• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西秦岭地区二叠纪‒三叠纪之交深海遗迹化石演化特征

    冯学谦 陈中强 赵来时 黄元耕 剡鹏兵

    冯学谦, 陈中强, 赵来时, 黄元耕, 剡鹏兵, 2025. 西秦岭地区二叠纪‒三叠纪之交深海遗迹化石演化特征. 地球科学, 50(3): 1000-1022. doi: 10.3799/dqkx.2025.030
    引用本文: 冯学谦, 陈中强, 赵来时, 黄元耕, 剡鹏兵, 2025. 西秦岭地区二叠纪‒三叠纪之交深海遗迹化石演化特征. 地球科学, 50(3): 1000-1022. doi: 10.3799/dqkx.2025.030
    Feng Xueqian, Chen Zhong-Qiang, Zhao Laishi, Huang Yuangeng, Yan Pengbing, 2025. The Evolution of Trace Fossils across the Permian⁃Triassic Mass Extinction in Deep Marine from the Western Qinling. Earth Science, 50(3): 1000-1022. doi: 10.3799/dqkx.2025.030
    Citation: Feng Xueqian, Chen Zhong-Qiang, Zhao Laishi, Huang Yuangeng, Yan Pengbing, 2025. The Evolution of Trace Fossils across the Permian⁃Triassic Mass Extinction in Deep Marine from the Western Qinling. Earth Science, 50(3): 1000-1022. doi: 10.3799/dqkx.2025.030

    西秦岭地区二叠纪‒三叠纪之交深海遗迹化石演化特征

    doi: 10.3799/dqkx.2025.030
    基金项目: 

    国家自然科学基金项目 41930322

    国家自然科学基金项目 42372136

    国家自然科学基金项目 42477215

    中国地质大学(武汉)“地大学者”人才岗位科研启动经费 2023081

    国家资助博士后研究人员计划项目 GZC20232474

    中国博士后科学基金面上项目 2024M753028

    湖北省博士后创新人才培养项目A类项目 2004HBBHCXA084

    详细信息
      作者简介:

      冯学谦(1988-),男,副研究员,研究方向为古海洋遗迹学及地球生物学. ORCID:0000-0002-3765-9824. E-mail:geofxq@cug.edu.cn

    • 中图分类号: P539

    The Evolution of Trace Fossils across the Permian⁃Triassic Mass Extinction in Deep Marine from the Western Qinling

    • 摘要: 二叠纪‒三叠纪之交大灭绝事件前后的海洋遗迹生态学研究程度很高,但大部分研究局限于浅海环境,大灭绝前后深海环境中的遗迹化石面貌及其变化特征还不清楚.本文系统描述了采自我国西秦岭地区3条深海剖面地层中的遗迹化石,共计18属.研究表明大灭绝前后深海环境中的遗迹化石属种多样性没有发生变化,但早三叠世出现了大量的雕画迹.进一步通过生态空间利用和生态系统工程定量分析方法发现大灭绝之后,深海环境中的造迹生物的生态空间利用能力和生态系统工程参数相比于灭绝前表现出显著的下降,深生态阶层更为显著.与硅质浅海临滨宜居带避难所不同,深海生态系统工程师对大灭绝之后生态系统复苏的反馈效应较弱.深海环境不利于浅海机会分子的殖居,可能并不是大灭绝之后的避难所.

       

    • 图  1  研究剖面位置

      Fig.  1.  Locations of the studied sections

      图  2  西秦岭地区三条研究剖面晚二叠世至早三叠世地层柱状图及各类沉积构造和遗迹化石的地层分布

      a.麻隆沟剖面晚二叠世毛毛隆组;b.扎油沟剖面早三叠世山尕岭群;c.隆务峡剖面早三叠世果木沟组

      Fig.  2.  Columnar sections of the Upper Permian to Lower Triassic successions, showing stratigraphic distributions of trace fossils and sedimentary structures

