• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于密集台阵的地震烈度及灾情快速评估: 以2025年西藏日喀则MS6.8地震为例

    吴佳杰 陈文凯 贾艺娇 孙艳萍 平梓晗 王墩

    吴佳杰, 陈文凯, 贾艺娇, 孙艳萍, 平梓晗, 王墩, 2025. 基于密集台阵的地震烈度及灾情快速评估: 以2025年西藏日喀则MS6.8地震为例. 地球科学, 50(5): 1770-1781. doi: 10.3799/dqkx.2025.035
    引用本文: 吴佳杰, 陈文凯, 贾艺娇, 孙艳萍, 平梓晗, 王墩, 2025. 基于密集台阵的地震烈度及灾情快速评估: 以2025年西藏日喀则MS6.8地震为例. 地球科学, 50(5): 1770-1781. doi: 10.3799/dqkx.2025.035
    Wu Jiajie, Chen Wenkai, Jia Yijiao, Sun Yanping, Ping Zihan, Wang Dun, 2025. Rapid Seismic Intensity and Disaster Assessment Based on Dense Seismic Array: A Case of the 2025 Rikaze MS6.8 Earthquake in Xizang. Earth Science, 50(5): 1770-1781. doi: 10.3799/dqkx.2025.035
    Citation: Wu Jiajie, Chen Wenkai, Jia Yijiao, Sun Yanping, Ping Zihan, Wang Dun, 2025. Rapid Seismic Intensity and Disaster Assessment Based on Dense Seismic Array: A Case of the 2025 Rikaze MS6.8 Earthquake in Xizang. Earth Science, 50(5): 1770-1781. doi: 10.3799/dqkx.2025.035

    基于密集台阵的地震烈度及灾情快速评估: 以2025年西藏日喀则MS6.8地震为例

    doi: 10.3799/dqkx.2025.035
    基金项目: 

    甘肃省自然科学基金项目 24JRRA1188

    “十三五”国家重点研发计划项目 2017YFB0504104

    详细信息
      作者简介:

      吴佳杰(2000-),男,硕士研究生,主要从事地震灾害风险评估.ORCID:0009-0005-5913-6871. E-mail:wujiajie23@mails.ucas.ac.cn

      通讯作者:

      陈文凯, ORCID: 0000-0003-3235-5861. E-mail: cwk2000@yeah.net

      王墩,ORCID: 0000-0001-6435-9168. E-mail: wangdun@cug.edu.cn

    • 中图分类号: P315

    Rapid Seismic Intensity and Disaster Assessment Based on Dense Seismic Array: A Case of the 2025 Rikaze MS6.8 Earthquake in Xizang

    • 摘要:

      本研究基于密集远场地震台阵对2025年西藏定日6.8级地震的破裂过程进行快速测定,并结合地震破裂过程对地震烈度分布及潜在人员伤亡进行了快速评估.首先采用反投影技术获取震源区能量释放的时空分布特征,揭示震源破裂的动态演化过程;然后结合破裂过程与基于断层最短距离的地震动参数衰减模型,快速计算地震烈度的空间分布,明确灾害影响范围和强度;在此基础上,利用人员伤亡评估模型对地震可能造成的人员伤亡进行初步估算.研究结果表明,基于密集台阵的地震烈度快速评估方法在震后灾情快速评估方面具有较高的可靠性和实际应用价值,可以为政府决策、应急指挥和救援部署提供重要参考.

       

    • 图  1  定日地震构造背景

      a.研究区周围地势和活动断裂分布. 红色实线是活动断裂;黑框代表图b的范围. b.研究区活动断裂和历史地震分布. 黄色五角星是定日6.8级地震震中;红色实线是活动断裂;红色圆圈是定日6.8级地震震中100 km范围内近十年历史地震震中位置.c.定日6.8级地震余震分布.彩色填充圆圈是震后48 h余震分布(Yao et al.,2025). 活动断裂数据来自地震活动断层探察数据中心(https://www.activefault-datacenter.cn);震中位置和历史地震信息来自中国地震台网(https://news.ceic.ac.cn);重定位余震目录来自Yao et al.(2025);底图审图号:GS(2024)0650号,下同

      Fig.  1.  Tectonic background of the Dingri earthquake

      图  2  欧洲地震台阵分布

      蓝色三角形表示台站;红色三角形表示参考台站;红色五角星为震中,震中位置来自中国地震台网中心;左上角小图表示地震与台阵的相对距离,虚线圆圈表示30°和60°震中距线

      Fig.  2.  Distribution of seismic stations in Europe

      图  3  破裂空间展布

      填充圆圈为能量点;灰色半透明圆圈为震后48 h余震(Yao et al.,2025);红色五角星为震中,震中位置来自中国地震台网中心

      Fig.  3.  Rupture space distribution

      图  4  基于密集台阵的烈度评估结果

      蓝色线为中国地震局发布的通过实地震害调查得到的烈度分布;棕色线为中国地震局现场工作队实地调查发现的地表破裂

      Fig.  4.  Intensity assessment results based on dense seismic array

      图  5  不同烈度区实地震害图(中国地震局现场工作队提供)

