Diversified Enrichment Regularity of Dispersed Elements of Chengmenshan Cu Polymetallic Deposit from Jiangxi Province
-
摘要: 斑岩-矽卡岩型铜矿床中伴生的稀散元素之间存在明显的差异化富集,其规律尚需深入研究.对城门山斑岩-矽卡岩铜多金属矿床的矿石开展了光学显微镜和扫描电镜观察,并对钻孔中的稀散元素(Te、Se、Ga、Ge、Cd、In和Tl)和Bi含量开展了相关性分析、聚类分析和分形分析等研究.城门山矿床中的Te以独立矿物为主、少量赋存于硫化物中,其他稀散元素大多呈类质同象赋存于不少于两种硫化物中.复杂的赋存状态导致稀散元素的含量除Tl呈简单分形外,均呈多重分形分布.城门山矿床中的稀散元素具有沉淀顺序先后分开、富集位置空间错位的差异化富集规律,主要受温度、pH、硫逸度和氧逸度等物化条件以及元素性质的制约.稀散元素差异化富集规律的深入研究,可以有效避免在勘查评价过程中遗漏伴生稀散元素矿床.建立了城门山矿床的稀散元素原生晕分布模式,该模式可为伴生稀散元素矿床的成因研究和深部找矿勘查实践提供参考.Abstract: Porphyry-skarn Cu deposits are frequently characterized by high contents of dispersed elements, which exhibit significantly diversified enrichment between them. However, the regularity of the diversified enrichment remains insufficiently understood. In this study, the primary ore minerals present in the Chengmenshan deposit were investigated, using the optical microscope and scanning electron microscopy. Additionally, correlation analysis, cluster analysis, and fractal analysis were employed to explore the relationships between the dispersed elements (Te, Se, Ga, Ge, Cd, In, and Tl) and Bi contents in the drill cores. The results reveal that Te is predominantly hosted by independent minerals, with only a minor fraction incorporated into sulfides. In contrast, other dispersed elements are incorporated by at least two types of sulfide. The distribution patterns of the dispersed elements at Chengmenshan exhibit multifractal patterns, except for Tl, which follows a simple fractal distribution due to its complex occurrence. The enrichment pattern of these dispersed elements at Chengmenshan is characterized by a sequential separation and spatial dislocation. The pattern is likely influenced by metallogenic factors such as temperature, pH, fS2, and fO2, along with the distinctive geochemical properties of the dispersed elements. This research demonstrates that an understanding of the diversified enrichment regularity of these dispersed elements could be instrumental in identifying independent deposits of these elements. Furthermore, a primary halo distribution model for the dispersed elements in the Chengmenshan deposit has been developed, which may serve as a valuable reference for studying the genesis of associated dispersed element deposits and for the prospecting and exploration of deeply buried targets.
-
Key words:
- dispersed elements /
- diversified enrichment /
- fractal distribution /
- Chengmenshan deposit /
- primary halo /
- ore deposit
-
图 1 九瑞矿集区地质平面图(据Pan and Dong, 1999; Xie et al., 2019修改)
Fig. 1. Geological map of the Jiurui district (modified after Pan and Dong, 1999; Xie et al., 2019)
图 3 城门山矿床矿化蚀变特征手标本照片
a.黄铁矿化、硅化、高岭土化花岗闪长岩斑岩,长石被蚀变呈白色;b.硅化、黄铁矿化、辉钼矿化石英斑岩;c.花岗闪长岩斑岩被多世代热液脉(黄铁矿+石英→石英+辉钼矿+黄铁矿→黄铁矿+黄铜矿+方铅矿+闪锌矿+石英)穿插;d.石榴子石矽卡岩被脉状、浸染状黄铜矿穿插交代;e.块状黄铜矿黄铁矿矿石,见少量石榴子石和磁铁矿,角闪石集合体被黄铁矿细脉穿插;f.块状磁铁矿被黄铜矿黄铁矿脉穿插;g.块状黄铜矿矿石,见少量磁铁矿;h.块状铅锌矿石;i.块状黄铁矿矿石,有少量石英砂岩残留.矿物缩写:Amp.角闪石;Bt.黑云母;Ccp.黄铜矿;Grt.石榴子石;Gn.方铅矿;Mag.磁铁矿;Mol.辉钼矿;Py.黄铁矿;Q.石英;Sph.闪锌矿
Fig. 3. Specimens showing the mineralization and alteration features of the Chengmenshan deposit
图 4 城门山矿床矿化蚀变特征镜下照片
