• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    玄武岩风化剖面P、Al元素的迁移与淋失及其对滇黔桂地区晚二叠世风化‒沉积成矿效应的指示意义

    陈波 杨江海 任俊童 程亮 刘澳 张晓容 葛海莉 王敬富 黄庆 王彪

    陈波, 杨江海, 任俊童, 程亮, 刘澳, 张晓容, 葛海莉, 王敬富, 黄庆, 王彪, 2025. 玄武岩风化剖面P、Al元素的迁移与淋失及其对滇黔桂地区晚二叠世风化‒沉积成矿效应的指示意义. 地球科学, 50(7): 2720-2734. doi: 10.3799/dqkx.2025.019
    引用本文: 陈波, 杨江海, 任俊童, 程亮, 刘澳, 张晓容, 葛海莉, 王敬富, 黄庆, 王彪, 2025. 玄武岩风化剖面P、Al元素的迁移与淋失及其对滇黔桂地区晚二叠世风化‒沉积成矿效应的指示意义. 地球科学, 50(7): 2720-2734. doi: 10.3799/dqkx.2025.019
    Chen Bo, Yang Jianghai, Ren Juntong, Cheng Liang, Liu Ao, Zhang Xiaorong, Ge Haili, Wang Jingfu, Huang Qing, Wang Biao, 2025. Migration and Leaching of Phosphorus and Aluminum in Basalt Weathering Profile: Implications for Late Permian Weathering-Depositional Mineralization in Yunnan-Guizhou-Guangxi Region. Earth Science, 50(7): 2720-2734. doi: 10.3799/dqkx.2025.019
    Citation: Chen Bo, Yang Jianghai, Ren Juntong, Cheng Liang, Liu Ao, Zhang Xiaorong, Ge Haili, Wang Jingfu, Huang Qing, Wang Biao, 2025. Migration and Leaching of Phosphorus and Aluminum in Basalt Weathering Profile: Implications for Late Permian Weathering-Depositional Mineralization in Yunnan-Guizhou-Guangxi Region. Earth Science, 50(7): 2720-2734. doi: 10.3799/dqkx.2025.019

    玄武岩风化剖面P、Al元素的迁移与淋失及其对滇黔桂地区晚二叠世风化‒沉积成矿效应的指示意义

    doi: 10.3799/dqkx.2025.019
    基金项目: 

    国家自然科学基金项目 42122015

    国家自然科学基金项目 42472148

    详细信息
      作者简介:

      陈波(1998-),男,硕士研究生,主要从事玄武岩风化剖面及其成矿效应方面的研究. ORCID:0009-0005-7396-7102. E-mail:chenbo6890@163.com

      通讯作者:

      杨江海, ORCID: 0000-0002-5238-8655. E-mail: yangjh@cug.edu.cn

    • 中图分类号: P512

    Migration and Leaching of Phosphorus and Aluminum in Basalt Weathering Profile: Implications for Late Permian Weathering-Depositional Mineralization in Yunnan-Guizhou-Guangxi Region

