The Evolution of Trace Fossils across the Permian⁃Triassic Mass Extinction in Deep Marine from the Western Qinling
-
摘要: 二叠纪‒三叠纪之交大灭绝事件前后的海洋遗迹生态学研究程度很高,但大部分研究局限于浅海环境,大灭绝前后深海环境中的遗迹化石面貌及其变化特征还不清楚.本文系统描述了采自我国西秦岭地区3条深海剖面地层中的遗迹化石,共计18属.研究表明大灭绝前后深海环境中的遗迹化石属种多样性没有发生变化,但早三叠世出现了大量的雕画迹.进一步通过生态空间利用和生态系统工程定量分析方法发现大灭绝之后,深海环境中的造迹生物的生态空间利用能力和生态系统工程参数相比于灭绝前表现出显著的下降,深生态阶层更为显著.与硅质浅海临滨宜居带避难所不同,深海生态系统工程师对大灭绝之后生态系统复苏的反馈效应较弱.深海环境不利于浅海机会分子的殖居,可能并不是大灭绝之后的避难所.Abstract: The ichnoecological variations across the Permian⁃Triassic mass extinction have been well studied, but most studies focused on shallow marine environments. The ichnological characteristic and its evolution in deep marine remain unclear across the mass extinction. This paper investigates abundant ichnofossils in three deep marine sections from the West Qinling area of North China, and systematically describes 18 ichnogenera. The study shows that the diversity of ichnofossil in deep marine did not change across the mass extinction, but a large number of graphoglyptid trace fossils appeared in the Early Triassic. Further quantitative analysis by using ecospace utilization and ecosystem engineering methods reveals that ecospace utilization and ecosystem engineering parameters of trace-making organisms apparently declined after the mass extinction, especially in the deep tier. Unlike the siliciclastic nearshore 'habitable zone' refuges, the feedback effects of ecosystem engineers on the recovery of in deep marine ecosystem after the mass extinction is relatively weak. The deep marine environmental setting is unfavourable to the colonization of shallow-sea opportunistic organisms and may not have acted as a refuge after the mass extinction.
-
Key words:
- trace fossils /
- deep marine /
- refuge /
- ecosystem engineers /
- West Qinling area /
- ecology /
- stratigraphy
-
图 5 西秦岭地区研究剖面晚二叠世至早三叠世遗迹化石标本照片(1)
a~b.Acanthorhaphe delicatula;c.Capodistria vettersi;d.Chondrites targionii;e.Circulichnis ligusticus;f.Cruziana isp.;g~i.Dendrotichnium seilacheri.图d和f来自麻隆沟剖面毛毛隆组,其余均来自隆务峡剖面果木沟组,图f为内生迹,其余均保存为底迹凸起
Fig. 5. Ichnotaxa (1) from the Upper Permian to Lower Triassic successions from the studied sections of western Qinling
图 6 西秦岭地区研究剖面晚二叠世至早三叠世遗迹化石标本照片(2)
a~b,e.Dictyodora zimmermanni;c.Diplichnites isp.;d.Halopoa imbricata;f.Helminthopsis abeli;g.Helminthoidichnites tenuis(黄色箭头);h.Nereites missouriensis.图a~e来自麻隆沟剖面毛毛隆组,图f来自扎油沟剖面山尕岭群,图g-h来自隆务峡剖面果木沟组,均保存为内生迹
Fig. 6. Ichnotaxa (2) from the Upper Permian to Lower Triassic successions from the studied sections of western Qinling
图 7 西秦岭地区研究剖面晚二叠世至早三叠世遗迹化石标本照片(3)
a~b.Nereites missouriensis;c~d.Palaeophycus heberti;e.Protovirgularia longespicata;f,i.Planolites beverleyensis;g~h.Lorenzinia isp..图a~d和f来自扎油沟剖面山尕岭群,图g~h来自隆务峡剖面果木沟组,图i来自麻隆沟剖面毛毛隆组,均保存为底迹凸起
Fig. 7. Ichnotaxa (3) from the Upper Permian to Lower Triassic successions from the studied sections of western Qinling