a.石榴子石矽卡岩被磁铁矿交代再被黄铜矿和黄铁矿穿插交代,少量磁铁矿被赤铁矿交代;黄铜矿、闪锌矿与退化蚀变阶段角闪石共生;b.石榴子石矽卡岩被黄铁矿和闪锌矿交代,闪锌矿中较多黄铜矿出溶;c.黄铜矿和闪锌矿、角闪石共生;d.半自形白铁矿和他形第二世代黄铁矿(Py2)充填包裹自形第一世代黄铁矿(Py1);e. Py2与白铁矿、黝铜矿交代Py1,黝铜矿中见少量黄铜矿和斑铜矿;f.黄铜矿和斑铜矿包裹、交代Py1,斑铜矿被铜蓝沿颗粒边缘进行交代;g.黄铜矿与黝铜矿包裹穿插碎裂状Py1;h.方铅矿、闪锌矿包裹Py1,二者被黄铜矿和黝铜矿交代和穿插;i.方铅矿包裹Py1,但被黝铜矿和少量黄铜矿交代. a~i均为反射光照片.矿物缩写:Amp.角闪石;Bn.斑铜矿;Ccp.黄铜矿;Cv.铜蓝;Grt.石榴子石;Gn.方铅矿;Hem.赤铁矿;Mag.磁铁矿;Mrc.白铁矿;Mol.辉钼矿;Py.黄铁矿;Q.石英;Sph-闪锌矿;Ttr.黝铜矿
Fig. 4. Photomicrographs showing the mineralization and alteration features of the Chengmenshan deposit
图 10 城门山矿床稀散元素独立矿物BSE照片
a~c.闪锌矿包裹Te-Bi矿物组合,Te-Bi矿物组合具有核幔边结构,核部为多孔状辉铋矿+自然铋,幔部为多孔状硫铜铋矿+自然铋,边部为毛刺状硫铋铜矿;d.闪锌矿包裹Te-Bi-Cu矿物组合,从核部到边部依次为辉碲铋矿‒辉铋矿‒自然铋‒硫铋铜矿‒硫铜铋矿,辉碲铋矿被辉铋矿交代,辉铋矿被交代形成自然铋、硫铋铜矿和硫铜铋矿;e.辉碲铋矿被碲银矿和硫铋铜矿穿插交代,整体被黝铜矿包裹;f.黝铜矿包裹黄铁矿、碲银矿和碲银矿+碲铋矿矿物组合;g.黝铜矿包裹第二世代黄铁矿、裹辉铋矿+辉锑铋矿和辉铋矿+碲银矿+硫铋铜矿组合;h. 硫锑铅矿、方铅矿和疑似块硫锑铜矿共生,后者含纳米级条带状Cd矿物包体;i.疑似块硫锑铜矿中纳米级含Cd矿物包体.Bi.自然铋;Bmt.辉铋矿;Ccp.黄铜矿;Emp.硫铜铋矿;Fam.块硫锑铜矿;Gn.方铅矿;Hes.碲银矿;Hor.辉锑铋矿;Jam.硫锑铅矿;Py.黄铁矿;Sph.闪锌矿;Tel.碲铋矿;Tet.辉碲铋矿;Ttr.黝铜矿;Wtc.硫铋铜矿
Fig. 10. BSE images showing the independent minerals dispersed elements of the Chengmenshan deposit
表 1 城门山矿床钻孔中矿石稀散元素和Bi元素含量(10‒6)
Table 1. Contents (10‒6) of dispersed elements and Bi in drill cores of the Chengmenshan deposit
元素 Te Se Ga Ge Cd In Tl Bi 统计数 290 294 274 274 242 240 261 228 平均值 9.86 8.22 18.0 11.1 79.3 4.78 3.81 57.6 标准差 15.7 16.7 12.9 14.8 178 6.25 11.7 142 最小值 0.03 0.09 1.89 0.12 0.36 0.01 0.01 0.48 最大值 119 198 91.1 170 995 41.8 140 1020 偏度 3.35 6.92 2.72 5.70 3.21 2.90 7.50 4.46 变异系数 1.59 2.03 0.72 1.33 2.25 1.31 3.07 2.46 地壳值* 0.005 0.12 15 1.4 0.1 0.52 0.05 0.085 平均富集程度(平均值/地壳值) 1 972 68.5 1.20 7.92 793 9.19 76.3 677 最大富集程度(最大值/地壳值) 23 750 1 650 6.07 122 9 950 80.4 2 800 12 000 资源量(t)** 5 542 1 457 4 981 537 10 431 / 1 639 / 注:*:地壳值据Wedepohl (1995);**:资源量数据据高任等(2022);“/”表示无数据. 表 2 城门山矿床钻孔中矿石稀散元素和Bi等元素含量相关系数矩阵
Table 2. Correlation coefficient matrix of dispersed elements and Bi in drill cores of the Chengmenshan deposit
元素 Te Se Ga Ge Cd In Tl Bi As Sb Se 0.05 Ga 0.02 0.13* Ge 0.15* 0.00 ‒0.04 Cd 0.24** 0.27** 0.22** ‒0.12 In 0.24** 0.28** 0.26** ‒0.04 0.52** Tl 0.20** 0.00 0.22** 0.15* 0.28** 0.24** Bi 0.54** 0.00 ‒0.09 0.26** 0.09 0.39** 0.16* As 0.24** ‒0.10 0.05 0.35** 0.10 0.12 0.38** 0.16 Sb 0.25** ‒0.06 0.23** 0.24** 0.15 0.26** 0.48** 0.35** 0.55** Sn 0.28** 0.12 0.18* ‒0.3** 0.60** 0.10 0.13 ‒0.08 0.06 0.17 注:**:在0.01水平(双侧)上显著相关,用粗体字表示;*:在0.05水平(双侧)上显著相关. 表 3 城门山矿床钻孔中矿石稀散元素和Bi元素含量(10‒6)分形分析结果
Table 3. Fractal analysis results of the dispersed elements and Bi contents (10‒6) in drill cores of the Chengmenshan deposit
元素 分维数D 富集程度 D1 R2 分界值1 D2 R2 分界值2 D3 R2 地壳值* 分界值1/地壳值 分界值2/地壳值 Te 0.12 0.95 10 0.47 0.99 30 1.61 0.98 0.005 2 000 6 000 Se 0.12 0.93 5 0.49 0.98 15 0.70 0.99 0.12 41.7 125 Ga 0.05 0.82 10 0.99 1.00 25 1.82 1.00 15 0.67 1.67 Ge 0.07 0.99 9 0.84 0.97 25 1.16 0.92 1.4 6.43 17.9 Cd 0.01 0.97 30 0.15 0.92 200 0.93 0.94 0.1 300 2 000 In 0.30 0.88 5 1.12 0.98 17 3.61 0.99 0.05 100 340 Tl 0.20 0.98 20 1.20 0.94 / / / 0.52 38.5 / Bi 0.03 0.82 50 0.55 0.99 300 1.40 0.99 0.085 588 3 529 注:R2表示各段拟合直线的相关系数;*表示地壳值据Wedepohl(1995);“/”表示无数据. 表 4 城门山矿床硫化物中稀散元素和Bi含量(10‒6)LA-ICP-MS微区分析结果
Table 4. LA-ICP-MS analysis results of the dispersed elements and Bi contents (10‒6) in sulfides of the Chengmenshan deposit