    • 摘要: 磷(P)和铝(Al)分别作为生物限制性营养元素和重要金属元素而被广泛关注.在近地表环境中,岩石风化是P和Al元素释放的重要途径. 玄武岩是一种富含磷酸盐矿物(如玄武质玻璃、磷灰石等)和铝硅酸盐矿物(如长石、辉石等)的岩石,是P和Al元素的重要岩石储库. 目前对于玄武岩风化过程中P、Al元素的活动规律还未有深入研究.为进一步理解玄武岩的化学风化作用,对峨眉山大火成岩省分布区的玄武岩风化剖面开展了矿物学、地球化学和磷组分研究,并结合已报道的玄武岩风化剖面数据探讨物理侵蚀对Al、P元素风化淋失的控制机制,分析晚二叠世相关的风化‒沉积成矿效应.黑石风化剖面下部为含有大量长石等原生矿物的半风化层,相对玄武质原岩其化学风化强度明显升高(CIA值分别为40和72~83),上部为含有石英、赤铁矿和黏土矿物的土壤层,呈现极端风化状态(化学风化指数CIA值为90~92).利用Ti的稳定性与原岩标准化计算来衡量元素的活动性,结果显示Na、Ca、Mg、P和Eu自下而上均发生不同程度的丢失,Fe、K和Ce在半风化层发生显著丢失而在土壤层中呈现相对富集,Al在土壤层相对亏损而Zr则相对富集.土壤层中的高石英含量和低Ti/Zr比值,可能指示了风成长英质粉尘输入的影响.基于黑石风化原岩和风成粉尘组成构建了二元混合曲线,发现风化剖面均具有相对较低的P/Ti比值,而Al/Ti比值仅在土壤层呈现降低的趋势.这一变化特征表明,P元素在早期风化阶段即发生大量(> 50%)淋失,残余土壤中P的赋存状态也经历由原岩溶解态磷到弱吸附态磷再到强吸附态磷的转变;在极端风化条件下,Al元素可随酸性流体、富Al黏土矿物或络合物的渗流和淋洗作用而发生部分(> 20%)迁移和丢失.地表风化状态取决于物理侵蚀与化学风化速率的相对大小,侵蚀速率较高时出露更多弱风化的岩石而有利于P的风化淋失,侵蚀速率较低时发育更多强烈风化的土壤层而有利于Al的风化淋失.综合华南西部晚二叠世玄武质泥岩的风化趋势,认为峨眉山大火成岩省的风化侵蚀状态是控制Al、P风化‒沉积富集的重要因素.

       

    • 图  1  (a) 华南西部大地构造简图(据Qi and Zhou, 2008); (b)研究区地质图; (c)黑石风化剖面的野外露头照片并显示采样位置

      Fig.  1.  (a) Tectonic of western South China (modified from Qi and Zhou, 2008); (b) geological map of the study area; (c) field photograph of Heishi weathering profile showing sampling locations

      图  2  黑石风化剖面的XRD矿物组成及图谱

      Qtz.石英;Pl.斜长石;Aug.辉石;Hm.赤铁矿;An.锐钛矿;CM.黏土矿物;AM.非晶质矿物

      Fig.  2.  XRD mineral composition and spectrum of Heishi weathering profile

      图  3  (a) 黑石风化剖面样品的A-CN-K(Al2O3-(CaO*+Na2O)-K2O)三角图; (b)风化原岩标准化的稀土元素配分模式

      黑石风化剖面附近出露的峨眉山玄武岩的化学组成与风化剖面的玄武质原岩在A-CN-K图具有一致性

      Fig.  3.  (a) A-CN-K (Al2O3-(CaO*+Na2O)-K2O) triangle diagram of the Heishi weathering profile samples; (b) the REE distribution patterns (parent rock-normalized)

      图  4  黑石风化剖面的CIA值和i/Ti、Ce/Ce*、Eu/Eu*、Ti/Zr比值变化趋势

      i/Ti比值的i代表Si、Na、Ca、Mg、Al、Fe、K

      Fig.  4.  Changes in CIA, i/Ti, Ce/Ce*, Eu/Eu*, and Ti/Zr ratios of Heishi weathering profile

      图  5  黑石风化剖面玄武质原岩与黄土 < 20 μm组分的Ti/Zr与Al/Ti(a)和P/Ti(b)元素比值二元混合曲线图

      UCC指平均大陆上地壳(Rudnick and Gao, 2003

      Fig.  5.  Binary mixing curves of Ti/Zr and Al/Ti (a) and P/Ti (b) element ratios of the parent rock and loess < 20 μm components in the Heishi weathering profile

      图  6  黑石风化剖面中(a)P/Ti、Al/Ti、TN、TOC、pH的变化趋势以及(b)磷组分组成

      Fig.  6.  Change trends of (a) P/Ti, Al/Ti, TN, TOC, and pH and (b) phosphorus forms composition in the Heishi weathering profile

