• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华南主要大河新生代演化:南海北缘沉积学记录的制约

    张增杰 田云涛 孙习林 闫义

    张增杰, 田云涛, 孙习林, 闫义, 2025. 华南主要大河新生代演化:南海北缘沉积学记录的制约. 地球科学, 50(7): 2775-2790. doi: 10.3799/dqkx.2025.027
    引用本文: 张增杰, 田云涛, 孙习林, 闫义, 2025. 华南主要大河新生代演化:南海北缘沉积学记录的制约. 地球科学, 50(7): 2775-2790. doi: 10.3799/dqkx.2025.027
    Zhang Zengjie, Tian Yuntao, Sun Xilin, Yan Yi, 2025. Cenozoic Evolution of Large Rivers in South China: Constraints from Sedimentary Archive in Northern South China Sea. Earth Science, 50(7): 2775-2790. doi: 10.3799/dqkx.2025.027
    Citation: Zhang Zengjie, Tian Yuntao, Sun Xilin, Yan Yi, 2025. Cenozoic Evolution of Large Rivers in South China: Constraints from Sedimentary Archive in Northern South China Sea. Earth Science, 50(7): 2775-2790. doi: 10.3799/dqkx.2025.027

    华南主要大河新生代演化:南海北缘沉积学记录的制约

    doi: 10.3799/dqkx.2025.027
    基金项目: 

    国家自然科学基金项目 42271008

    国家自然科学基金项目 42171008

    南方海洋科学与工程广东省实验室(珠海)自主科研项目 SML2021SP315

    详细信息
      作者简介:

      张增杰(1988-),男,副教授,主要从事河流地貌与沉积学研究.ORCID:0000-0001-7627-9480. E-mail:zhangzj55@mail.sysu.edu.cnzhangzj55@mail.sysu.edu.cn

    • 中图分类号: P67

    Cenozoic Evolution of Large Rivers in South China: Constraints from Sedimentary Archive in Northern South China Sea

    • 摘要: 印度‒欧亚大陆碰撞和青藏高原隆升,深刻地改变了亚洲地形及气候格局,引发了大河水系的重大调整.近年来,南海北缘大河演化成为地学研究的前沿和热点问题.近海油气勘探和国际大洋钻探计划(IODP)的实施,为重建华南主要大河演化提供了连续且年代精确的沉积记录.梳理了近20年来南海北缘新生代盆地的沉积物源研究,讨论了华南主要大河演化(包括红河和珠江等)的沉积学研究进展.莺歌海盆地物源研究显示,晚始新世以来红河是该盆地主要物源供给者;并且莺歌海盆地与青藏高原东南缘其他大河(包括怒江、澜沧江和长江等)的物源信号差异较大(如碎屑锆石U-Pb年龄和钾长石Pb同位素等),表明晚始新世以来这些大河并未汇入莺歌海盆地,即青藏高原东南缘并不存在巨型古红河.珠江口盆地在始新世‒早渐新世主要由华南南缘供给沉积物,指示古珠江流域范围较小;晚渐新世在南海打开的驱动下,古珠江向西扩展至青藏东南缘.台湾新生代地层的物源区在晚渐新世由华南沿海转变为武夷山,暗示着古闽江向西扩展.华南沿海主要大河(包括珠江和闽江等)在晚渐新世均经历了由中小型水系向内陆拓展的过程,与南海打开时限基本吻合,表明南海打开控制了这些大河的演化.

       

    • 图  1  南海北缘主要大河及新生代盆地分布

      Fig.  1.  Sketch map showing the large rivers and Cenozoic basins in the northern South China Sea

      图  2  莺歌海盆地、珠江口盆地及台湾西部麓山带新生代地层

      Fig.  2.  Cenozoic stratal sequences correlation of the eastern Asian offshore basins, including the Yinggehai Basin, Pearl River Mouth Basin, and Taiwan

      图  3  南海北部新生代地层Nd同位素组成

      引自Clift et al., 2006Jin et al., 2022Lan et al., 2016Li et al., 2003Yan et al., 2018. 灰色线条代表了红河和珠江的Nd同位素比值