矿物 元素 Te Se Ga Ge Cd In Tl Re Bi 黄铁矿* 最大值 179 183 6.07 3.91 448 76.6 114 / 3 042 最小值 0.01 0.40 0.01 0.80 0.01 0.01 0.01 / 0.01 平均值 12.9 23.2 0.24 1.80 5.89 1.25 1.33 / 149 黄铜矿** 最大值 6.08 82.2 37.5 29.2 63.3 282 11.5 0.16 65.2 最小值 0.15 6.81 0.02 0.03 0.01 0.01 0.01 < 0.04 平均值 2.06 34.0 9.42 2.78 10.3 59.8 0.66 0.01 10.2 闪锌矿** 最大值 0.87 33.7 221 12.9 6 022 793 0.13 / 11.6 最小值 0.03 3.13 3.50 0.03 3 100 0.52 0.01 / 0.01 平均值 0.28 14.0 41.7 1.10 4 211 170 0.03 / 2.73 辉钼矿** 最大值 9.54 277 0.31 3.08 28.2 0.15 12.4 496 47.6 最小值 < 38.4 < < 11.1 0.03 0.01 128 0.18 平均值 2.64 78.8 0.06 0.64 22.4 0.10 2.02 277 8.74 注:*:据 Du et al.(2020) 和Guo et al.(2023) ;**:据Guo et al.(2023) ;“/”表示无有效数据;“ < ”表示低于检出限. -
Audétat, A., Zhang, D. H., 2019. Abundances of S, Ga, Ge, Cd, In, Tl and 32 Other Major to Trace Elements in High-Temperature (350-700 ℃) Magmatic-Hydrothermal Fluids. Ore Geology Reviews, 109: 630-642. https://doi.org/10.1016/j.oregeorev.2019.05.017 Chaffee, M. A., 1976. The Zonal Distribution of Selected Elements above the Kalamazoo Porphyry Copper Deposit, San Manuel District, Pinal County, Arizona. Journal of Geochemical Exploration, 5(1-2): 145-165. https://doi.org/10.1016/0375-6742(76)90042-x Chang, Y. F., Liu, X. P., Wu, Y. C., 1991. Metallogenic Belt of the Middle and Lower Yangtze River. Geological Publishing House, Beijing (in Chinese). Cook, N. J., Ciobanu, C. L., Pring, A., et al., 2009. Trace and Minor Elements in Sphalerite: A LA-ICPMS Study. Geochimica et Cosmochimica Acta, 73(16): 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045 Du, H. F., Zheng, J. P., Tian, L. R., et al., 2020. Microfabrics, In-Situ Trace Element and Sulfur Isotope Compositions of Pyrite from the Jinjiwo Copper Deposit in Chengmenshan Orefield, Northern Yangtze Block: Syngenetic Stratabound Mineralization and Hydrothermal Remobilization. Ore Geology Reviews, 127: 103830. https://doi.org/10.1016/j.oregeorev.2020.103830 Frenzel, M., Hirsch, T., Gutzmer, J., 2016. Gallium, Germanium, Indium, and Other Trace and Minor Elements in Sphalerite as a Function of Deposit Type-A Meta-Analysis. Ore Geology Reviews, 76: 52-78. https://doi.org/10.1016/j.oregeorev.2015.12.017 Gadd, M. G., Lawley, C. J., Corriveau, L., et al., 2023. Public Geoscience Solutions for Diversifying Canada's Critical Mineral Production. In: Smelror, M., Hanghøj, K., Schiellerup, H. eds., The Green Stone Age: Exploration and Exploitation of Minerals for Green Technologies. Geological Society, London, Special Publications, 526: 25-50. https://doi.org/10.1144/SP526-2021-190 Gao, R., Xie, G. Q., Feng, D. S., et al., 2023. Characteristics and Genesis of Newly Discovered W Mineralization in Wushan Cu Deposit, Jiangxi: Constraints from Mineralography, In-Situ U-Pb Chronology and Element Geochemistry of Scheelite. Mineral Deposits, 42(6): 1139-1158 (in Chinese with English abstract). Gao, R., Xie, G. Q., Zha, Z. Q., et al., 2022. Mineralization of Associated Dispersed Elements in the Chengmenshan Copper Deposit of Jiangxi Province and Its Geological Significance. Geology and Exploration, 58(3): 514-531 (in Chinese with English abstract). George, L. L., Cook, N. J., Ciobanu, C. L., 2017. Minor and Trace Elements in