      Fig.  5.  Field seismic damage map in different intensity zones (provided by China Earthquake Administration Field Task Force)

      图  6  断层走向和垂直断层走向的剖面

      a.沿断层和垂直断层方向对烈度分布进行剖析;b.沿断层走向的剖面;c.垂直断层走向的剖面

      Fig.  6.  Profile of fault strike and vertical fault strike

      图  7  震区人口分布

      Fig.  7.  Population distribution in the earthquake area

      图  8  人员死亡分布

      a.基于国标方法的人员死亡评估结果;b.基于全球地震死亡率经验模型的人员死亡评估结果

      Fig.  8.  Distribution of human fatalities

      表  1  评估结果与实地调查结果对比(重灾区)

      Table  1.   Comparison between assessment results and field investigation results (hard-hit areas)

      烈度 实地调查结果 结合破裂过程的评估结果
      长所乡、措果乡
      长所乡、曲洛乡、措果乡、尼辖乡、加措乡 长所乡、曲洛乡、措果乡、尼辖乡、加措乡
      曲洛乡、长所乡、措果乡、尼辖乡、加措乡、曲当乡、郭加乡、芒普乡 曲洛乡、长所乡、措果乡、尼辖乡、加措乡、郭加乡、麻布加乡、雄美乡、曲下镇、
      江嘎镇、查务乡、拉孜镇
      下载: 导出CSV

      表  2  农村受伤率和死亡率与烈度的统计关系

      Table  2.   Statistical relationship between rural injury and mortality rates and intensity

      受伤率 $ 0.38\times {10}^{-4} $ $ 3.10\times {10}^{-4} $ $ 27.00\times {10}^{-4} $ $ 210.00\times {10}^{-4} $ $ 2\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }100.00\times {10}^{-4} $
      死亡率 $ 0.06\times {10}^{-4} $ $ 0.64\times {10}^{-4} $ $ 6.80\times {10}^{-4} $ $ 74.00\times {10}^{-4} $ $ 740.00\times {10}^{-4} $
      下载: 导出CSV

      表  3  人员死亡评估结果与实地调查结果对比

      Table  3.   Comparison between the assessment results of casualties and the results of field investigation