      图  7  玄武岩风化剖面的(a)CIA‒(P2O5/TiO2)N的分布; (b) Al2O3‒TiO2的分布; (c~d)玄武岩的P、Al风化侵蚀模型

      Fig.  7.  (a) CIA‒(P2O5/TiO2)N distribution; (b) Al2O3‒TiO2 distribution of basalt weathering profile; (c‒d) P, Al weathering erosion models of basalt

      图  8  右江盆地北缘晚二叠世龙潭组玄武质泥岩的CIA值变化指示峨眉山大火成岩省的风化‒侵蚀模式

      灰色圆点为钻孔Zk15916的泥岩数据,在该剖面的对应位置还标注了凝灰岩的高精度锆石U-Pb年龄(Yang et al., 2022),同时也标出了中‒晚二叠世(GLB)、吴家坪‒长兴期(WCB)和二叠‒三叠纪(PTB)3个界线的位置和对应年龄(Cohen et al., 2013).图中也展示出钻孔Zk31917和ZK34381的泥岩风化趋势(绿色和红色实线)

      Fig.  8.  Changes in CIA of the basaltic mudstone of the Late Permian Longtan Formation in the northern margin of the Youjiang Basin indicate the weathering-erosion pattern of the Emeishan LIP

    • Allen, V. T., 1948. Formation of Bauxite from Basaltic Rocks of Oregon. Economic Geology, 43(8): 619-626. https://doi.org/10.2113/gsecongeo.43.8.619
      Arnold, E., Merrill, J., Leinen, M., et al., 1998. The Effect of Source Area and Atmospheric Transport on Mineral Aerosol Collected over the North Pacific Ocean. Global and Planetary Change, 18(3-4): 137-159. https://doi.org/10.1016/S0921-8181(98)00013-7
      Babechuk, M. G., Widdowson, M., Kamber, B. S., 2014. Quantifying Chemical Weathering Intensity and Trace Element Release from Two Contrasting Basalt Profiles, Deccan Traps, India. Chemical Geology, 363: 56-75. https://doi.org/10.1016/j.chemgeo.2013.10.027
      Bai, J. H., Luo, K., Wu, C., et al., 2023. Stable Neodymium Isotopic Fractionation during Chemical Weathering. Earth and Planetary Science Letters, 617: 118260. https://doi.org/10.1016/j.epsl.2023.118260
      Barré, P., Montagnier, C., Chenu, C., et al., 2008. Clay Minerals as a Soil Potassium Reservoir: Observation and Quantification through X-Ray Diffraction. Plant and Soil, 302(1-2): 213-220. https://doi.org/10.1007/s11104-007-9471-6
      Bédard, J. H., 2006. Trace Element Partitioning in Plagioclase Feldspar. Geochimica et Cosmochimica Acta, 70(14): 3717-3742. https://doi.org/10.1016/j.gca.2006.05.003
      Beusen, A. H. W., Dekkers, A. L. M., Bouwman, A. F., et al., 2005. Estimation of Global River Transport of Sediments and Associated Particulate C, N, and P. Global Biogeochemical Cycles, 19(4): 2005GB002453. https://doi.org/10.1029/2005GB002453
      Brantley, S. L., Goldhaber, M. B., Ragnarsdottir, K. V., 2007. Crossing Disciplines and Scales to Understand the Critical Zone. Elements, 3(5): 307-314. https://doi.org/10.2113/gselements.3.5.307
      Brantley, S. L., Shaughnessy, A., Lebedeva, M. I., et al., 2023. How Temperature-Dependent Silicate Weathering Acts as Earth's Geological Thermostat. Science, 379(6630): 382-389. https://doi.org/10.1126/science.add2922
      Chadwick, O. A., Derry, L. A., Vitousek, P. M., et al., 1999. Changing Sources of Nutrients during Four Million Years of Ecosystem Development. Nature, 397(6719): 491-497. https://doi.org/10.1038/17276
      Chen, L., Liu, L. W., Zhu, X. Y., et al., 2022. Identification of the Dust and Weathering Characteristics of the Soil Weathering from Basalt in Jiangsu and Anhui Provinces. Geological Journal of China Universities, 28(6): 838-848 (in Chinese with English abstract).
      Chung, S. L., Jahn, B. M., Wu, G. Y., et al., 1998. The Emeishan Flood Basalt in SW China: A Mantle Plume Initiation Model and Its Connection with Continental Breakup and Mass Extinction at the Permian-Triassic Boundary. In: Flower, M. F. J., Chung, S. L., Lo, C. H., et al., eds., Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Washington, D. C., 47-58. https://doi.org/10.1002/2015GC005792