Natural Tetrahedrite-Tennantite: Effects on Element Partitioning among Base Metal Sulphides. Minerals, 7(2): 17. https://doi.org/10.3390/min7020017 Grundler, P. V., Brugger, J., Etschmann, B. E., et al., 2013. Speciation of Aqueous Tellurium(IV) in Hydrothermal Solutions and Vapors, and the Role of Oxidized Tellurium Species in Te Transport and Gold Deposition. Geochimica et Cosmochimica Acta, 120: 298-325. https://doi.org/10.1016/j.gca.2013.06.009 Gu, T., Liu, Y. P., Li, C. Y., 2000. Super-Richening and Coexistence of Disperse Elements. Bulletin of Mineralogy, Petrology and Geochemistry, 19(1): 60-63 (in Chinese with English abstract). Guo, X. Z., Zhou, T. F., Wang, F. Y., et al., 2021. Study of Occurrence States and Precipitation Mechanism of Tellurium in Chengmenshan Porphyry-Skarn Deposit from the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 37(9): 2723-2742 (in Chinese with English abstract). Guo, X. Z., Zhou, T. F., Wang, F. Y., et al., 2023. Distribution of Co, Se, Cd, In, Re and Other Critical Metals in Sulfide Ores from a Porphyry-Skarn System: A Case Study of Chengmenshan Cu Deposit, Jiangxi, China. Ore Geology Reviews, 158: 105520. https://doi.org/10.1016/j.oregeorev.2023.105520 Halley, S., Dilles, J. H., Tosdal, R. M., 2015. Footprints: Hydrothermal Alteration and Geochemical Dispersion around Porphyry Copper Deposits. SEG Discovery, (100): 1-17. https://doi.org/10.5382/SEGnews.2015-100.fea Han, Y. X., 2020. Geology and Mineralization of the Cu-Au Skarn System in Southeast Hubei Province and Northwest Jiangxi Province, Eastern China: Examples from the Fengshan and Chengmenshan Areas in Jiurui Ore District (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). Hurtig, N. C., Gysi, A. P., Monecke, T., et al., 2024. Tellurium Transport and Enrichment in Volcanogenic Massive Sulfide Deposits: Numerical Simulations of Vent Fluids and Comparison to Modern Sea-Floor Sulfides. Economic Geology, 119(4): 829-851. https://doi.org/10.5382/econgeo.5067 Jiang, Y. G., Zhou, J. X., Luo, K., et al., 2023. The Differential Enrichment Mechanism of Thallium in the Huodehong MVT Deposit, NE Yunnan Province, China: Evidence from EBSD, LA-ICPMS and TEM. Acta Petrologica Sinica, 39(10): 3002-3014 (in Chinese with English abstract). Keith, M., Smith, D. J., Jenkin, G. R. T., et al., 2018. A Review of Te and Se Systematics in Hydrothermal Pyrite from Precious Metal Deposits: Insights into Ore-Forming Processes. Ore Geology Reviews, 96: 269-282. https://doi.org/10.1016/j.oregeorev.2017.07.023 Kong, F. B., Ye, S. Z., Gao, R., et al., 2020. Characteristics of Associated Gold and Silver for Copper-Sulfur Orebody in Tielukan Copper Deposit of Jiangxi Province. China Molybdenum Industry, 44(6): 14-19 (in Chinese with English abstract). Li, X. H., Li, W. X., Wang, X. C., et al., 2010. SIMS U-Pb Zircon Geochronology of Porphyry Cu-Au-(Mo) Deposits in the Yangtze River Metallogenic Belt, Eastern China: Magmatic Response to Early Cretaceous Lithospheric Extension. Lithos, 119(3-4): 427-438. https://doi.org/10.1016/j.lithos.2010.07.018 Liu, C. M., Wu, C. L., Xu, W. S., 1998. The Exploration Geochemical Model for Major Types of Copper Deposits in