      Fig.  3.  The variations of Nd isotopic composition in northern South China Sea

      图  4  莺歌海盆地新生代地层碎屑锆石U-Pb年龄分布

      下部和上部浅灰色区域分别代表了莺歌海盆地的近源供给和远源供给.数据来源:下渐新统(Lei et al., 2019Shao et al., 2016);上渐新统(Lei et al., 2019Yan et al., 2011);中新统和上新统(Cao et al., 2015Jiang et al., 2015Wang et al., 2014, 2016, 2018);红河(Clift et al., 2006Van Hoang et al., 2009);海南岛河流(Wang et al., 2015

      Fig.  4.  Compilation of detrital zircon U-Pb ages from the Yinggehai Basin, Red and Hainan Rivers

      图  5  莺歌海盆地钾长石Pb同位素组成及与潜在源区的对比(Clift et al., 2008; Zhang et al., 2021

      Fig.  5.  Compiled Pb isotopic data of detrital K-feldspar of the Yinggehai Basin, compared with potential sources (Clift et al., 2008; Zhang et al., 2021)

      图  6  珠江口盆地新生界碎屑锆石U-Pb年龄组成

      数据来源:Cao et al., 2018Shao et al., 2016Yan et al., 2018Zeng et al., 2019阙晓铭等,2024

      Fig.  6.  Compilation of detrital zircon U-Pb ages from the Pearl River Mouth Basin

      图  7  珠江口盆地新生代地层钾长石Pb同位素组成(Zhang et al., 2023

      Fig.  7.  Pb isotopic data of detrital K-feldspar of the Pearl River Mouth Basin (Zhang et al., 2023)

      图  8  台湾碎屑锆石U-Pb年龄分布

      数据来源:He et al., 2013Lan et al., 2016Xu et al., 2016Yang et al., 2012Zhang et al., 2017

      Fig.  8.  Compilation of detrital zircon U-Pb ages from Taiwan

      图  9  台湾新生界碎屑钾长石Pb同位素组成(Zhang et al., 2022

      Fig.  9.  Pb isotopic data of detrital K-feldspar of Cenozoic deposits in Taiwan (Zhang et al., 2022)