      Cohen, K. M., Finney, S. C., Gibbard, P. L., et al., 2013. The ICS International Chronostratigraphic Chart. Episodes, 36(3): 199-204. https://doi.org/10.18814/epiiugs/2013/v36i3/002
      Craig, D. C., Loughnan, F. C., 1964. Chemical and Mineralogical Transformations Accompanying the Weathering of Basic Volcanic Rocks from New South Wales. Soil Research, 2(2): 218. https://doi.org/10.1071/sr9640218
      Dessert, C., Dupré, B., Gaillardet, J., et al., 2003. Basalt Weathering Laws and the Impact of Basalt Weathering on the Global Carbon Cycle. Chemical Geology, 202(3-4): 257-273. https://doi.org/10.1016/j.chemgeo.2002.10.001
      Eggleton, R. A., Foudoulis, C., Varkevisser, D., 1987. Weathering of Basalt: Changes in Rock Chemistry and Mineralogy. Clays and Clay Minerals, 35(3): 161-169. https://doi.org/10.1346/CCMN.1987.0350301
      Fedo, C. M., Nesbitt, H. W., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921-924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2 doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
      Filippelli, G. M., 2002. The Global Phosphorus Cycle. Reviews in Mineralogy and Geochemistry, 48(1): 391-425. https://doi.org/10.2138/rmg.2002.48.10
      Frings, P. J., Buss, H. L., 2019. The Central Role of Weathering in the Geosciences. Elements, 15(4): 229-234. https://doi.org/10.2138/gselements.15.4.229
      Fu, W., Huang, X. R., Yang, M. L., et al., 2014. REE Geochemistry in the Laterite Crusts Derived from Ultramafic Rocks: Comparative Study of Two Laterite Profiles under Different Climate Condition. Earth Science, 39(6): 716-732 (in Chinese with English abstract).
      Gardner, L. R., 1990. The Role of Rock Weathering in the Phosphorus Budget of Terrestrial Watersheds. Biogeochemistry, 11(2): 97-110. https://doi.org/10.1007/BF00002061
      Goll, D. S., Ciais, P., Amann, T., et al., 2021. Potential CO2 Removal from Enhanced Weathering by Ecosystem Responses to Powdered Rock. Nature Geoscience, 14(8): 545-549. https://doi.org/10.1038/s41561-021-00798-x
      Goudie, A. S., Viles, H. A., 2012. Weathering and the Global Carbon Cycle: Geomorphological Perspectives. Earth-Science Reviews, 113(1-2): 59-71. https://doi.org/10.1016/j.earscirev.2012.03.005
      Hao, Q. Z., Guo, Z. T., Qiao, Y. S., et al., 2010. Geochemical Evidence for the Provenance of Middle Pleistocene Loess Deposits in Southern China. Quaternary Science Reviews, 29(23-24): 3317-3326. https://doi.org/10.1016/j.quascirev.2010.08.004
      Hartmann, J., Moosdorf, N., Lauerwald, R., et al., 2014. Global Chemical Weathering and Associated P-Release-The Role of Lithology, Temperature and Soil Properties. Chemical Geology, 363: 145-163. https://doi.org/10.1016/j.chemgeo.2013.10.025
      He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U-Pb Dating of Silicic Ignimbrites, Post-Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3-4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021
      Hong, H. L., Ji, K. P., Hei, H. T., et al., 2023. Clay Mineral Evolution and Formation of Intermediate Phases during Pedogenesis on Picrite Basalt Bedrock under Temperate Conditions (Yunnan, Southwestern China). CATENA, 220: 106677. https://doi.org/10.1016/j.catena.2022.106677