图 9 二叠纪‒三叠纪大灭绝前后深海和硅质临滨环境中的造迹生物生态空间利用和生态系统工程三维立体图
a~b.西秦岭深海环境造迹生物生态空间利用(a)和生态系统工程(b)3D图.c~d.我国南祁连地区硅质临滨环境造迹生物生态空间利用(c)和生态系统工程(d)3D图,数据来自于Feng et al.(2022)
Fig. 9. Cubes of ecospace utilization and ecosystem engineering across the Permian-Triassic mass extinction in deep marine and siliciclastic environmental settings
表 1 西秦岭地区二叠纪‒三叠纪之交大灭绝前后深海遗迹类型及其歧异度
Table 1. Ichnotaxa and categories of architectural designs across the Permian-Triassic mass extinction in deep marine of the western Qinling
晚二叠世 早三叠世 遗迹属 歧异度类型 遗迹属 歧异度类型 Chondrites 轴状潜穴或者向下辐射延伸的束状潜穴 Acanthorhaphe 规则或不规则网络状雕画迹 Cruziana 双叶状的行迹和成对的沟槽 Capodistria 辐射状或莲花形潜穴 Dictyodora 具有复杂垂直方向蹼状构造的潜穴 Chondrites 轴状潜穴或者向下辐射延伸的束状潜穴 Diplichnites 行迹和抓痕 Circulichnis 简单水平移迹 Halopoa 具有简单垂直方向蹼状构造的水平潜穴 Dendrotichnium 单枝形蜿蜒雕画迹 Helminthopsis 简单水平移迹 Helminthopsis 简单水平移迹 Helminthoidichnites 简单水平移迹 Helminthoidichnites 简单水平移迹 Nereites 复杂的具有主动回填构造的水平潜穴 Lorenzinia 辐射状雕画迹 Palaeophycus 被动式充填的水平或倾斜潜穴 Nereites 复杂的具有主动回填构造的水平潜穴 Planolites 简单、主动充填的水平或倾斜潜穴 Palaeophycus 被动式充填的水平或倾斜潜穴 Phycodes 具有水平到垂直的分枝的水平的潜穴 Planolites 简单、主动充填的水平或倾斜潜穴 Protovirgularia V形移迹 Ubinia 单枝形蜿蜒雕画迹 Thalassinoides 迷宫式和箱式潜穴 表 2 西秦岭地区二叠纪‒三叠纪之交大灭绝前后深海遗迹生态空间占据和生态系统工程参数
Table 2. Parameters of ecospace utilization and ecosystem engineering across the Permian-Triassic mass extinction in deep marine of the western Qinling
晚二叠世 遗迹属 阶层 移动性 觅食方式 与沉积底质接触关系 改造沉积物方式 Chondrites 深 非自由 化学共生 压实 廊道扩散 Cruziana 半内栖 自由 非专业食沉积物 挖掘 再生型 Dictyodora 深 非自由 专业食沉积物 回填 传送型 Diplichnites 表层 自由 非专业食沉积物/捕食 压实 扩散 Halopoa 浅 自由 非专业食沉积物 压实 廊道扩散 Helminthopsis 半内栖 自由 非专业食沉积物 回填 传送型 Helminthoidichnites 半内栖 自由 非专业食沉积物 回填 传送型 Nereites 浅 自由 专业食沉积物 回填 传送型 Palaeophycus 浅 非自由 悬食/捕食 压实 廊道扩散 Planolites 浅 自由 非专业食沉积物 回填 传送型 Phycodes 半内栖 自由 专业食沉积物 回填 传送型 Protovirgularia 浅 自由 非专业食沉积物 侵入 扩散 Thalassinoides 深 自由 非专业食沉积物/捕食 挖掘 再生型 早三叠世 遗迹属 阶层 移动性 觅食方式 与沉积底质接触关系 改造沉积物方式 Acanthorhaphe 半内栖 自由 农艺 压实 廊道扩散 Capodistria 浅 自由 专业食沉积物 压实 廊道扩散 Chondrites 深 非自由 化学共生 压实 廊道扩散 Circulichnis 半内栖 自由 非专业食沉积物 回填 传送型 Dendrotichnium 半内栖 自由 农艺 压实 廊道扩散 Helminthopsis 半内栖 自由 非专业食沉积物 回填 传送型 Helminthoidichnites 半内栖 自由 非专业食沉积物 回填 传送型 Lorenzinia 半内栖 自由 农艺 压实 廊道扩散 Nereites 浅 自由 专业食沉积物 回填 传送型 Palaeophycus 浅 非自由 悬食/捕食 压实 廊道扩散 Planolites 浅 自由 非专业食沉积物 回填 传送型 Ubinia 半内栖 自由 农艺 压实 廊道扩散 -
Beatty, T. W., Zonneveld, J. P., Henderson, C. M., 2008. Anomalously Diverse Early Triassic Ichnofossil Assemblages in Northwest Pangea: A Case for a Shallow⁃ Marine Habitable Zone. Geology, 36(10): 771-774. https://doi.org/10.1130/G24952A.1 Buatois, L. A., Mángano, M. G., 2011. Ichnology: Organism⁃Substrate Interactions in Space and Time. Cambridge University Press, Cambridge. Buatois, L. A., Mángano, M. G., 2018. The Other Biodiversity Record: Innovations in Animal⁃Substrate Interactions through Geologic Time. GSA Today, 28(10): 4-10. https://doi.org/10.1130/gsatg371a.1 