    • An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times. Nature, 411(6833): 62-66. https://doi.org/10.1038/35075035
      Bodet, F., Schärer, U., 2001. Pb Isotope Systematics and Time-Integrated Th/U of SE-Asian Continental Crust Recorded by Single K-Feldspar Grains in Large Rivers. Chemical Geology, 177(3-4): 265-285. https://doi.org/10.1016/S0009-2541(00)00413-7
      Brookfield, M. E., 1998. The Evolution of the Great River Systems of Southern Asia during the Cenozoic India-Asia Collision: Rivers Draining Southwards. Geomorphology, 22(3-4): 285-312. https://doi.org/10.1016/S0169-555X(97)00082-2
      Brookfield, M. E., 2008. Evolution of the Great River Systems of Southern Asia during the Cenozoic India-Asia Collision: Rivers Draining North from the Pamir Syntaxis. Geomorphology, 100(3-4): 296-311. https://doi.org/10.1016/j.geomorph.2008.01.003
      Cao, L. C., Jiang, T., Wang, Z. F., et al., 2015. Provenance of Upper Miocene Sediments in the Yinggehai and Qiongdongnan Basins, Northwestern South China Sea: Evidence from REE, Heavy Minerals and Zircon U-Pb Ages. Marine Geology, 361: 136-146. https://doi.org/10.1016/j.margeo.2015.01.007
      Cao, L. C., Shao, L., Qiao, P. J., et al., 2018. Early Miocene Birth of Modern Pearl River Recorded Low-Relief, High-Elevation Surface Formation of SE Tibetan Plateau. Earth and Planetary Science Letters, 496: 120-131. https://doi.org/10.1016/j.epsl.2018.05.039
      Caracciolo, L., 2020. Sediment Generation and Sediment Routing Systems from a Quantitative Provenance Analysis Perspective: Review, Application and Future Development. Earth-Science Reviews, 209: 103226. https://doi.org/10.1016/j.earscirev.2020.103226
      Chen, C. H., Lee, C. Y., Lin, J. W., et al., 2019. Provenance of Sediments in Western Foothills and Hsuehshan Range (Taiwan): A New View Based on the EMP Monazite versus LA-ICPMS Zircon Geochronology of Detrital Grains. Earth-Science Reviews, 190: 224-246. https://doi.org/10.1016/j.earscirev.2018.12.015
      Chen, C. M., Shi, H. S., Xu, S. C., et al., 2003. Formation Conditions of Tertiary Oil and Gas Reservoirs in the Eastern Pearl River Mouth Basin. Geological Publishing House, Beijing (in Chinese).
      Chen, Y., Yan, M. D., Fang, X. M., et al., 2017. Detrital Zircon U-Pb Geochronological and Sedimentological Study of the Simao Basin, Yunnan: Implications for the Early Cenozoic Evolution of the Red River. Earth and Planetary Science Letters, 476: 22-33. https://doi.org/10.1016/j.epsl.2017.07.025
      Clark, M. K., Schoenbohm, L. M., Royden, L. H., et al., 2004. Surface Uplift, Tectonics, and Erosion of Eastern Tibet from Large-Scale Drainage Patterns. Tectonics, 23(1): TC1006. https://doi.org/10.1029/2002tc001402
      Clift, P. D., Blusztajn, J., Nguyen, A. D., 2006. Large-Scale Drainage Capture and Surface Uplift in Eastern Tibet-SW China before 24 Ma Inferred from Sediments of the Hanoi Basin, Vietnam. Geophysical Research Letters, 33(19): L19403. https://doi.org/10.1029/2006gl027772
      Clift, P. D., Long, H. V., Hinton, R., et al., 2008. Evolving East Asian River Systems Reconstructed by Trace Element and Pb and Nd Isotope Variations in Modern and Ancient Red River-Song Hong Sediments. Geochemistry, Geophysics, Geosystems, 9(4): Q04039. https://doi.org/10.1029/2007GC001867
      Deng, K., Yang, S. Y., Li, C., et al., 2017. Detrital Zircon Geochronology of River Sands from Taiwan: Implications for Sedimentary Provenance of Taiwan and Its Source Link with the East China Mainland. Earth-Science Reviews, 164: 31-47. https://doi.org/10.1016/j.earscirev.2016.10.015
