Oil Content and Its Occurrence State of Lower Member of Shahejie Formation Shale in Dongying Sag
-
摘要: 渤海湾盆地东营凹陷沙河街组页岩是当前页岩油勘探开发的重点层系之一,但其矿物组分复杂、纹层类型多样,导致页岩油有利区分布非均质性强、难预测,油气开发效果差异显著.以东营凹陷沙河街组三段下亚段(沙三下段)陆相富有机质页岩为例,结合岩心观察、薄片观测、矿物成分分析、分步热解、低温氮气吸附和场发射扫描电镜等技术,明确了不同类型页岩储集性和含油性差异,厘清了页岩油赋存的孔隙大小、可动油下限,探讨了页岩油含量影响因素.结果表明沙河街组页岩油赋存孔隙空间类型多样,包括纹层缝和多种类型粒间孔隙,在常温常压条件下,滞留油在纳米尺度范围内主要储集在15~100 nm范围内的孔隙中,游离油赋存的孔径下限约为3 nm.有机质丰度是页岩油形成和富集的物质基础,足够大的储集空间则为保持充足的滞留烃数量提供了有效保障.因此,具有高TOC含量、高孔隙度的富有机质纹层状灰质页岩和富有机质纹层状混合质页岩含油性好、游离油含量高,是研究区最有利的页岩岩相类型.研究结果为进一步深化陆相页岩油富集机制与优化开发策略提供了重要依据.Abstract: The Shahejie Formation shale in Dongying sag is one of the key formations in shale oil exploration and development. However, its complex mineral composition and diverse laminae types result in strong heterogeneity in the distribution of favorable shale oil zones, posing significant challenges for prediction and leading to highly variable development outcomes. In this study it focuses on the organic-rich lacustrine shale of the lower third member of the Shahejie Formation (Sha-3 lower member) as a case study. By employing techniques such as core observation, thin section analysis, mineral composition testing, stepwise pyrolysis, low-temperature nitrogen adsorption, and field emission scanning electron microscopy (FE-SEM), the study characterizes variations in reservoir quality and oil-bearing potential among different shale types. The analysis clarifies the pore size distribution for shale oil occurrence and identifies the lower pore size limit for movable oil, while exploring factors influencing shale oil content. The Shahejie Formation shale features diverse pore types, including laminar fractures and various intergranular pores. Under ambient temperature and pressure, residual shale oil is mainly stored in the pores of 15-100 nm in the nanoscale range, with a lower pore size limit of approximately 3 nm for free oil occurrence. Organic matter abundance (TOC) provides the material foundation for shale oil generation and enrichment, while sufficiently large reservoir spaces ensure the retention of significant hydrocarbon quantities. Among the studied shale lithofacies, organic-rich laminated calcareous shale and laminated mixed shale with high TOC content and high porosity demonstrate superior oil-bearing potential and higher free oil content, making them the most favorable lithofacies in the study area. These findings offer critical insights for advancing the understanding of lacustrine shale oil enrichment mechanisms and optimizing development strategies.
-
Key words:
- shale oil /
- reservoir quality /
- oil-bearing potential /
- movable oil threshold /
- Jiyang depression /
- petroleum geology
-
图 1 渤海湾盆地东营凹陷区域位置图和综合柱状图
Fig. 1. Location map and comprehensive stratigraphic column of the Dongying sag in the Bohai Bay basin
-
Cui, F. L., Jin, X., Liu, H., et al., 2022. Molecular Modeling on Gulong Shale Oil and Wettability of Reservoir Matrix. Capillarity, 5(4): 65-74. https://doi.org/10.46690/capi.2022.04.01 Dang, W., Nie, H. K., Zhang, J. C., et al., 2022. Pore-Scale Mechanisms and Characterization of Light Oil Storage in Shale Nanopores: New Method and Insights. Geoscience Frontiers, 13(5): 101424. https://doi.org/10.1016/j.gsf.2022.101424 Feng, Y. L., Li, S. T., Lu, Y. C., 2013. Sequence Stratigraphy and Architectural Variability in Late Eocene Lacustrine Strata of the Dongying Depression, Bohai