      Horton, F., 2015. Did Phosphorus Derived from the Weathering of Large Igneous Provinces Fertilize the Neoproterozoic Ocean? Geochemistry, Geophysics, Geosystems, 16(6): 1723-1738. https://doi.org/10.1007/978-3-031-28089-4_15
      Huang, H., Huyskens, M. H., Yin, Q. Z., et al., 2022. Eruptive Tempo of Emeishan Large Igneous Province, Southwestern China and Northern Vietnam: Relations to Biotic Crises and Paleoclimate Changes around the Guadalupian-Lopingian Boundary. Geology, 50(9): 1083-1087. https://doi.org/10.1130/G50183.1
      Huang, W. H., Keller, W. D., 1972. Geochemical Mechanics for the Dissolution, Transport, and Deposition of Aluminum in the Zone of Weathering. Clays and Clay Minerals, 20(2): 69-74. https://doi.org/10.1346/ccmn.1972.0200203
      Jiang, J., Wang, Y. P., Yu, M. X., et al., 2018. Soil Organic Matter is Important for Acid Buffering and Reducing Aluminum Leaching from Acidic Forest Soils. Chemical Geology, 501: 86-94. https://doi.org/10.1016/j.chemgeo.2018.10.009
      Kurtz, A. C., Derry, L. A., Chadwick, O. A., 2001. Accretion of Asian Dust to Hawaiian Soils: Isotopic, Elemental, and Mineral Mass Balances. Geochimica et Cosmochimica Acta, 65(12): 1971-1983. https://doi.org/10.1016/S0016-7037(01)00575-0
      Lara, M. C., Buss, H. L., Pett-Ridge, J. C., 2018. The Effects of Lithology on Trace Element and REE Behavior during Tropical Weathering. Chemical Geology, 500: 88-102. https://doi.org/10.1016/j.chemgeo.2018.09.024
      Li, J. W., Ren, Y. C., Zhang, F. F., et al., 2021. Contributions of Asian Dust to Subtropical Soils of Southeast China Based on Nd Isotope. Journal of Soils and Sediments, 21(12): 3845-3855. https://doi.org/10.1007/s11368-021-03053-3
      Li, W., Johnson, C. E., 2016. Relationships among pH, Aluminum Solubility and Aluminum Complexation with Organic Matter in Acid Forest Soils of the Northeastern United States. Geoderma, 271: 234-242. https://doi.org/10.1016/j.geoderma.2016.02.030
      Liu, X. M., Hanna, H. D., Barzyk, J. G., 2023. Impact of Weathering and Mineralogy on the Chemistry of Soils from San Cristobal Island, Galapagos. In: Walsh, S. J., Mena, C. F., Stewart, J. R., et al., eds., Island Ecosystems, Social and Ecological Interactions in the Galapagos Islands. Springer International Publishing, Cham, 207-224. https://doi.org/10.1016/b0-08-043751-6/03016-4
      Ma, J. L., Wei, G. J., Xu, Y. G., et al., 2007. Mobilization and Re-Distribution of Major and Trace Elements during Extreme Weathering of Basalt in Hainan Island, South China. Geochimica et Cosmochimica Acta, 71(13): 3223-3237. https://doi.org/10.1016/j.gca.2007.03.035
      Ma, Y. J., Huo, R. K., Xu, Z. F., et al., 2004. REE Behavior and Influence Factors during Chemical Weathering. Advance in Earth Sciences, 19(1): 87-94 (in Chinese with English abstract).
      Maynard, J. B., 1992. Chemistry of Modern Soils as a Guide to Interpreting Precambrian Paleosols. The Journal of Geology, 100(3): 279-289. https://doi.org/10.1086/629632
      Nesbitt, H. W., Markovics, G., 1997. Weathering of Granodioritic Crust, Long-Term Storage of Elements in Weathering Profiles, and Petrogenesis of Siliciclastic Sediments. Geochimica et Cosmochimica Acta, 61(8): 1653-1670. https://doi.org/10.1016/S0016-7037(97)00031-8