      Flowerdew, M. J., Tyrrell, S., Riley, T. R., et al., 2012. Distinguishing East and West Antarctic Sediment Sources Using the Pb Isotope Composition of Detrital K-Feldspar. Chemical Geology, 292-293: 88-102. https://doi.org/10.1016/j.chemgeo.2011.11.006
      Garzanti, E., Vermeesch, P., Andò, S., et al., 2013. Provenance and Recycling of Arabian Desert Sand. Earth-Science Reviews, 120: 1-19. https://doi.org/10.1016/j.earscirev.2013.01.005
      Guo, Z. T., Sun, B., Zhang, Z. S., et al., 2008. A Major Reorganization of Asian Climate by the Early Miocene. Climate of the Past, 4(3): 153-174. https://doi.org/10.5194/cp-4-153-2008
      He, M. Y., Zheng, H. B., Clift, P. D., 2013. Zircon U-Pb Geochronology and Hf Isotope Data from the Yangtze River Sands: Implications for Major Magmatic Events and Crustal Evolution in Central China. Chemical Geology, 360-361: 186-203. https://doi.org/10.1016/j.chemgeo.2013.10.020
      Huang, C. Y., Yen, Y., Zhao, Q. H., et al., 2012. Cenozoic Stratigraphy of Taiwan: Window into Rifting, Stratigraphy and Paleoceanography of South China Sea. Chinese Science Bulletin, 57(24): 3130-3149. https://doi.org/10.1007/s11434-012-5349-y
      Jiang, T., Cao, L. C., Xie, X. N., et al., 2015. Insights from Heavy Minerals and Zircon U-Pb Ages into the Middle Miocene-Pliocene Provenance Evolution of the Yinggehai Basin, Northwestern South China Sea. Sedimentary Geology, 327: 32-42. https://doi.org/10.1016/j.sedgeo.2015.07.011
      Jin, H. L., Wan, S. M., Clift, P. D., et al., 2022. Birth of the Pearl River at 30 Ma: Evidence from Sedimentary Records in the Northern South China Sea. Earth and Planetary Science Letters, 600: 117872. https://doi.org/10.1016/j.epsl.2022.117872
      Kong, P., Zheng, Y., Caffee, M. W., 2012. Provenance and Time Constraints on the Formation of the First Bend of the Yangtze River. Geochemistry, Geophysics, Geosystems, 13(6): Q06017. https://doi.org/10.1029/2012gc004140
      Lan, Q., Yan, Y., Huang, C. Y., et al., 2014. Tectonics, Topography, and River System Transition in East Tibet: Insights from the Sedimentary Record in Taiwan. Geochemistry, Geophysics, Geosystems, 15(9): 3658-3674. https://doi.org/10.1002/2014gc005310
      Lan, Q., Yan, Y., Huang, C. Y., et al., 2016. Topographic Architecture and Drainage Reorganization in South East China: Zircon U-Pb Chronology and Hf Isotope Evidence from Taiwan. Gondwana Research, 36: 376-389. https://doi.org/10.1016/j.gr.2015.07.008
      Larsen, H. C., Mohn, G., Nirrengarten, M., et al., 2018. Rapid Transition from Continental Breakup to Igneous Oceanic Crust in the South China Sea. Nature Geoscience, 11(10): 782-789. https://doi.org/10.1038/s41561-018-0198-1
      Lee, C. Y., 1934. The Development of the Upper Yangtze Valley. Bulletin of the Geological Society of China, 13(1): 107-118. https://doi.org/10.1111/j.1755-6724.1934.mp13001006.x
      Lei, C., 2012. Analysis of Cenozoic Tectonic Deformation Pattern and Its Evolution Process in Yinggehai-Qiongdongnan Basin in the Northern South China Sea (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Lei, C., Clift, P. D., Ren, J. Y., et al., 2019. A Rapid Shift in the Sediment Routing System of Lower-Upper Oligocene Strata in the Qiongdongnnan Basin (Xisha Trough), Northwest South China Sea. Marine and Petroleum Geology, 104: 249-258. https://doi.org/10.1016/j.marpetgeo.2019.03.012