China. Geophysical and Geochemical Exploration, 22(3): 161-165 (in Chinese with English abstract). Liu, J. J., Wang, D. Z., Zhai, D. G., et al., 2021. Super-Enrichment Mechanisms of Precious Metals by Low-Melting Point Copper-Philic Element(LMCE) Melts. Acta Petrologica Sinica, 37(9): 2629-2656 (in Chinese with English abstract). Liu, J. J., Zhai, D. G., Wang, D. Z., et al., 2020. Classification and Mineralization of the Au-(Ag)-Te-Se Deposits. Earth Science Frontiers, 27(2): 79-98 (in Chinese with English abstract). Luo, J. A., Yang, G. C., 2007. Geological Characteristics of Chengmenshan Copper Deposit, Jiangxi and Its Ore Genesis. Mineral Resources and Geology, 21(3): 284-288 (in Chinese with English abstract). Ma, Z. D., Gong, M., Gong, P., et al., 2010. Mineral Deposit Model of the Skarn Deposit. In: Shi, J. F., Tang, J. R., Zhou, P., et al., eds., World Mineral Deposit Model and Exploration. Geological Publishing House, Beijing, 160-171 (in Chinese). Makovicky, E., 2018. Modular Crystal Chemistry of Thallium Sulfosalts. Minerals, 8(11): 478. https://doi.org/10.3390/min8110478 Mao, J. W., Wang, Y. T., Lehmann, B., et al., 2006. Molybdenite Re-Os and Albite 40Ar/39Ar Dating of Cu-Au-Mo and Magnetite Porphyry Systems in the Yangtze River Valley and Metallogenic Implications. Ore Geology Reviews, 29(3-4): 307-324. https://doi.org/10.1016/j.oregeorev.2005.11.001 Mao, J. W., Xie, G. Q., Duan, C., et al., 2011. A Tectono-Genetic Model for Porphyry-Skarn-Strata Bound Cu-Au-Mo-Fe and Magnetite-Apatite Deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1): 294-314. https://doi.org/10.1016/j.oregeorev.2011.07.010 Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract). Meng, Y. M., Hu, R. Z., Huang, X. W., et al., 2017. Germanium in Magnetite: A Preliminary Review. Acta Geologica Sinica (English Edition), 91(2): 711-726. https://doi.org/10.1111/1755-6724.13127 Meng, Y. M., Zhang, X., Huang, X. W., et al., 2024. A Review of the Zn-Pb Deposits in Sichuan-Yunnan- Guizhou Metallogenic Region with Emphasis on the Enrichment Mechanism of Ge, Ga, and In. Ore Geology Reviews, 164: 105853. https://doi.org/10.1016/j.oregeorev.2023.105853 Murowchick, J. B., Barnes, H. L., 1986. Marcasite Precipitation from Hydrothermal Solutions. Geochimica et Cosmochimica Acta, 50(12): 2615-2629. https://doi.org/10.1016/0016-7037(86)90214-0 Pan, Y. M., Dong, P., 1999. The Lower Changjiang (Yangzi/Yangtze River) Metallogenic Belt, East Central China: Intrusion- and Wall Rock-Hosted Cu-Fe-Au, Mo, Zn, Pb, Ag Deposits. Ore Geology Reviews, 15(4): 177-242. https://doi.org/10.1016/S0169-1368(99)00022-0 Seward, T. M., Henderson, C. M. B., Charnock, J. M., 2000. Indium(III) Chloride Complexing and Solvation in Hydrothermal Solutions to 350 ℃: An EXAFS Study. Chemical Geology, 167(1-2): 117-127. https://doi.org/10.1016/S0009-2541(99)00204-1 Shao, Y., 1997. Geochemical Rock Survey (Dispersion Halo) and Hydrothermal Deposit Exploration. Geological Publishing House, Beijing (in Chinese). Shen, W., 2007. Fractal Summation Methods and Its Application in Geochemical Element Data for Population Limits. Computing Techniques for Geophysical and Geochemical Exploration, 29(2): 134-137 (in Chinese with English abstract). Shu, Q. A., Chen, P. L., Cheng, J. R., 1992. Geology of Fe-Cu Ore Deposits in Eastern Hubei Province. Metallurgical Industry Press, Beijing (in Chinese). Škácha, P., Sejkora, J., Plášil, J., 2017. Selenide Mineralization in the Příbram Uranium and Base-Metal District (Czech Republic). Minerals, 7(6): 91. https://doi.org/10.3390/min7060091 Tao, Y., Hu, R. Z., Tang, Y. Y., et al., 2019. Types of Dispersed Elements Bearing Ore-Deposits and Their Enrichment Regularity in Southwest China. Acta Geologica Sinica, 93(6): 1210-1230 (in Chinese with English abstract). Tu, G. C., 2000. A Preliminary Research on the Metallogenic of Te. Bulletin of Mineralogy, Petrology and Geochemistry, 19(4): 211-214 (in Chinese). Tu, G. C., Gao, Z. M., Hu, R. Z., et al., 2004. The Geochemistry and Ore-Forming Mechanism of the Dispersed Elements. Geological Publishing House, Beijing (in Chinese). Voudouris, P., 2006. A Comparative Mineralogical Study of Te-Rich Magmatic-Hydrothermal Systems in Northeastern Greece. Mineralogy and Petrology, 87(3): 241-275. https://doi.org/10.1007/s00710-006-0131-y Voudouris, P., Repstock, A., Spry, P. G., et al., 2022. Physicochemical Constraints on Indium-, Tin-, Germanium-, Gallium-, Gold-, and Tellurium-bearing Mineralizations in the Pefka and St Philippos Polymetallic Vein- and Breccia-Type Deposits, Greece. Ore Geology Reviews, 140: 104348. https://doi.org/10.1016/j.oregeorev.2021.104348 Wang, D. H., Sun, Y., Dai, H. Z., et al., 2019. Characteristics and Exploitation of Rare Earth, Rare Metal and Rare-Scattered Element Minerals in China. Strategic Study of Chinese Academy of Engineering, 21(1): 119-127 (in Chinese with English abstract). Wang, H., Fu, H. P., Li, Y. S., et al., 2023. In-Situ LA-ICP-MS U-Pb Dating of Garnet and Zircon from Tongjiangling Copper (Tungsten) Deposit in Jiangxi Province and Its Geological Significance. Acta Geologica Sinica, 97(7): 2281-2292 (in Chinese with English abstract). Wedepohl, K. H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2 Wen, H. J., Zhou, Z. B., Zhu, C. W., et al., 2019. Critical Scientific Issues of Super-Enrichment of Dispersed Metals. Acta Petrologica Sinica, 35(11): 3271-3291 (in Chinese with English abstract). Wen, H. J., Zhu, C. W., Du, S. J., et al., 2020. Gallium (Ga), Germanium (Ge), Thallium (Tl) and Cadmium (Cd) Resources in China. Chinese Science Bulletin, 65(33): 3688-3699 (in Chinese). Wu, L. S., Zou, X. Q., 1997. Re Os Isotopic Age Study of the Chengmenshan Copper Deposit, Jiangxi Province. Mineral Deposits, 16(4): 376-381 (in Chinese with English abstract). Xie, G. Q., Han, Y. X., Li, X. H., 2019. A Preliminary Study of Characteristics of Dispersed Metal-Bearing Deposits in Middle-Lower Yangtze River Metallogenic Belt. Mineral Deposits, 38(4): 729-738 (in Chinese with English abstract). Xie, G. Q., Mao, J. W., Richards, J. P., et al., 2019. Distal Au Deposits Associated with Cu-Au Skarn Mineralization in the Fengshan Area, Eastern China. Economic Geology, 114(1): 127-142. https://doi.org/10.5382/econgeo.2019.4623 Xie, G. Q., Mao, J. W., Zhu, Q. Q., et al., 2015. Geochemical Constraints on Cu-Fe and Fe Skarn Deposits in the Edong District, Middle-Lower Yangtze River Metallogenic Belt, China. Ore Geology Reviews, 64: 425-444. https://doi.org/10.1016/j.oregeorev.2014.08.005 Xie, G. Q., Wu, X. L., Li, X. H., et al., 2024. A Primary Study on the Current Status and Mineralization Regularities of Associated Te and Se Resources in Porphyry-Skarn Cu Polymetallic Deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt, China. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 35-48 (in Chinese with English abstract). Xu, J., Cook, N. J., Ciobanu, C. L., et al., 2021. Indium Distribution in Sphalerite from Sulfide-Oxide-Silicate Skarn Assemblages: A Case Study of the Dulong Zn- Sn-In Deposit, Southwest China. Mineralium Deposita, 56(2): 307-324. https://doi.org/10.1007/s00126- 020-00972-y doi: 10.1007/s00126-020-00972-y Xu, W. G., Fan, H. R., Hu, F. F., et al., 2014. Gold Mineralization in the Guilaizhuang Deposit, Southwestern Shandong Province, China: Insights from Phase Relations among Sulfides, Tellurides, Selenides and Oxides. Ore Geology Reviews, 56: 276-291. https://doi.org/10.1016/j.oregeorev.2013.06.010 Xu, Y. M., Jiang, S. Y., Zhu, Z. Y., et al., 2013. Geochronology, Geochemistry and Mineralogy of Ore-Bearing and Ore-Barren Intermediate-Acid Intrusive Rocks from the Jiurui Ore District, Jiangxi Province and Their Geological Implications. Acta Petrologica Sinica, 29(12): 4291-4310 (in Chinese with English abstract). Yang, M. G., Wang, F. N., Zeng, Y., et al., 2004. Metallogenic Geology of Metals in Northern Jiangxi Province. China Land Press, Beijing (in Chinese). Yang, Z. M., Hou, Z. Q., Zhou, L. M., et al., 2020. Critical Elements in Porphyry Copper Deposits of China. Chinese Science Bulletin, 65(33): 3653-3664 (in Chinese). Ye, S. Z., Gao, R., Wu, H. X., et al., 2019. New Progress and Next Prospecting Direction of Chengmenshan Copper Deposit in Jiangxi. Mineral Exploration, 10(1): 94-101 (in Chinese with English abstract). Zhai, Y. S., Xiong, Y. L., Yao, S. Z., et al., 1996. Metallogeny of Copper and Iron Deposits in the Eastern Yangtse Craton, East-Central China. Ore Geology Reviews, 11(4): 229-248. https://doi.org/10.1016/0169-1368(96)00003-0 Zhang, Q., Liu, Y. P., Ye, L., et al., 2008. Study on Specialization of Dispersed Element Mineralization. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 247-253 (in Chinese with English abstract). Zhang, Q., Zhu, X. Q., Gao, Z. M., et al., 2005. A Review of Enrichment and Mineralization of the Dispersed Elements in China. Bulletin of Mineralogy, Petrology and Geochemistry, 24(4): 342-349 (in Chinese with English abstract). Zhao, H. T., Shao, Y. J., Zhang, Y., et al., 2023. Big Data Mining on Trace Element Geochemistry of Sphalerite. Journal of Geochemical Exploration, 252: 107254. https://doi.org/10.1016/j.gexplo.2023.107254 Zhou, T. F., Fan, Y., Chen, J., et al., 2020. Critical Metal Resources in the Middle-Lower Yangtze River Valley Metallogenic Belt. Chinese Science Bulletin, 65(33): 3665-3677 (in Chinese). Zhou, T. F., Fan, Y., Wang, S. W., et al., 2017. Metallogenic Regularity and Metallogenic Model of the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11): 3353-3372 (in Chinese with