Bush, A. M., Bambach, R. K., Daley, G. M., 2007. Changes in Theoretical Ecospace Utilization in Marine Fossil Assemblages between the Mid⁃Paleozoic and Late Cenozoic. Paleobiology, 33(1): 76-97. https://doi.org/10.1666/06013.1 Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5: 375-383. https://doi.org/10.1038/ngeo1475 Chen, Z. Q., Tong, J. N., Fraiser, M. L., 2011. Trace Fossil Evidence for Restoration of Marine Ecosystems Following the End⁃Permian Mass Extinction in the Lower Yangtze Region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(3-4): 449-474. https://doi.org/10.1016/j.palaeo.2010.11.023 Chen, Z., Chen, X., Zhou, C. M., et al., 2018. Late Ediacaran Trackways Produced by Bilaterian Animals with Paired Appendages. Science Advances, 4(6): eaao6691. https://doi.org/10.1126/sciadv.aao6691 Christopher, D., Stanley, A., Pickerill, R. K., 1994. Planolites Constriannulatusisp. Nov. from the Late Ordovician Georgian Bay Formation of Southern Ontario, Eastern Canada. Ichnos, 3(2): 119-123. https://doi.org/10.1080/10420949409386379 Cribb, A. T., Bottjer, D. J., 2020. Complex Marine Bioturbation Ecosystem Engineering Behaviors Persisted in the Wake of the End⁃Permian Mass Extinction. Scientific Reports, 10: 203. https://doi.org/10.1038/s41598⁃019⁃56740⁃0 Crimes, T. P., Anderson, M. M., 1985. Trace Fossils from Late Precambrian⁃Early Cambrian Strata of Southeastern Newfoundland (Canada): Temporal and Environmental Implications. Journal of Paleontology, 59: 310-343. Dai, X., Davies, J. H. F. L., Yuan, Z., et al., 2023. A Mesozoic Fossil Lagerstätte from 250.8 Million Years ago Shows a Modern⁃Type Marine Ecosystem. Science, 379(6632): 567-572. https://doi.org/10.1126/science.adf1622 Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002 Feng, X. Q., Chen, Z. Q., Bottjer, D. J., et al., 2018. Additional Records of Ichnogenus Rhizocorallium from the Lower and Middle Triassic, South China: Implications for Biotic Recovery after the End⁃Permian Mass Extinction. GSA Bulletin, 130(7/8): 1197-1215. https://doi.org/10.1130/b31715.1 Feng, X. Q., Chen, Z. Q., Bottjer, D. J., et al., 2019. Unusual Shallow Marine Matground⁃Adapted Benthic Biofacies from the Lower Triassic of the Northern Paleotethys: Implications for Biotic Recovery Following the End⁃Permian Mass Extinction. Earth⁃Science Reviews, 189: 194-219. https://doi.org/10.1016/j.earscirev.2018.07.012 Feng, X., Chen, Z. Q., Benton, M. J., et al., 2022. Resilience of Infaunal Ecosystems during the Early Triassic Greenhouse Earth. Science Advances, 8(26): eabo0597. https://doi.org/10.1126/sciadv.abo0597 Fillion, D., Pickerill, R. K., 1990. Ichnology of the Upper Cambrian to Lower Ordovician Bell Island and Wabana Groups of Eastern Newfoundland. Palaeontographica Canadiana, 7: 1-119. http://www.researchgate.net/publication/285787540_Ichnology_of_the_Upper_Cambrian