      Lei, C., Ren, J. Y., Sternai, P., et al., 2015. Structure and Sediment Budget of Yinggehai-Song Hong Basin, South China Sea: Implications for Cenozoic Tectonics and River Basin Reorganization in Southeast Asia. Tectonophysics, 655(2): 177-190. https://doi.org/10.1016/j.tecto.2015.05.024
      Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567
      Li, X. H., Wei, G. J., Shao, L., et al., 2003. Geochemical and Nd Isotopic Variations in Sediments of the South China Sea: A Response to Cenozoic Tectonism in SE Asia. Earth and Planetary Science Letters, 211(3-4): 207-220. https://doi.org/10.1016/S0012-821X(03)00229-2
      Liu, C., Stockli, D. F., Clift, P. D., et al., 2022. Geochronological and Geochemical Characterization of Paleo-Rivers Deposits during Rifting of the South China Sea. Earth and Planetary Science Letters, 584: 117427. https://doi.org/10.1016/j.epsl.2022.117427
      Liu, J. P., Li, A. C., Xu, K. H., et al., 2006. Sedimentary Features of the Yangtze River-Derived Along-Shelf Clinoform Deposit in the East China Sea. Continental Shelf Research, 26(17-18): 2141-2156. https://doi.org/10.1016/j.csr.2006.07.013
      Liu, J. P., Xu, K. H., Li, A. C., et al., 2007. Flux and Fate of Yangtze River Sediment Delivered to the East China Sea. Geomorphology, 85(3-4): 208-224. https://doi.org/10.1016/j.geomorph.2006.03.023
      Liu, Z. F., Zhao, Y. L., Colin, C., et al., 2016. Source-to-Sink Transport Processes of Fluvial Sediments in the South China Sea. Earth-Science Reviews, 153: 238-273. https://doi.org/10.1016/j.earscirev.2015.08.005
      Malusà, M. G., Resentini, A., Garzanti, E., 2016. Hydraulic Sorting and Mineral Fertility Bias in Detrital Geochronology. Gondwana Research, 31: 1-19. https://doi.org/10.1016/j.gr.2015.09.002
      Nie, J. S., Ruetenik, G., Gallagher, K., et al., 2018. Rapid Incision of the Mekong River in the Middle Miocene Linked to Monsoonal Precipitation. Nature Geoscience, 11(12): 944-948. https://doi.org/10.1038/s41561-018-0244-z
      Pang, X., Chen, C. M., Shao, L., et al., 2007. Baiyun Movement, a Great Tectonic Event on the Oligocene-Miocene Boundary in the Northern South China Sea and Its Implications. Geological Review, 53(2): 145-151 (in Chinese with English abstract).
      Pang, X., Chen, C. M., Zhu, M., et al., 2009. Baiyun Movement: A Significant Tectonic Event on Oligocene/Miocene Boundary in the Northern South China Sea and Its Regional Implications. Journal of Earth Science, 20(1): 49-56. https://doi.org/10.1007/s12583-009-0005-4
      Que, X. M., Shu, Y., Wang, X. D., et al., 2024. Provenance Characteristics and Sedimentary Evolution of Zhu Ⅰ Depression in Paleogene: Indications from Detrital Zircon Ages. Earth Science, 49(7): 2373-2387 (in Chinese with English abstract).
      Ren, J. Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361 (in Chinese with English abstract).
      Ren, J. Y., Lei, C., 2011. Tectonic Stratigraphic Framework of Yinggehai-Qiongdongnan Basins and Its Implication for Tectonic Province Division in South China Sea. Chinese Journal of Geophysics, 54(12): 3303-3314 (in Chinese with English abstract).
      Ren, J. Y., Tamaki, K., Li, S. T., et al., 2002. Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas. Tectonophysics, 344(3-4): 175-205. https://doi.org/10.1016/S0040-1951(01)00271-2
      Ren, M. E., Bao, H. S., Han, T. C., et al., 1959. Geomorphology and River Capture in Jinsha River Valley in Northwest Yunnan. Acta Geographica Sinica, 25(2): 135-155 (in Chinese with English abstract).
      Shao, L., Cao, L. C., Pang, X., et al., 2016. Detrital Zircon Provenance of the Paleogene Syn-Rift Sediments in the Northern South China Sea. Geochemistry, Geophysics, Geosystems, 17(2): 255-269. https://doi.org/10.1002/2015gc006113
