特征及其地质意义. 矿物岩石, 33(1): 87-99.
      邹光富, 毛英, 邹鑫, 等, 2013a. 滇西芒市江东花岗岩体的锆石U-Pb年龄、地球化学特征及构造意义. 地质学报, 87(11): 1635-1646.
      邹天人, 李庆昌, 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质出版社.
      左文乾, 沙亚洲, 陈冰, 等, 2010. 丹凤地区光石沟铀矿床大毛沟岩株锆石U-Pb同位素定年及其地质意义. 铀矿地质, 26(4): 222-227.
    • 加载中
    图(17) / 表(5)
    计量
    • 文章访问数:  439
    • HTML全文浏览量:  20
    • PDF下载量:  98
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-10-21
    • 刊出日期:  2025-12-25

    目录

      /

      返回文章
      返回