      图  3  西秦岭地区二叠系‒三叠系麻隆沟和扎油沟剖面地层和沉积特征

      a.毛毛隆组下部厚层含砾砂岩;b.毛毛隆组薄层板岩;c.毛毛隆组薄层砂岩与板岩互层;d.山尕岭群中粉砂质板岩中含砾石;e.山尕岭群中的波痕;f.山尕岭群砂岩底面上保存的槽模.a~c来自麻隆沟剖面;d~f为扎油沟剖面

      Fig.  3.  Field photos of the Upper Permian to Lower Triassic successions from the Malonggou and Zhayougou sections

      图  4  西秦岭地区下三叠统隆务峡剖面地层和沉积特征

      a.下三叠统果木沟组中段地层;b.果木沟组砂岩被安山岩顺层侵入,红色虚线为界线,字母A代表安山岩;c.照片b中安山岩特写;d.果木沟组中段砂岩底面大量槽模;e.双脊波痕,表面含有丰富遗迹化石,包括雕画迹;f.双脊波痕及其表面的丰富遗迹化石

      Fig.  4.  Field photos of the Lower Triassic successions from the Longwuxia section

      图  5  西秦岭地区研究剖面晚二叠世至早三叠世遗迹化石标本照片(1)

      a~b.Acanthorhaphe delicatula;c.Capodistria vettersi;d.Chondrites targionii;e.Circulichnis ligusticus;f.Cruziana isp.;g~i.Dendrotichnium seilacheri.图d和f来自麻隆沟剖面毛毛隆组,其余均来自隆务峡剖面果木沟组,图f为内生迹,其余均保存为底迹凸起

      Fig.  5.  Ichnotaxa (1) from the Upper Permian to Lower Triassic successions from the studied sections of western Qinling

      图  6  西秦岭地区研究剖面晚二叠世至早三叠世遗迹化石标本照片(2)

      a~b,e.Dictyodora zimmermanni;c.Diplichnites isp.;d.Halopoa imbricata;f.Helminthopsis abeli;g.Helminthoidichnites tenuis(黄色箭头);h.Nereites missouriensis.图a~e来自麻隆沟剖面毛毛隆组,图f来自扎油沟剖面山尕岭群,图g-h来自隆务峡剖面果木沟组,均保存为内生迹

      Fig.  6.  Ichnotaxa (2) from the Upper Permian to Lower Triassic successions from the studied sections of western Qinling

      图  7  西秦岭地区研究剖面晚二叠世至早三叠世遗迹化石标本照片(3)

      a~b.Nereites missouriensis;c~d.Palaeophycus heberti;e.Protovirgularia longespicata;f,i.Planolites beverleyensis;g~h.Lorenzinia isp..图a~d和f来自扎油沟剖面山尕岭群,图g~h来自隆务峡剖面果木沟组,图i来自麻隆沟剖面毛毛隆组,均保存为底迹凸起

      Fig.  7.  Ichnotaxa (3) from the Upper Permian to Lower Triassic successions from the studied sections of western Qinling

      图  8  西秦岭地区研究剖面晚二叠世至早三叠世遗迹化石标本照片(4)

      a~b.Thalassinoides paradoxicus;c~e.?Ubinia isp..图d为照片c局部放大(红框).图a~b来自麻隆沟剖面毛毛隆组,保存为内生迹;图c~e来自隆务峡剖面果木沟组,保存为底迹凸起

      Fig.  8.  Ichnotaxa (4) from the Upper Permian to Lower Triassic successions from the studied sections of western Qinling

      图  9  二叠纪‒三叠纪大灭绝前后深海和硅质临滨环境中的造迹生物生态空间利用和生态系统工程三维立体图

      a~b.西秦岭深海环境造迹生物生态空间利用(a)和生态系统工程(b)3D图.c~d.我国南祁连地区硅质临滨环境造迹生物生态空间利用(c)和生态系统工程(d)3D图,数据来自于Feng et al.2022

      Fig.  9.  Cubes of ecospace utilization and ecosystem engineering across the Permian-Triassic mass extinction in deep marine and siliciclastic environmental settings