      Shao, L., Pang, X., Qiao, P. J., et al., 2008. Sedimentary Filling of the Pearl River Mouth Basin and Its Response to the Evolution of the Pearl River. Acta Sedimentologica Sinica, 26(2): 179-185 (in Chinese with English abstract).
      Shao, L., Qiao, P. J., Zhao, M., et al., 2016. Depositional Characteristics of the Northern South China Sea in Response to the Evolution of the Pearl River. Geological Society, London, Special Publications, 429(1): 31-44. https://doi.org/10.1144/SP429.2
      Shao, L., Zhao, M., Qiao, P. J., et al., 2013. The Characteristics of the Sediment in Northern South China Sea and Its Response to the Evolution of the Pearl River. Quaternary Sciences, 33(4): 760-770 (in Chinese with English abstract).
      Shao, W. Y., Chung, S. L., Chen, W. S., et al., 2015. Old Continental Zircons from a Young Oceanic Arc, Eastern Taiwan: Implications for Luzon Subduction Initiation and Asian Accretionary Orogeny. Geology, 43(6): 479-482. https://doi.org/10.1130/g36499.1
      Sun, X. J., Wang, P. X., 2005. How Old is the Asian Monsoon System?-Palaeobotanical Records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222(3-4): 181-222. https://doi.org/10.1016/j.palaeo.2005.03.005
      Suo, Y. H., Li, S. Z., Zhao, S. J., et al., 2015. Continental Margin Basins in East Asia: Tectonic Implications of the Meso-Cenozoic East China Sea Pull-Apart Basins. Geological Journal, 50(2): 139-156. https://doi.org/10.1002/gj.2535
      Suo, Y. H., Li, S. Z., Dai, L. M., et al., 2012. Cenozoic Tectonic Migration and Basin Evolution in East Asia and Its Continental Margins. Acta Petrologica Sinica, 28(8): 2602-2618 (in Chinese with English abstract).
      Tyrrell, S., Haughton, P. D. W., Daly, J. S., 2007. Drainage Reorganization during Breakup of Pangea Revealed by In-Situ Pb Isotopic Analysis of Detrital K-Feldspar. Geology, 35(11): 971-974. https://doi.org/10.1130/g4123a.1
      Van Hoang, L., Wu, F. Y., Clift, P. D., et al., 2009. Evaluating the Evolution of the Red River System Based on In Situ U-Pb Dating and Hf Isotope Analysis of Zircons. Geochemistry, Geophysics, Geosystems, 10(11): Q11008. https://doi.org/10.1029/2009gc002819
      Wang, C., Liang, X. Q., Foster, D. A., et al., 2016. Zircon U-Pb Geochronology and Heavy Mineral Composition Constraints on the Provenance of the Middle Miocene Deep-Water Reservoir Sedimentary Rocks in the Yinggehai-Song Hong Basin, South China Sea. Marine and Petroleum Geology, 77: 819-834. https://doi.org/10.1016/j.marpetgeo.2016.05.009
      Wang, C., Liang, X. Q., Foster, D. A., et al., 2019. Linking Source and Sink: Detrital Zircon Provenance Record of Drainage Systems in Vietnam and the Yinggehai-Song Hong Basin, South China Sea. GSA Bulletin, 131(1-2): 191-204. https://doi.org/10.1130/b32007.1
      Wang, C., Liang, X. Q., Foster, D. A., et al., 2019. Provenance and Drainage Evolution of the Red River Revealed by Pb Isotopic Analysis of Detrital K-Feldspar. Geophysical Research Letters, 46(12): 6415-6424. https://doi.org/10.1029/2019gl083000
      Wang, C., Liang, X. Q., Xie, Y. H., et al., 2014. Provenance of Upper Miocene to Quaternary Sediments in the Yinggehai-Song Hong Basin, South China Sea: Evidence from Detrital Zircon U-Pb Ages. Marine Geology, 355: 202-217. https://doi.org/10.1016/j.margeo.2014.06.004
      Wang, P. X., 2005. Cenozoic Deformation and History of Sea-Land Interactions in Asia. Earth Science, 30(1): 1-18 (in Chinese with English abstract).