English abstract). Zhou, T. F., Fan, Y., Yuan, F., et al., 2008. A Preliminary Investigation and Evaluation of the Thallium Environmental Impacts of the Unmined Xiangquan Thallium-Only Deposit in Hexian, China. Environmental Geology, 54(1): 131-145. https://doi.org/10.1007/s00254-007-0800-0 Zhu, Q. Q., Cook, N. J., Xie, G. Q., et al., 2022. Textural and Geochemical Analysis of Celestine and Sulfides Constrain Sr-(Pb-Zn) Mineralization in the Shizilishan Deposit, Eastern China. Ore Geology Reviews, 144: 104814. https://doi.org/10.1016/j.oregeorev.2022.104814 Zhu, Q. Q., Xie, G. Q., Lu, L. F., et al., 2024. Trace Element of Epidote from the Tonglushan Cu-Fe-Au Deposit, Eastern China: Implications for Exploration Indicator for Skarn Mineralization. Ore Geology Reviews, 174: 106298. https://doi.org/10.1016/j.oregeorev.2024.106298 常印佛, 刘湘培, 吴言昌, 1991. 长江中下游铜铁成矿带. 北京: 地质出版社. 高任, 谢桂青, 查志强, 等, 2022. 江西城门山铜矿床伴生稀散金属矿化特征及其地质意义. 地质与勘探, 58(3): 514-531. 高任, 谢桂青, 冯道水, 等, 2023. 江西武山铜矿区新发现钨矿(化)体特征和其成因——来自矿相学、白钨矿原位U-Pb年代学和元素地球化学的约束. 矿床地质, 42(6): 1139-1158. 谷团, 刘玉平, 李朝阳, 2000. 分散元素的超常富集与共生. 矿物岩石地球化学通报, 19(1): 60-63. 国显正, 周涛发, 汪方跃, 等, 2021. 长江中下游成矿带城门山斑岩-矽卡岩型铜金矿床碲元素赋存状态及沉淀机制初步研究. 岩石学报, 37(9): 2723-2742. 韩颖霄, 2020. 鄂东南-赣西北矽卡岩铜金成矿作用研究——以九瑞丰山矿田和城门山矿区为例(博士学位论文). 北京: 中国地质大学. 姜永果, 周家喜, 罗开, 等, 2023. 滇东北火德红MVT矿床中铊的差异性富集机制: 来自EBSD、LA-ICPMS和TEM证据. 岩石学报, 39(10): 3002-3014. 孔凡斌, 叶少贞, 高任, 等, 2020. 江西铁路坎铜矿床铜硫矿体伴生金银特征. 中国钼业, 44(6): 14-19. 刘崇民, 吴承烈, 徐外生, 1998. 中国主要类型铜矿勘查地球化学模型. 物探与化探, 22(3): 161-165. 刘家军, 王大钊, 翟德高, 等, 2021. 低熔点亲铜元素(LMCE)熔体超常富集贵金属的机制及其识别标志. 岩石学报, 37(9): 2629-2656. 刘家军, 翟德高, 王大钊, 等, 2020. Au-(Ag)-Te-Se成矿系统与成矿作用. 地学前缘, 27(2): 79-98. 罗建安, 杨国才, 2007. 江西城门山铜矿地质特征及矿床成因. 矿产与地质, 21(3): 284-288. 马振东, 龚敏, 龚鹏, 等, 2010. 矽卡岩型铜矿找矿模型. 见: 施俊法, 唐金荣, 周平, 等, 主编, 世界找矿模型与矿产勘查. 北京: 地质出版社, 160-171. 毛景文, 杨宗喜, 谢桂青, 等, 2019. 关键矿产: 国际动向与思考. 矿床地质, 38(4): 689-698. 邵跃, 1997. 热液矿床岩石测量(原生晕法)找矿. 北京: 地质出版社. 申维, 2007. 分形求和法及其在地球化学数据分组中的应用. 物探化探计算技术, 29(2): 134-137. 舒全安, 陈培良, 程建荣, 1992. 鄂东铁铜矿产地质. 北京: 冶金工业出版社. 陶琰, 胡瑞忠, 唐永永, 等, 2019. 西南地区稀散元素伴生成矿的主要类型及伴生富集规律. 地质学报, 93(6): 1210-1230. 涂光炽, 2000. 初论碲的成矿问题. 矿物岩石地球化学通报, 19(4): 211-214. 涂光炽, 高振敏, 胡瑞忠, 等, 2004. 分散元素地球化学及成矿机制. 北京: 地质出版社. 王登红, 孙艳, 代鸿章, 等, 2019. 我国"三稀矿产" 的资源特征及开发利用研究. 中国工程科学, 21(1): 119-127. 王海, 付海平, 李永胜, 等, 2023. 江西通江岭铜(钨)矿床石榴子石和锆石LA-ICP-MS原位U-Pb定年及其地质意义. 地质学报, 97(7): 2281-2292. 温汉捷, 周正兵, 朱传威, 等, 2019. 稀散金属超常富集的主要科学问题. 岩石学报, 35(11): 3271-3291. 温汉捷, 朱传威, 杜胜江, 等, 2020. 中国镓锗铊镉资源. 科学通报, 65(33): 3688-3699. 吴良士, 邹晓秋, 1997. 江西城门山铜矿铼-锇同位素年龄研究. 矿床地质, 16(4): 376-381. 谢桂青, 韩颖霄, 李新昊, 2019. 长江中下游成矿带含稀散金属矿床特征初探. 矿床地质, 38(4): 729-738. 谢桂青, 吴晓林, 李新昊, 等, 2024. 长江中下游斑岩-矽卡岩铜多金属矿床共伴生碲、硒资源现状和成矿规律浅析. 矿物岩石地球化学通报, 43(1): 35-48. 徐耀明, 蒋少涌, 朱志勇, 等, 2013. 江西九瑞矿集区成矿与未成矿中酸性侵入岩年代学、岩石化学、矿物化学特征的异同及地质意义. 岩石学报, 29(12): 4291-4310. 杨明桂, 王发宁, 曾勇, 等, 2004. 江西北部金属成矿地质. 北京: 中国大地出版社. 杨志明, 侯增谦, 周利敏, 等, 2020. 中国斑岩铜矿床中的主要关键矿产. 科学通报, 65(33): 3653-3664. 叶少贞, 高任, 吴火星, 等, 2019. 江西城门山铜矿找矿新成果及下步找矿方向. 矿产勘查, 10(1): 94-101. 张乾, 刘玉平, 叶霖, 等, 2008. 分散元素成矿专属性探讨. 矿物岩石地球化学通报, 27(3): 247-253. 张乾, 朱笑青, 高振敏, 等, 2005. 中国分散元素富集与成矿研究新进展. 矿物岩石地球化学通报, 24(4): 342-349. 周涛发, 范裕, 陈静, 等, 2020. 长江中下游成矿带关键金属矿产研究现状与进展. 科学通报, 65(33): 3665-3677. 周涛发, 范裕, 王世伟, 等, 2017. 长江中下游成矿带成矿规律和成矿模式. 岩石学报, 33(11): 3353-3372. -