      表  1  西秦岭地区二叠纪‒三叠纪之交大灭绝前后深海遗迹类型及其歧异度

      Table  1.   Ichnotaxa and categories of architectural designs across the Permian-Triassic mass extinction in deep marine of the western Qinling

      晚二叠世 早三叠世
      遗迹属 歧异度类型 遗迹属 歧异度类型
      Chondrites 轴状潜穴或者向下辐射延伸的束状潜穴 Acanthorhaphe 规则或不规则网络状雕画迹
      Cruziana 双叶状的行迹和成对的沟槽 Capodistria 辐射状或莲花形潜穴
      Dictyodora 具有复杂垂直方向蹼状构造的潜穴 Chondrites 轴状潜穴或者向下辐射延伸的束状潜穴
      Diplichnites 行迹和抓痕 Circulichnis 简单水平移迹
      Halopoa 具有简单垂直方向蹼状构造的水平潜穴 Dendrotichnium 单枝形蜿蜒雕画迹
      Helminthopsis 简单水平移迹 Helminthopsis 简单水平移迹
      Helminthoidichnites 简单水平移迹 Helminthoidichnites 简单水平移迹
      Nereites 复杂的具有主动回填构造的水平潜穴 Lorenzinia 辐射状雕画迹
      Palaeophycus 被动式充填的水平或倾斜潜穴 Nereites 复杂的具有主动回填构造的水平潜穴
      Planolites 简单、主动充填的水平或倾斜潜穴 Palaeophycus 被动式充填的水平或倾斜潜穴
      Phycodes 具有水平到垂直的分枝的水平的潜穴 Planolites 简单、主动充填的水平或倾斜潜穴
      Protovirgularia V形移迹 Ubinia 单枝形蜿蜒雕画迹
      Thalassinoides 迷宫式和箱式潜穴
      下载: 导出CSV

      表  2  西秦岭地区二叠纪‒三叠纪之交大灭绝前后深海遗迹生态空间占据和生态系统工程参数

      Table  2.   Parameters of ecospace utilization and ecosystem engineering across the Permian-Triassic mass extinction in deep marine of the western Qinling