      Wang, W., Bidgoli, T., Yang, X. H., et al., 2018. Source-to-Sink Links between East Asia and Taiwan from Detrital Zircon Geochronology of the Oligocene Huagang Formation in the East China Sea Shelf Basin. Geochemistry, Geophysics, Geosystems, 19(10): 3673-3688. https://doi.org/10.1029/2018gc007576
      Wang, Y. F., Li, D., Wang, Y. M., et al., 2015. Major Unconformities and Sedimentary System Evolution in Pearl River Mouth Basin. Acta Sedimentologica Sinica, 33(3): 587-594 (in Chinese with English abstract).
      Wei, H. H., Wang, E., Wu, G. L., et al., 2016. No Sedimentary Records Indicating Southerly Flow of the Paleo-Upper Yangtze River from the First Bend in Southeastern Tibet. Gondwana Research, 32: 93-104. https://doi.org/10.1016/j.gr.2015.02.006
      Wu, F. L., Fang, X. M., Yang, Y. B., et al., 2022. Reorganization of Asian Climate in Relation to Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 684-700. https://doi.org/10.1038/s43017-022-00331-7
      Xie, Y. H., 2009. Sequence Stratigraphy and Natural Gas Accumulation Models in Tectonically Active Basins: A Case Study of the Yinggehai Basin. Geological Publishing House, Beijing (in Chinese).
      Xu, Y. H., Wang, C. Y., Zhao, T. P., 2016. Using Detrital Zircons from River Sands to Constrain Major Tectono-Thermal Events of the Cathaysia Block, SE China. Journal of Asian Earth Sciences, 124: 1-13. https://doi.org/10.1016/j.jseaes.2016.04.012
      Yan, Y., Carter, A., Huang, C. Y., et al., 2012. Constraints on Cenozoic Regional Drainage Evolution of SW China from the Provenance of the Jianchuan Basin. Geochemistry, Geophysics, Geosystems, 13(3): Q03001. https://doi.org/10.1029/2011GC003803
      Yan, Y., Carter, A., Palk, C., et al., 2011. Understanding Sedimentation in the Song Hong-Yinggehai Basin, South China Sea. Geochemistry, Geophysics, Geosystems, 12(6): Q06014. https://doi.org/10.1029/2011GC003533
      Yan, Y., Yao, D., Tian, Z. X., et al., 2018. Tectonic Topography Changes in Cenozoic East Asia: A Landscape Erosion-Sediment Archive in the South China Sea. Geochemistry, Geophysics, Geosystems, 19(6): 1731-1750. https://doi.org/10.1029/2017gc007356
      Yang, D. Y., Han, Z. Y., Ge, Z. S., et al., 2008. Geomorphic Process of the Formation and Incision of the Section from Shigu to Yibin of the Jinshajiang River. Quaternary Sciences, 28(4): 564-568 (in Chinese with English abstract).
      Yang, R., Willett, S. D., Goren, L., 2015. In Situ Low-Relief Landscape Formation as a Result of River Network Disruption. Nature, 520(7548): 526-529. https://doi.org/10.1038/nature14354
      Yang, S. Y., Zhang, F., Wang, Z. B., 2012. Grain Size Distribution and Age Population of Detrital Zircons from the Changjiang (Yangtze) River System, China. Chemical Geology, 296: 26-38. https://doi.org/10.1016/j.chemgeo.2011.12.016
      Zeng, Z. W., Zhu, H. T., Yang, X. H., et al., 2019. Using Seismic Geomorphology and Detrital Zircon Geochronology to Constrain Provenance Evolution and Its Response of Paleogene Enping Formation in the Baiyun Sag, Pearl River Mouth Basin, South China Sea: Implications for Paleo-Pearl River Drainage Evolution. Journal of Petroleum Science and Engineering, 177: 663-680. https://doi.org/10.1016/j.petrol.2019.02.051
      Zhang, G. H., Li, S. Z., Suo, Y. H., et al., 2016. Cenozoic Positive Inversion Tectonics and Its Migration in the East China Sea Shelf Basin. Geological Journal, 51(S1): 176-187. https://doi.org/10.1002/gj.2809