Bay Basin, Eastern China. Sedimentary Geology, 295: 1-26. https://doi.org/10.1016/j.sedgeo.2013.07.004 Gou, Q. Y., Xu, S., Hao, F., et al., 2019. Full-Scale Pores and Micro-Fractures Characterization Using FE-SEM, Gas Adsorption, Nano-CT and Micro-CT: A Case Study of the Silurian Longmaxi Formation Shale in the Fuling Area, Sichuan Basin, China. Fuel, 253: 167-179. https://doi.org/10.1016/j.fuel.2019.04.116. Gou, Q. Y., Xu, S., Hao, F., et al., 2023. Petrography and Mineralogy Control the Nm-Μm-Scale Pore Structure of Saline Lacustrine Carbonate-Rich Shales from the Jianghan Basin, China. Marine and Petroleum Geology, 155: 106399. https://doi.org/10.1016/j.marpetgeo.2023.106399 Guo, X. S., Ma, X. X., Li, M. W., et al., 2023. Mechanisms for Lacustrine Shale Oil Enrichment in Chinese Sedimentary Basins. Oil & Gas Geology, 44(6): 1333-1349(in Chinese with English abstract). Hao, F., Liu, K. Y., 2024. Introduction for the Special Issue on Deep Petroleum Systems. AAPG Bulletin, 108(7): 1189-1191. https://doi.org/10.1306/bltnintro042324 Jia, C. Z., Wang, Z. G., Jiang, L., et al., 2024. Progress and Key Scientific and Technological Problems of Shale Oil Exploration and Development in China. World Petroleum Industry, 31(4): 1-11, 13(in Chinese with English abstract). Jiang, Q. G., Li, M. W., Qian, M. H., et al., 2016. Quantitative Characterization of Shale Oil in Different Occurrence States and Its Application. Petroleum Geology & Experiment, 38(6): 842-849(in Chinese with English abstract). Jin, Z. J., Zhang, Q., Zhu, R. K., et al., 2023. Classification of Lacustrine Shale Oil Reservoirs in China and Its Significance. Oil & Gas Geology, 44(4): 801-819(in Chinese with English abstract). Kuila, U., McCarty, D. K., Derkowski, A., et al., 2014. Nano-Scale Texture and Porosity of Organic Matter and Clay Minerals in Organic-Rich Mudrocks. Fuel, 135: 359-373. https://doi.org/10.1016/j.fuel.2014.06.036 Li, Z. M., Sun, Z. L., Li, M. W., et al., 2023. Cause Analyses of "Failure" for First Round Shale Oil Exploration Wells in Jiyang Depression. Earth Science, 48(1): 143-157(in Chinese with English abstract). Liu, B., Wang, L., Fu, X. F., et al., 2023. Identification, Evolution and Geological Indications of Solid Bitumen in Shales: A Case Study of the First Member of Cretaceous Qingshankou Formation in Songliao Basin, NE China. Petroleum Exploration and Development, 50(6): 1173-1184(in Chinese with English abstract). Liu, H. M., Wang, Y., Yang, Y. H., et al., 2020. Sedimentary Environment and Lithofacies of Fine-Grained Hybrid Sedimentary in Dongying Sag: A Case of Fine-Grained Sedimentary System of the Es4. Earth Science, 45(10): 3543-3555(in Chinese with English abstract). Mohammadi, M., Sedighi, M., 2013. Modification of Langmuir Isotherm for the Adsorption of Asphaltene or Resin onto Calcite Mineral Surface: Comparison of Linear and Non-Linear Methods. Protection of Metals and Physical Chemistry of Surfaces, 49(4): 460-470. https://doi.org/10.1134/S2070205113040205 Ribeiro, R. C., Correia, J. C. G., Seidl, P. R., 2009. The Influence of Different Minerals on the Mechanical Resistance of Asphalt Mixtures. Journal of Petroleum Science and Engineering, 65(3-4): 171-174. https://doi.org/10.1016/j.petrol.2008.12.025 Shi, J. Y., Jin, Z. J., Liu, Q. Y., et al., 2020. Lithofacies Classification and Origin of the Eocene Lacustrine Fine-Grained Sedimentary Rocks in the Jiyang