      晚二叠世
      遗迹属 阶层 移动性 觅食方式 与沉积底质接触关系 改造沉积物方式
      Chondrites 非自由 化学共生 压实 廊道扩散
      Cruziana 半内栖 自由 非专业食沉积物 挖掘 再生型
      Dictyodora 非自由 专业食沉积物 回填 传送型
      Diplichnites 表层 自由 非专业食沉积物/捕食 压实 扩散
      Halopoa 自由 非专业食沉积物 压实 廊道扩散
      Helminthopsis 半内栖 自由 非专业食沉积物 回填 传送型
      Helminthoidichnites 半内栖 自由 非专业食沉积物 回填 传送型
      Nereites 自由 专业食沉积物 回填 传送型
      Palaeophycus 非自由 悬食/捕食 压实 廊道扩散
      Planolites 自由 非专业食沉积物 回填 传送型
      Phycodes 半内栖 自由 专业食沉积物 回填 传送型
      Protovirgularia 自由 非专业食沉积物 侵入 扩散
      Thalassinoides 自由 非专业食沉积物/捕食 挖掘 再生型
      早三叠世
      遗迹属 阶层 移动性 觅食方式 与沉积底质接触关系 改造沉积物方式
      Acanthorhaphe 半内栖 自由 农艺 压实 廊道扩散
      Capodistria 自由 专业食沉积物 压实 廊道扩散
      Chondrites 非自由 化学共生 压实 廊道扩散
      Circulichnis 半内栖 自由 非专业食沉积物 回填 传送型
      Dendrotichnium 半内栖 自由 农艺 压实 廊道扩散
      Helminthopsis 半内栖 自由 非专业食沉积物 回填 传送型
      Helminthoidichnites 半内栖 自由 非专业食沉积物 回填 传送型
      Lorenzinia 半内栖 自由 农艺 压实 廊道扩散
      Nereites 自由 专业食沉积物 回填 传送型
      Palaeophycus 非自由 悬食/捕食 压实 廊道扩散
      Planolites 自由 非专业食沉积物 回填 传送型
      Ubinia 半内栖 自由 农艺 压实 廊道扩散
      下载: 导出CSV
    • Beatty, T. W., Zonneveld, J. P., Henderson, C. M., 2008. Anomalously Diverse Early Triassic Ichnofossil Assemblages in Northwest Pangea: A Case for a Shallow⁃ Marine Habitable Zone. Geology, 36(10): 771-774. https://doi.org/10.1130/G24952A.1
      Buatois, L. A., Mángano, M. G., 2011. Ichnology: Organism⁃Substrate Interactions in Space and Time. Cambridge University Press, Cambridge.
      Buatois, L. A., Mángano, M. G., 2018. The Other Biodiversity Record: Innovations in Animal⁃Substrate Interactions through Geologic Time. GSA Today, 28(10): 4-10. https://doi.org/10.1130/gsatg371a.1
      Bush, A. M., Bambach, R. K., Daley, G. M., 2007. Changes in Theoretical Ecospace Utilization in Marine Fossil Assemblages between the Mid⁃Paleozoic and Late Cenozoic. Paleobiology, 33(1): 76-97. https://doi.org/10.1666/06013.1
      Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5: 375-383. https://doi.org/10.1038/ngeo1475
      Chen, Z. Q., Tong, J. N., Fraiser, M. L., 2011. Trace Fossil Evidence for Restoration of Marine Ecosystems Following the End⁃Permian Mass Extinction in the Lower Yangtze Region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(3-4): 449-474. https://doi.org/10.1016/j.palaeo.2010.11.023
      Chen, Z., Chen, X., Zhou, C. M., et al., 2018. Late Ediacaran Trackways Produced by Bilaterian Animals with Paired Appendages. Science Advances, 4(6): eaao6691. https://doi.org/10.1126/sciadv.aao6691
      Christopher, D., Stanley, A., Pickerill, R. K., 1994. Planolites Constriannulatusisp. Nov. from the Late Ordovician Georgian Bay Formation of Southern Ontario, Eastern Canada. Ichnos, 3(2): 119-123. https://doi.org/10.1080/10420949409386379
      Cribb, A. T., Bottjer, D. J., 2020. Complex Marine Bioturbation Ecosystem Engineering Behaviors Persisted in the Wake of the End⁃Permian Mass Extinction. Scientific Reports, 10: 203. https://doi.org/10.1038/s41598⁃019⁃56740⁃0
      Crimes, T. P., Anderson, M. M., 1985. Trace Fossils from Late Precambrian⁃Early Cambrian Strata of Southeastern Newfoundland (Canada): Temporal and Environmental Implications. Journal of Paleontology, 59: 310-343.
      Dai, X., Davies, J. H. F. L., Yuan, Z., et al., 2023. A Mesozoic Fossil Lagerstätte from 250.8 Million Years ago Shows a Modern⁃Type Marine Ecosystem. Science, 379(6632): 567-572. https://doi.org/10.1126/science.adf1622
      Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002
      Feng, X. Q., Chen, Z. Q., Bottjer, D. J., et al., 2018. Additional Records of Ichnogenus Rhizocorallium from the Lower and Middle Triassic, South China: Implications for Biotic Recovery after the End⁃Permian Mass Extinction. GSA Bulletin, 130(7/8): 1197-1215. https://doi.org/10.1130/b31715.1
      Feng, X. Q., Chen, Z. Q., Bottjer, D. J., et al., 2019. Unusual Shallow Marine Matground⁃Adapted Benthic Biofacies from the Lower Triassic of the Northern Paleotethys: Implications for Biotic Recovery Following the End⁃Permian Mass Extinction. Earth⁃Science Reviews, 189: 194-219. https://doi.org/10.1016/j.earscirev.2018.07.012
      Feng, X., Chen, Z. Q., Benton, M. J., et al., 2022. Resilience of Infaunal Ecosystems during the Early Triassic Greenhouse Earth. Science Advances, 8(26): eabo0597. https://doi.org/10.1126/sciadv.abo0597
      Fillion, D., Pickerill, R. K., 1990. Ichnology of the Upper Cambrian to Lower Ordovician Bell Island and Wabana Groups of Eastern Newfoundland. Palaeontographica Canadiana, 7: 1-119. http://www.researchgate.net/publication/285787540_Ichnology_of_the_Upper_Cambrian
      Fu, S., 1991. Funktion, Verhalten und Einteilung fucoider und lophocteniider Lebensspuren. Courier Forschungs⁃Institut Senckenberg 135, 1-79.
      Häntzschel, W., 1975. Trace fossils and problematica. In: Teichert, C., ed., Treatise of Invertebrate Paleontology, 2nd Edition. Part W, Miscellanea, Supp 1 University of Kansas and Geological Society of America, Lawrence.
      Hofmann, H. J., Patel, I. M. 1989. Trace Fossils from the Type "Etcheminian Series" (Lower Cambrian Ratcliffe Brook Formation), Saint John Area, New Brunswick, Canada. Geological Magazine, 126(2): 139-157. https://doi.org/10.1017/S0016756800006294
      Jensen, S., Mens, K., 1999. A Lower Cambrian Shallow⁃Water Occurrence of the Branching 'Deep⁃Water' Type Trace Fossil Dendrorhaphe from the Lontova Formation, Eastern Latvia. Paläontologische Zeitschrift, 73(1): 187-193. https://doi.org/10.1007/BF02987992
      Jin, H. J., Li, Y. C., 1995. Trace Fossils and Their Environmental Significance of Permian⁃Triassic, Western Qinling Mountains. Chinese Journal of Geology, 30(4): 321-328 (in Chinese with English abstract).
      Jin, H. J., Li, Y. C., Fang, G. Q., 2003. Deep⁃Sea Deposits and Trace Fossils in China. Science Press, Beijing (in Chinese).
      Keighley, D. G., Pickerill, R. K., 1995. The Ichnotaxa Palaeophycus and Planolites: Historical Perspectives and Recommendations. Ichnos, 3(4): 301-309. https://doi.org/10.1080/10420949509386400
      Keighley, D. G., Pickerill, R. K., 1996. SmallCruziana, Rusophycus, and Related Ichnotaxa from Eastern Canada: The Nomenclatural Debate and Systematic Ichnology. Ichnos, 4(4): 261-285. https://doi.org/10.1080/10420949609380136
      Keighley, D. G., Pickerill, R. K., 1997. Systematic Ichnology of the Mabou and Cumberland Groups (Carboniferous) of Western Cape Breton Island, Eastern Canada, 1: Burrows, Pits, Trails, and Coprolites. Atlantic Geology, 33(3): 181-215. https://doi.org/10.4138/2068
      Knaust, D., 2017. Atlas of Trace Fossils in Well Core. Springer, Berlin.
      Knaust, D., 2023. The Multifaceted Ichnogenus Protovirgularia M'Coy, 1850: Taxonomy, Producers and Environments. Earth⁃Science Reviews, 244: 104511. https://doi.org/10.1016/j.earscirev.2023.104511