Fu, S., 1991. Funktion, Verhalten und Einteilung fucoider und lophocteniider Lebensspuren. Courier Forschungs⁃Institut Senckenberg 135, 1-79. Häntzschel, W., 1975. Trace fossils and problematica. In: Teichert, C., ed., Treatise of Invertebrate Paleontology, 2nd Edition. Part W, Miscellanea, Supp 1 University of Kansas and Geological Society of America, Lawrence. Hofmann, H. J., Patel, I. M. 1989. Trace Fossils from the Type "Etcheminian Series" (Lower Cambrian Ratcliffe Brook Formation), Saint John Area, New Brunswick, Canada. Geological Magazine, 126(2): 139-157. https://doi.org/10.1017/S0016756800006294 Jensen, S., Mens, K., 1999. A Lower Cambrian Shallow⁃Water Occurrence of the Branching 'Deep⁃Water' Type Trace Fossil Dendrorhaphe from the Lontova Formation, Eastern Latvia. Paläontologische Zeitschrift, 73(1): 187-193. https://doi.org/10.1007/BF02987992 Jin, H. J., Li, Y. C., 1995. Trace Fossils and Their Environmental Significance of Permian⁃Triassic, Western Qinling Mountains. Chinese Journal of Geology, 30(4): 321-328 (in Chinese with English abstract). Jin, H. J., Li, Y. C., Fang, G. Q., 2003. Deep⁃Sea Deposits and Trace Fossils in China. Science Press, Beijing (in Chinese). Keighley, D. G., Pickerill, R. K., 1995. The Ichnotaxa Palaeophycus and Planolites: Historical Perspectives and Recommendations. Ichnos, 3(4): 301-309. https://doi.org/10.1080/10420949509386400 Keighley, D. G., Pickerill, R. K., 1996. SmallCruziana, Rusophycus, and Related Ichnotaxa from Eastern Canada: The Nomenclatural Debate and Systematic Ichnology. Ichnos, 4(4): 261-285. https://doi.org/10.1080/10420949609380136 Keighley, D. G., Pickerill, R. K., 1997. Systematic Ichnology of the Mabou and Cumberland Groups (Carboniferous) of Western Cape Breton Island, Eastern Canada, 1: Burrows, Pits, Trails, and Coprolites. Atlantic Geology, 33(3): 181-215. https://doi.org/10.4138/2068 Knaust, D., 2017. Atlas of Trace Fossils in Well Core. Springer, Berlin. Knaust, D., 2023. The Multifaceted Ichnogenus Protovirgularia M'Coy, 1850: Taxonomy, Producers and Environments. Earth⁃Science Reviews, 244: 104511. https://doi.org/10.1016/j.earscirev.2023.104511 Kozur, H. W., Krainer, K., Mostler, H., 1996. Ichnology and Sedimentology of the Early Permian Deep⁃Water Deposits from the Lercara⁃Roccapalumba Area (Western Sicily, Italy). Facies, 34(1): 123-150. https://doi.org/10.1007/BF02546160 Książkiewicz, M., 1977. Trace Fossils in the Flysch of the Polish Carpathians. Palaeontologia Polonica, 36: 1-208. http://www.mendeley.com/research/trace-fossils-flysch-polish-carpathians/ Li, L., Meng, Q. R., Pullen, A., et al., 2014. Late Permian⁃Early Middle Triassic Back⁃Arc Basin Development in West Qinling, China. Journal of Asian Earth Sciences, 87: 116-129. https://doi.org/10.1016/j.jseaes.2014.02.021 