      Zhang, L. G., 1995. Block-Geology of Asia Lithosphere: Isotope Geochemistry and Dynamics of Upper Mantle, Basement and Granite. Science Press, Beijing, 252 (in Chinese).
      Zhang, P., Najman, Y., Mei, L. F., et al., 2019. Palaeodrainage Evolution of the Large Rivers of East Asia, and Himalayan-Tibet Tectonics. Earth-Science Reviews, 192: 601-630. https://doi.org/10.1016/j.earscirev.2019.02.003
      Zhang, X. C., Huang, C. Y., Wang, Y. J., et al., 2017. Evolving Yangtze River Reconstructed by Detrital Zircon U-Pb Dating and Petrographic Analysis of Miocene Marginal Sea Sedimentary Rocks of the Western Foothills and Hengchun Peninsula, Taiwan. Tectonics, 36(4): 634-651. https://doi.org/10.1002/2016TC004357
      Zhang, Z. J., Daly, J. S., Tian, Y. T., et al., 2023. Late Oligocene Formation of the Pearl River Triggered by the Opening of the South China Sea. Geophysical Research Letters, 50(8): e2023GL103049. https://doi.org/10.1029/2023gl103049
      Zhang, Z. J., Daly, J. S., Yan, Y., et al., 2021. No Connection between the Yangtze and Red Rivers since the Late Eocene. Marine and Petroleum Geology, 129: 105115. https://doi.org/10.1016/j.marpetgeo.2021.105115
      Zhang, Z. J., Daly, J. S., Yan, Y., et al., 2022. Cenozoic Reorganization of Fluvial Systems in Eastern China: Sedimentary Provenance of Detrital K-Feldspar in Taiwan. Chemical Geology, 592: 120740. https://doi.org/10.1016/j.chemgeo.2022.120740
      Zhang, Z. J., Tyrrell, S., Li, C. A., et al., 2014. Pb Isotope Compositions of Detrital K-Feldspar Grains in the Upper-Middle Yangtze River System: Implications for Sediment Provenance and Drainage Evolution. Geochemistry, Geophysics, Geosystems, 15(7): 2765-2779. https://doi.org/10.1002/2014GC005391
      Zhao, Z. X., Zhou, D., Liao, J., 2009. Tertiary Paleogeography and Depositional Evolution in the Pearl River Mouth Basin of the Northern South China Sea. Journal of Tropical Oceanography, 28(6): 52-60 (in Chinese with English abstract).
      Zheng, H., Clift, P. D., Wang, P., et al., 2013. Pre-Miocene Birth of the Yangtze River. Proceedings of the National Academy of Sciences, 110(19): 7556-7561. https://doi.org/10.1073/pnas.1216241110
      陈长民, 施和生, 许仕策, 等, 2003. 珠江口盆地(东部)第三系油气藏形成条件. 北京: 科学出版社.
      雷超, 2012. 南海北部莺歌海‒琼东南盆地新生代构造变形格局及其演化过程分析(博士学位论文). 武汉: 中国地质大学.
      庞雄, 陈长民, 邵磊, 等, 2007. 白云运动: 南海北部渐新统‒中新统重大地质事件及其意义. 地质论评, 53(2): 145-151.
      阙晓铭, 舒誉, 汪旭东, 等, 2024. 珠一坳陷古近纪物源特征及其沉积演化: 来自碎屑锆石年龄的指示. 地球科学, 49(7): 2373-2387. doi: 10.3799/dqkx.2022.428
      任建业, 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330
      任建业, 雷超, 2011. 莺歌海‒琼东南盆地构造‒地层格架及南海动力变形分区. 地球物理学报, 54(12): 3303-3314.
      任美锷, 包浩生, 韩同春, 等, 1959. 云南西北部金沙江河谷地貌与河流袭夺问题. 地理学报, 25(2): 135-155.
      邵磊, 庞雄, 乔培军, 等, 2008. 珠江口盆地的沉积充填与珠江的形成演变. 沉积学报, 26(2): 179-185.
      邵磊, 赵梦, 乔培军, 等, 2013. 南海北部沉积物特征及其对珠江演变的响应. 第四纪研究, 33(4): 760-770.
      索艳慧, 李三忠, 戴黎明, 等, 2012. 东亚及其大陆边缘新生代构造迁移与盆地演化. 岩石学报, 28(8): 2602-2618.
      汪品先, 2005. 新生代亚洲形变与海陆相互作用. 地球科学, 30(1): 1-18. http://www.earth-science.net/article/id/1447
      王永凤, 李冬, 王英民, 等, 2015. 珠江口盆地重要不整合界面与珠江沉积体系演化分析. 沉积学报, 33(3): 587-594.
      谢玉洪, 2009. 构造活动型盆地层序地层分析及天然气成藏模式: 以莺歌海盆地为例. 北京: 地质出版社.
      杨达源, 韩志勇, 葛兆帅, 等, 2008. 金沙江石鼓‒宜宾河段的贯通与深切地貌过程的研究. 第四纪研究, 28(4): 564-568.
      张理刚, 1995. 东亚岩石圈块体地质: 上地幔、基底和花岗岩同位素地球化学及其动力学. 北京: 科学出版社, 252.
      赵中贤, 周蒂, 廖杰, 2009. 珠江口盆地第三纪古地理及沉积演化. 热带海洋学报, 28(6): 52-60.
    • 加载中
    图(9)
    计量
    • 文章访问数:  250
    • HTML全文浏览量:  13
    • PDF下载量:  31
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-05-24
    • 刊出日期:  2025-07-25

    目录

      /

      返回文章
      返回