      Kozur, H. W., Krainer, K., Mostler, H., 1996. Ichnology and Sedimentology of the Early Permian Deep⁃Water Deposits from the Lercara⁃Roccapalumba Area (Western Sicily, Italy). Facies, 34(1): 123-150. https://doi.org/10.1007/BF02546160
      Książkiewicz, M., 1977. Trace Fossils in the Flysch of the Polish Carpathians. Palaeontologia Polonica, 36: 1-208. http://www.mendeley.com/research/trace-fossils-flysch-polish-carpathians/
      Li, L., Meng, Q. R., Pullen, A., et al., 2014. Late Permian⁃Early Middle Triassic Back⁃Arc Basin Development in West Qinling, China. Journal of Asian Earth Sciences, 87: 116-129. https://doi.org/10.1016/j.jseaes.2014.02.021
      Liu, Y. Q., Kuang, H. W., Peng, N., et al., 2015. Mesozoic Basins and Associated Palaeogeographic Evolution in North China. Journal of Palaeogeography, 4(2): 189-202. https://doi.org/10.3724/SP.J.1261.2015.00073
      Luo, M., George, A. D., Chen, Z. Q., 2016. Sedimentology and Ichnology of Two Lower Triassic Sections in South China: Implications for the Biotic Recovery Following the End⁃Permian Mass Extinction. Global and Planetary Change, 144: 198-212. https://doi.org/10.1016/j.gloplacha.2016.07.007
      Luo, M., Shi, G. R., Buatois, L. A., et al., 2020. Trace Fossils as Proxy for Biotic Recovery after the End⁃ Permian Mass Extinction: A Critical Review. Earth⁃ Science Reviews, 203: 103059. https://doi.org/10.1016/j.earscirev.2019.103059
      Mángano, M. G., Buatois, L. A., Maples, C. G., et al., 2000. A New Ichnospecies of Nereitesfrom Carboniferous Tidal⁃Flat Facies of Eastern Kansas, USA: Implications for TheNereites⁃Neonereitesdebate. Journal of Paleontology, 74(1): 149-157. https://doi.org/10.1017/s0022336000031322
      Meng, Q. R., Wang, E., Hu, J. M., 2005. Mesozoic Sedimentary Evolution of the Northwest Sichuan Basin: Implication for Continued Clockwise Rotation of the South China Block. Geological Society of America Bulletin, 117(3): 396. https://doi.org/10.1130/b25407.1
      Minter, N. J., Buatois, L. A., Mángano, M. G., et al., 2017. Early Bursts of Diversification Defined the Faunal Colonization of Land. Nature Ecology & Evolution, 1: 175. https://doi.org/10.1038/s41559⁃017⁃0175
      Pemberton, S. G., Frey, R. W., 1982. Trace Fossil Nomenclature and the PlanolitesPalaeophycus Dilemma. Journal of Paleontology, 56(4): 843-881.
      Pruss, S. B., Bottjer, D. J., 2004. Early Triassic Trace Fossils of the Western United States and Their Implications for Prolonged Environmental Stress from the End⁃Permian Mass Extinction. Palaios, 19(6): 551-564. https://doi.org/10.1669/0883⁃1351(2004)0190551: ettfot>2.0.co;2 doi: 10.1669/0883⁃1351(2004)0190551:ettfot>2.0.co;2
      Seilacher, A. 1977. Pattern Analysis of Paleodictyon and Related Trace Fossils. In: Crimes, T. P., Harper, J. C., eds., Trace Fossils 2. Geological Journal, Special Issue, 9: 289-334.
      Uchman, A., 1995. Taxonomy and Palaeoecology of Flysch Trace Fossils: The Marnoso⁃Arenacea Formation and Associated Facies (Miocene, Northern Apennines, Italy). Beringeria, 15: 3-115.
      Uchman, A., 1998. Taxonomy and Ethology of Flysch Trace Fossils: Revision of the Marian Książkiewicz Collection and Studies of Complementary Material. Annales Societatis Geologorum Poloniae, 68: 105-218.
      Uchman, A., 1999. Ichnology of the Rhenodanubian Flysch (Lower Cretaceous⁃Eocene) in Austria and Germany. Beringeria, 25: 65-171. doi: 10.1021/om9810145