Liu, Y. Q., Kuang, H. W., Peng, N., et al., 2015. Mesozoic Basins and Associated Palaeogeographic Evolution in North China. Journal of Palaeogeography, 4(2): 189-202. https://doi.org/10.3724/SP.J.1261.2015.00073 Luo, M., George, A. D., Chen, Z. Q., 2016. Sedimentology and Ichnology of Two Lower Triassic Sections in South China: Implications for the Biotic Recovery Following the End⁃Permian Mass Extinction. Global and Planetary Change, 144: 198-212. https://doi.org/10.1016/j.gloplacha.2016.07.007 Luo, M., Shi, G. R., Buatois, L. A., et al., 2020. Trace Fossils as Proxy for Biotic Recovery after the End⁃ Permian Mass Extinction: A Critical Review. Earth⁃ Science Reviews, 203: 103059. https://doi.org/10.1016/j.earscirev.2019.103059 Mángano, M. G., Buatois, L. A., Maples, C. G., et al., 2000. A New Ichnospecies of Nereitesfrom Carboniferous Tidal⁃Flat Facies of Eastern Kansas, USA: Implications for TheNereites⁃Neonereitesdebate. Journal of Paleontology, 74(1): 149-157. https://doi.org/10.1017/s0022336000031322 Meng, Q. R., Wang, E., Hu, J. M., 2005. Mesozoic Sedimentary Evolution of the Northwest Sichuan Basin: Implication for Continued Clockwise Rotation of the South China Block. Geological Society of America Bulletin, 117(3): 396. https://doi.org/10.1130/b25407.1 Minter, N. J., Buatois, L. A., Mángano, M. G., et al., 2017. Early Bursts of Diversification Defined the Faunal Colonization of Land. Nature Ecology & Evolution, 1: 175. https://doi.org/10.1038/s41559⁃017⁃0175 Pemberton, S. G., Frey, R. W., 1982. Trace Fossil Nomenclature and the Planolites⁃Palaeophycus Dilemma. Journal of Paleontology, 56(4): 843-881. Pruss, S. B., Bottjer, D. J., 2004. Early Triassic Trace Fossils of the Western United States and Their Implications for Prolonged Environmental Stress from the End⁃Permian Mass Extinction. Palaios, 19(6): 551-564. https://doi.org/10.1669/0883⁃1351(2004)0190551: ettfot>2.0.co;2 doi: 10.1669/0883⁃1351(2004)0190551:ettfot>2.0.co;2 Seilacher, A. 1977. Pattern Analysis of Paleodictyon and Related Trace Fossils. In: Crimes, T. P., Harper, J. C., eds., Trace Fossils 2. Geological Journal, Special Issue, 9: 289-334. Uchman, A., 1995. Taxonomy and Palaeoecology of Flysch Trace Fossils: The Marnoso⁃Arenacea Formation and Associated Facies (Miocene, Northern Apennines, Italy). Beringeria, 15: 3-115. Uchman, A., 1998. Taxonomy and Ethology of Flysch Trace Fossils: Revision of the Marian Książkiewicz Collection and Studies of Complementary Material. Annales Societatis Geologorum Poloniae, 68: 105-218. Uchman, A., 1999. Ichnology of the Rhenodanubian Flysch (Lower Cretaceous⁃Eocene) in Austria and Germany. Beringeria, 25: 65-171. doi: 10.1021/om9810145 Uchman, A., 2004. Phanerozoic History of Deep⁃Sea Trace Fossils. In: McIlroy, D., ed., The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society of London