      Nesbitt, H. W., Wilson, R. E., 1992. Recent Chemical Weathering of Basalts. American Journal of Science, 292(10): 740-777. https://doi.org/10.2475/ajs.292.10.740
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
      Patterson, S. H., 1971. Investigations of Ferruginous Bauxite and Other Mineral Resources on Kauai and a Reconnaissance of Ferruginous Bauxite Deposits on Maui, Hawaii (Professional Paper No. 656), Professional Paper. US Government Printing Office.
      Pokrovsky, O. S., Schott, J., Kudryavtzev, D. I., et al., 2005. Basalt Weathering in Central Siberia under Permafrost Conditions. Geochimica et Cosmochimica Acta, 69(24): 5659-5680. https://doi.org/10.1016/j.gca.2005.07.018
      Porter, S. C., An, Z. S., 1995. Correlation between Climate Events in the North Atlantic and China during the Last Glaciation. Nature, 375(6529): 305-308. https://doi.org/10.1038/375305a0
      Qi, L., Zhou, M. F., 2008. Platinum-Group Elemental and Sr-Nd-Os Isotopic Geochemistry of Permian Emeishan Flood Basalts in Guizhou Province, SW China. Chemical Geology, 248(1-2): 83-103. https://doi.org/10.1016/j.chemgeo.2007.11.004
      Ren, J. T., Yang, J. H., Cheng, L., et al., 2023. Weathering Carbon Storage in Emeishan Large Igneous Province: Experimental Study on Water-Rock Reaction of Basalt Powder. Acta Geologica Sinica, 97(9): 3087-3100 (in Chinese with English abstract).
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Elliott, T., Spiegelman, M., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 1-64. https://doi.org/10.1515/9781501509650-003
      Sanematsu, K., Kon, Y., Imai, A., et al., 2013. Geochemical and Mineralogical Characteristics of Ion-Adsorption Type REE Mineralization in Phuket, Thailand. Mineralium Deposita, 48(4): 437-451. https://doi.org/10.1007/s00126-011-0380-5
      Simonson, R. W., 1995. Airborne Dust and Its Significance to Soils. Geoderma, 65(1-2): 1-43. https://doi.org/10.1016/0016-7061(94)00031-5
      Syers, J. K., Williams, J. H., Walker, T. W., et al., 1970. Mineralogy and Forms of Inorganic Phosphorus in a Graywacke Soil-Rock Weathering Sequence. Soil Science, 110(2): 100-106. https://doi.org/10.1097/00010694-197008000-00004
      Welch, S. A., Taunton, A. E., Banfield, J. F., 2002. Effect of Microorganisms and Microbial Metabolites on Apatite Dissolution. Geomicrobiology Journal, 19(3): 343-367. https://doi.org/10.1080/01490450290098414
      White, A. F., Brantley, S. L., 1995. Chemical Weathering Rates of Silicate Minerals: An Overview. In: White, A. F., Brantley, S. L., eds., Chemical Weathering Rates of Silicate Minerals. De Gruyter, Berlin, 1-22. https://doi.org/10.1016/j.epsl.2018.04.004
      Xiong, Y. W., Qi, H. W., Hu, R. Z., et al., 2022. Lithium Isotope Behavior under Extreme Tropical Weathering: A Case Study of Basalts from the Hainan Island, South China. Applied Geochemistry, 140: 105295. https://doi.org/10.1016/j.apgeochem.2022.105295
      Xu, Y. G., He, B., Chung, S. L., et al., 2004. Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood-Basalt Province. Geology, 32(10): 917-920. https://doi.org/10.1130/G20602.1
      Yang, J. H., Cawood, P. A., Condon, D. J., et al., 2022. Anomalous Weathering Trends Indicate Accelerated Erosion of Tropical Basaltic Landscapes during the Permo-Triassic Warming. Earth and Planetary Science Letters, 577: 117256. https://doi.org/10.1016/j.epsl.2021.117256
      Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2014. A Sedimentary Archive of Tectonic Switching from Emeishan Plume to Indosinian Orogenic Sources in SW China. Journal of the Geological Society, 171(2): 269-280. https://doi.org/10.1144/jgs2012-143
      Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2012. Detrital Record of Indosinian Mountain Building in SW China: Provenance of the Middle Triassic Turbidites in the Youjiang Basin. Tectonophysics, 574-575: 105-117. https://doi.org/10.1016/j.tecto.2012.08.027
      Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2018. Early Wuchiapingian Cooling Linked to Emeishan Basaltic Weathering? Earth and Planetary Science Letters, 492: 102-111. _ext_link_paichu__
      Yang, J. H., Cawood, P. A., Yuan, X. P., et al., 2023. Enhanced Denudation of the Emeishan Large Igneous Province and Precipitation Forcing in the Late Permian. Journal of Geophysical Research: Solid Earth, 128(12): e2023JB027430. https://doi.org/10.1029/2023JB027430
      Yang, J. H., Ma, Y., 2017. Paleoclimate Perspectives of Source to Sink Sedimentary Processes. Earth Science, 42(11): 1910-1921 (in Chinese with English abstract).
      Yang, W. Z., He, C., Wang, Y., et al., 2025. Genesis of Giant Shitouping Heavy Rare Earth Element Deposit, in Southern Jiangxi Province: Constraints from Mineralogy and Geochemistry of Regolith. Earth Science, 50(4): 1335-1352 (in Chinese with English abstract).
      Young, G. M., Nesbitt, H. W., 1998. Processes Controlling the Distribution of Ti and Al in Weathering Profiles, Siliciclastic Sediments and Sedimentary Rocks. Journal of Sedimentary Research, 68(3): 448-455. https://doi.org/10.2110/jsr.68.448
      Zhang, X., Bajard, M., Bouchez, J., et al., 2023. Evolution of the Alpine Critical Zone since the Last Glacial Period Using Li Isotopes from Lake Sediments. Earth and Planetary Science Letters, 624: 118463. https://doi.org/10.1016/j.epsl.2023.118463
      Zhong, Y. T., He, B., Mundil, R., et al., 2014. CA-TIMS Zircon U-Pb Dating of Felsic Ignimbrite from the Binchuan Section: Implications for the Termination Age of Emeishan Large Igneous Province. Lithos, 204: 14-19. https://doi.org/10.1016/j.lithos.2014.03.005
      Zhou, L. J., Zhang, Z. W., Li, Y. J., et al., 2013. Geological and Geochemical Characteristics in the Paleo-Weathering Crust Sedimentary Type REE Deposits, Western Guizhou, China. Journal of Asian Earth Sciences, 73: 184-198. https://doi.org/10.1016/j.jseaes.2013.04.011
      陈辽, 刘连文, 朱晓雨, 等, 2022. 苏皖玄武岩土壤中风尘的识别及风化特征. 高校地质学报, 28(6): 838-848.
      付伟, 黄小荣, 杨梦力, 等, 2014. 超基性岩红土风化壳中REE地球化学: 不同气候风化剖面的对比. 地球科学, 39(6): 716-732. doi: 10.3799/dqkx.2014.067
      马英军, 霍润科, 徐志方, 等, 2004. 化学风化作用中的稀土元素行为及其影响因素. 地球科学进展, 19(1): 87-94.
      任俊童, 杨江海, 程亮, 等, 2023. 峨眉山大火成岩省的风化碳汇效应: 玄武岩粉末水‒岩反应实验研究. 地质学报, 97(9): 3087-3100.
      杨江海, 马严, 2017. 源‒汇沉积过程的深时古气候意义. 地球科学, 42(11): 1910-1921. doi: 10.3799/dqkx.2017.121
      杨婉贞, 何川, 王运, 等, 2025. 赣南石头坪超大型重稀土矿床的成因机制: 风化壳矿物学、地球化学约束. 地球科学, 50(4): 1335-1352. http://www.earth-science.net/article/id/042c1aed-e495-46f4-bcd1-77141bfa7106
    • 加载中
    图(8)
    计量
    • 文章访问数:  178
    • HTML全文浏览量:  10
    • PDF下载量:  13
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-10-10
    • 刊出日期:  2025-07-25

    目录

      /

      返回文章
      返回