      Uchman, A., 2004. Phanerozoic History of Deep⁃Sea Trace Fossils. In: McIlroy, D., ed., The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society of London Special Publications, 228: 125-139.
      Uchman, A., Rattazzi, B., 2019. The Trace Fossil Circulichnis as a Record of Feeding Exploration: New Data from Deep⁃Sea Oligocene⁃Miocene Deposits of Northern Italy. Comptes Rendus Palevol, 18(1): 1-12. https://doi.org/10.1016/j.crpv.2018.05.002
      Wetzel, A., Bromley, R. G., 1996. Re⁃Evaluation of the Ichnogenus Helminthopsis—A New Look at the Type Material. Palaeontology, 39: 1-19.
      Wetzel, A., Uchman, A., 1997. Ichnology of Deep⁃Sea Fan Overbank Deposits of the Ganei Slates (Eocene, Switzerland)—A Classical Flysch Trace Fossil Locality Studied First by Oswald Heer. Ichnos, 5(2): 139-162. https://doi.org/10.1080/10420949709386413
      Wignall, P. B., Morante, R., Newton, R., 1998. The Permo⁃Triassic Transition in Spitsbergen: δ13Corg Chemostratigraphy, Fe and S Geochemistry, Facies, Fauna and Trace Fossils. Geological Magazine, 135(1): 47-62. https://doi.org/10.1017/s0016756897008121
      Yang, T. F., Zhao, J. T., Yin, H. F., et al., 1994. Discovery of Early Triassic Calcareous Nannofossils in Hezuo Area, Gansu. Earth Science, 19(4): 421-426, 553 (in Chinese with English abstract).
      Zhang, L. J., Buatois, L. A., Mángano, M. G., et al., 2019. Early Triassic Trace Fossils from South China Marginal⁃Marine Settings: Implications for Biotic Recovery Following the End⁃Permian Mass Extinction. GSA Bulletin, 131(1-2): 235-251. https://doi.org/10.1130/b31867.1
      Zhang, L. J., Dang, Z. Y., Li, F. Y., et al., 2021. Quantifying Deep⁃Water Marine Ecospace Utilization and Ecosystem Engineering from Late Permian to Middle Triassic. Chinese Science Bulletin, 66(33): 4295-4306 (in Chinese). http://www.semanticscholar.org/paper/a8a0a8e85bc4dcd34ec2ab32f05129426c258a0a
      Zhang, L. J., Fan, R. Y., Dang, Z. Y., et al., 2020. The Youngest Known Dictyodora from the Late Permian(Lopingian) Deep Sea in West Qinling, Central China. Palaeogeography, Palaeoclimatology, Palaeoecology, 558: 109948. https://doi.org/10.1016/j.palaeo.2020.109948
      Zhao, J. T., Yang, F. Q., 1991. Early and Middle Triassic Basin⁃Slope Environments in the Hezuo Region, Gansu. Sedimentary Geology and Tethyan Geology, 11(5): 27-34 (in Chinese with English abstract).
      Zonneveld, J. P., Gingras, M. K., Beatty, T. W., 2010. Diverse Ichnofossil Assemblages Following the P⁃T Mass Extinction, Lower Triassic, Alberta and British Columbia, Canada: Evidence for Shallow Marine Refugia on the Northwestern Coast of Pangaea. Palaios, 25(6): 368-392. https://doi.org/10.2110/palo.2009.p09⁃135r
      晋慧娟, 李育慈, 1995. 西秦岭二叠纪‒三叠纪遗迹化石及其环境意义. 地质科学, 30(4): 321-328.
      晋慧娟, 李育慈, 方国庆, 2003. 中国古代深海沉积和遗迹化石群落. 北京: 科学出版社.
      杨铁汾, 赵江天, 殷鸿福, 等, 1994. 甘肃合作早三叠世钙质超微化石的发现. 地球科学, 19(4): 421-426, 553. http://www.earth-science.net/article/id/172
      张立军, 党志英, 李飞洋, 等, 2021. 二叠纪‒三叠纪之交深水海洋环境生态系统工程. 科学通报, 66(33): 4295-4306.
      赵江天, 杨逢清, 1991. 甘肃合作地区早、中三叠世盆地‒斜坡沉积环境分析. 岩相古地理, 11(5): 27-34.
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  206
    • HTML全文浏览量:  103
    • PDF下载量:  46
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-12-01
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回