Special Publications, 228: 125-139. Uchman, A., Rattazzi, B., 2019. The Trace Fossil Circulichnis as a Record of Feeding Exploration: New Data from Deep⁃Sea Oligocene⁃Miocene Deposits of Northern Italy. Comptes Rendus Palevol, 18(1): 1-12. https://doi.org/10.1016/j.crpv.2018.05.002 Wetzel, A., Bromley, R. G., 1996. Re⁃Evaluation of the Ichnogenus Helminthopsis—A New Look at the Type Material. Palaeontology, 39: 1-19. Wetzel, A., Uchman, A., 1997. Ichnology of Deep⁃Sea Fan Overbank Deposits of the Ganei Slates (Eocene, Switzerland)—A Classical Flysch Trace Fossil Locality Studied First by Oswald Heer. Ichnos, 5(2): 139-162. https://doi.org/10.1080/10420949709386413 Wignall, P. B., Morante, R., Newton, R., 1998. The Permo⁃Triassic Transition in Spitsbergen: δ13Corg Chemostratigraphy, Fe and S Geochemistry, Facies, Fauna and Trace Fossils. Geological Magazine, 135(1): 47-62. https://doi.org/10.1017/s0016756897008121 Yang, T. F., Zhao, J. T., Yin, H. F., et al., 1994. Discovery of Early Triassic Calcareous Nannofossils in Hezuo Area, Gansu. Earth Science, 19(4): 421-426, 553 (in Chinese with English abstract). Zhang, L. J., Buatois, L. A., Mángano, M. G., et al., 2019. Early Triassic Trace Fossils from South China Marginal⁃Marine Settings: Implications for Biotic Recovery Following the End⁃Permian Mass Extinction. GSA Bulletin, 131(1-2): 235-251. https://doi.org/10.1130/b31867.1 Zhang, L. J., Dang, Z. Y., Li, F. Y., et al., 2021. Quantifying Deep⁃Water Marine Ecospace Utilization and Ecosystem Engineering from Late Permian to Middle Triassic. Chinese Science Bulletin, 66(33): 4295-4306 (in Chinese). http://www.semanticscholar.org/paper/a8a0a8e85bc4dcd34ec2ab32f05129426c258a0a Zhang, L. J., Fan, R. Y., Dang, Z. Y., et al., 2020. The Youngest Known Dictyodora from the Late Permian(Lopingian) Deep Sea in West Qinling, Central China. Palaeogeography, Palaeoclimatology, Palaeoecology, 558: 109948. https://doi.org/10.1016/j.palaeo.2020.109948 Zhao, J. T., Yang, F. Q., 1991. Early and Middle Triassic Basin⁃Slope Environments in the Hezuo Region, Gansu. Sedimentary Geology and Tethyan Geology, 11(5): 27-34 (in Chinese with English abstract). Zonneveld, J. P., Gingras, M. K., Beatty, T. W., 2010. Diverse Ichnofossil Assemblages Following the P⁃T Mass Extinction, Lower Triassic, Alberta and British Columbia, Canada: Evidence for Shallow Marine Refugia on the Northwestern Coast of Pangaea. Palaios, 25(6): 368-392. https://doi.org/10.2110/palo.2009.p09⁃135r 晋慧娟, 李育慈, 1995. 西秦岭二叠纪‒三叠纪遗迹化石及其环境意义. 地质科学, 30(4): 321-328. 晋慧娟, 李育慈, 方国庆, 2003. 中国古代深海沉积和遗迹化石群落. 北京: 科学出版社. 杨铁汾, 赵江天, 殷鸿福, 等, 1994. 甘肃合作早三叠世钙质超微化石的发现. 地球科学, 19(4): 421-426, 553. http://www.earth-science.net/article/id/172 张立军, 党志英, 李飞洋, 等, 2021. 二叠纪‒三叠纪之交深水海洋环境生态系统工程. 科学通报, 66(33): 4295-4306. 赵江天, 杨逢清, 1991. 甘肃合作地区早、中三叠世盆地‒斜坡沉积环境分析. 岩相古地理, 11(5): 27-34. -