Depression, Bohai Bay Basin, Eastern China. Journal of Asian Earth Sciences, 194: 104002. https://doi.org/10.1016/j.jseaes.2019.104002 Wang, M., Li, M., Li, J. B., et al., 2022. The Key Parameter of Shale Oil Resource Evaluation: Oil Content. Petroleum Science, 19(4): 1443-1459. https://doi.org/10.1016/j.petsci.2022.03.006 Wang, M., Ma, R., Li, J. B., et al., 2019. Occurrence Mechanism of Lacustrine Shale Oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 46(4): 789-802(in Chinese with English abstract). Wang, S., Feng, Q. H., Zha, M., et al., 2015. Molecular Dynamics Simulation of Liquid Alkane Occurrence State in Pores and Fractures of Shale Organic Matter. Petroleum Exploration and Development, 42(6): 772-778(in Chinese with English abstract). Wang, Y. F., Xu, S., Hao, F., et al., 2025. Machine Learning-Based Grayscale Analyses for Lithofacies Identification of the Shahejie Formation, Bohai Bay Basin, China. Petroleum Science, 22(1): 42-54. https://doi.org/10.1016/j.petsci.2024.07.021 Xu, S., Wen, J., Gou, Q. Y., et al., 2024a. Research Progress and Significance of Shale Oil Micro-Migration. Journal of Earth Science, 35(5): 1765-1769. https://doi.org/10.1007/s12583-024-0071-7 Xu, S., Wen, J., Liu, K. Q., et al., 2024b. Brittle Minerals, Mechanical Properties and Fracability Evaluation of Shales. Advances in Geo-Energy Research, 14(1): 8-11. https://doi.org/10.46690/ager.2024.10.03 Yang, Y., 2024. Shale Oil Development Techniques and Application Based on Ternary-Element Storage and Flow Concept in Jiyang Depression, Bohai Bay Basin, East China. Petroleum Exploration and Development, 51(2): 337-347(in Chinese with English abstract). Zhang, S., Liu, H. M., Wang, M., et al., 2018. Pore Evolution of Shale Oil Reservoirs in Dongying Sag. Acta Petrolei Sinica, 39(7): 754-766(in Chinese with English abstract). Zhao, W. Z., Bian, C. S., Pu, X. G., et al., 2023. Enrichment and Flow Characteristics of Shale Oil in Typical Salinized Lake Basins in China and Its Significance for "Sweet Spot" Evaluation. Journal of China University of Petroleum (Edition of Natural Science), 47(5): 25-37(in Chinese with English abstract). Zou, C. N., Ma, F., Pan, S. Q., et al., 2023. Formation and Distribution Potential of Global Shale Oil and the Developments of Continental Shale Oil Theory and Technology in China. Earth Science Frontiers, 30(1): 128-142(in Chinese with English abstract). 郭旭升, 马晓潇, 黎茂稳, 等, 2023. 陆相页岩油富集机理探讨. 石油与天然气地质, 44(6): 1333-1349. 贾承造, 王祖纲, 姜林, 等, 2024. 中国页岩油勘探开发研究进展与科学技术问题. 世界石油工业, 31(4): 1-11, 13. 蒋启贵, 黎茂稳, 钱门辉, 等, 2016. 不同赋存状态页岩油定量表征技术与应用研究. 石油实验地质, 38(6): 842-849. 金之钧, 张谦, 朱如凯, 等, 2023. 中国陆相页岩油分类及其意义. 石油与天然气地质, 44(4): 801-819. 李志明, 孙中良, 黎茂稳, 等, 2023. 济阳坳陷第一轮页岩油探井"失利" 原因剖析. 地球科学, 48(1): 143-157. doi: 10.3799/dqkx.2022.444 柳波, 王柳, 付晓飞, 等, 2023. 页岩中固体沥青的识别、演化路径及地质意义: 以松辽盆地白垩系青山口组一段为例. 石油勘探与开发, 50(6): 1173-1184. 刘惠民, 王勇, 杨永红, 等, 2020. 东营凹陷细粒混积岩发育环境及其岩相组合: 以沙四上亚段泥页岩细粒沉积为例. 地球科学, 45(10): 3543-3555. doi: 10.3799/dqkx.2020.156 王民, 马睿, 李进步, 等, 2019. 济阳坳陷古近系沙河街组湖相页岩油赋存机理. 石油勘探与开发, 46(4): 789-802. 王森, 冯其红, 查明, 等, 2015. 页岩有机质孔缝内液态烷烃赋存状态分子动力学模拟. 石油勘探与开发, 42(6): 772-778. 杨勇, 2024. 济阳页岩油开发"三元" 储渗理论技术与实践. 石油勘探与开发, 51(2): 337-347. 张顺, 刘惠民, 王敏, 等, 2018. 东营凹陷页岩油储层孔隙演化. 石油学报, 39(7): 754-766. 赵文智, 卞从胜, 蒲秀刚, 等, 2023. 中国典型咸化湖盆页岩油富集与流动特征及在"甜点" 评价中的意义. 中国石油大学学报(自然科学版), 47(5): 25-37. 邹才能, 马锋, 潘松圻, 等, 2023. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展. 地学前缘, 30(1): 128-142. -