      实地调查结果 1 1 13 111 / 126
      GB/T 30352-2013结果 1 4 11 50 125 191
      死亡率模型结果 / / 1 102 109 212
      下载: 导出CSV
    • CCTV, 2025. 1601 Aftershocks have been Recorded from the 6.8 Magnitude Earthquake in Dingri, Tibet. (2025-01-10) [2025-01-13] (in Chinese). https://news.cctv.com/2025/01/10/ARTI0RDBUL1fje7o4sjUmkJQ250110.shtml
      China Earthquake Administration (CEA), 2025. 6.8 Magnitude Earthquake in Dingri, Tibet Causes about 61, 500 People to be Affected to Different Degrees. (2025-01-09) [2025-01-13] (in Chinese). https://www.chinanews.com.cn/sh/2025/01-09/10350581.shtml
      China Earthquake Administration (CEA), 2025. Emergency Management Department China Earthquake Administration (CEA) Releases Intensity Map of 6.8 Magnitude Earthquake in Dingri, Tibet. (2025-01-10) [2025-01-13] (in Chinese). https://www.cea.gov.cn/cea/xwzx/fzjzyw/5790712/index.html
      Chen, W. K., Rao, G., Kang, D. J., et al., 2023. Early Report of the Source Characteristics, Ground Motions, and Casualty Estimates of the 2023 Mw 7.8 and 7.5 Turkey Earthquakes. Journal of Earth Science, 34(2): 297-303. https://doi.org/10.1007/s12583-023-1316-6
      Chen, W. K., Wang, D., Si, H. J., et al., 2022a. Rapid Estimation of Seismic Intensities Using a New Algorithm That Incorporates Array Technologies and Ground- Motion Prediction Equations (GMPEs). The Bulletin of the Seismological Society of America, 112(3): 1647-1661. https://doi.org/10.1785/0120210207
      Chen, W. K., Wang, D., Zhang, C., et al., 2022b. Estimating Seismic Intensity Maps of the 2021 Mw 7.3 Madoi, Qinghai and Mw 6.1 Yangbi, Yunnan, China Earthquakes. Journal of Earth Science, 33(4): 839-846. https://doi.org/10.1007/s12583-021-1586-9
      General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, 2014. GB/T 30352-2013 Assessment of Earthquake Disaster Situation in Emergency Period. Standards Press of China, Beijing (in Chinese).
      General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, 2020. GB/T 17742-2020 The Chinese Seismic Intensity Scale. Standards Press of China, Beijing (in Chinese).
      Han, G. J., Sun, L., Yang, Z. G., 2023. Rapid Estimation of the Moment Magnitude and Rupture Process of Moderate and Large Earthquakes Using Back-Projection: A Case of Morocco MW 6.9 Earthquake on September 9, 2023. Earthquake Research in China, 39(3): 680-688 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-4683.2023.03.018
      Huang, T., Wu, Z. H., Han, S., et al., 2024. The Basic Characteristics of Active Faults in the Region of Xigaze, Tibet, and the Assessment of Potential Earthquake Disaster Risks. Progress in Earthquake Sciences, 54(10): 696-711 (in Chinese with English abstract).
      Ishii, M., Shearer, P. M., Houston, H., et al., 2005. Extent, Duration and Speed of the 2004 Sumatra-Andaman Earthquake Imaged by the Hi-Net Array. Nature, 435(7044): 933-936. https://doi.org/10.1038/nature03675
      Jaiswal, K., Wald, D., 2010. An Empirical Model for Global Earthquake Fatality Estimation. Earthquake Spectra, 26(4): 1017-1037. https://doi.org/10.1193/1.3480331
      Jia, Y. J., Chen, W. K., Kang, D. J., et al., 2024. Rapid Determination of Source Parameters of the M6.2 Jishishan Earthquake in Gansu Province and Its Application in Emergency Response. Earthquake Research Advances, 4(4): 100310. https://doi.org/10.1016/j.eqrea.2024.100310
      Kang, D. J., Chen, W. K., Zhao, H. Q., et al., 2023. Rapid Assessment of the September 5, 2022 MS 6.8 Luding Earthquake in Sichuan, China. Earthquake Research Advances, 3(2): 100214. https://doi.org/10.1016/j.eqrea.2023.100214
      Krüger, F., Ohrnberger, M., 2005. Tracking the Rupture of the Mw=9.3 Sumatra Earthquake over 1, 150 km at Teleseismic Distance. Nature, 435(7044): 937-939. https://doi.org/10.1038/nature03696
      Qin, W. Z., 2017. Time and Frequency-Domain Back Projection for Great Earthquake Rupture Process Imaging: Methodology and Applications (Dissertation). University of Science and Technology of China, Hefei (in Chinese with English abstract).
      Shi, F., Liang, M. J., Luo, Q. X., et al., 2025. Seismology Fault and Coseismic Surface Deformation of the Dingri Ms 6.8 Earthquake in Tibet, China. Seismology and Geology, 47(1): 1-15 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.001
      Si, H. J., Hao, K. X., Xu, Y., et al., 2010. Attenuation Characteristics of Peak Ground Motions during the Mw 7.9 Wenchuan Earthquake, China. 7th International Conference on Urban Earthquake Engineering & 5th International Conference on Earthquake Engineering, Tokyo, 103-106.
      Tian, T. T., Wu, Z. H., 2023. The Latest Prehistoric Earthquake Event of Dingmucuo Normal Fault in the Southern Section of Shenzha-Dingjie Rift in Tibet and Its Seismic Geological Significance. Geological Review, 69(S1): 53-55 (in Chinese).
      Wang, D., Kawakatsu, H., Mori, J., et al., 2016. Backprojection Analyses from Four Regional Arrays for Rupture over a Curved Dipping Fault: The Mw 7.7 24 September 2013 Pakistan Earthquake. Journal of Geophysical Research (Solid Earth), 121(3): 1948-1961. https://doi.org/10.1002/2015JB012168
      Wang, D., Kawakatsu, H., Zhuang, J. C., et al., 2017. Automated Determination of Magnitude and Source Length of Large Earthquakes Using Backprojection and P Wave Amplitudes. Geophysical Research Letters, 44(11): 5447-5456. https://doi.org/10.1002/2017gl073801
      Yao, J. Y., Yao, D. D., Chen, F., et al., 2025. A Preliminary Catalog of Early Aftershocks Following the 7 January 2025 Ms 6.8 Dingri, Xizang Earthquake. Journal of Earth Science, 1-5. https://doi.org/10.1007/s12583-025-0210-9
      Zhang, C., Chen, W. K., Si, H. J., et al., 2021. Intensity Rapid Evaluation of Maduo M7.4 Earthquake in Qinghai Province. China Earthquake Engineering Journal, 43(4): 876-882 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2021.04.876
      Zhao, H. Q., He, S. L., Chen, W. K., et al., 2022. A Rapid Evaluation Method of Earthquake Intensity Based on the Aftershock Sequence: A Case Study of Menyuan M6.9 Earthquake in Qinghai Province. China Earthquake Engineering Journal, 44(2): 432-439 (in Chinese with English abstract).
      央视网, 2025. 西藏定日6.8级地震已记录到余震1601次. (2025-01-10) [2025-01-13]. https://news.cctv.com/2025/01/10/ARTI0RDBUL1fje7o4sjUmkJQ250110.shtml
      中国新闻网, 2025. 西藏定日6.8级地震致约6.15万民众不同程度受灾. (2025-01-09) [2025-01-13]. https://www.chinanews.com.cn/sh/2025/01-09/10350581.shtml
      中国地震局, 2025. 应急管理部中国地震局发布西藏定日6.8级地震烈度图. (2025-01-10)[2025-01-13]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5790712/index.html
      中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2014. GB/T 30352-2013地震灾情应急评估. 北京: 中国标准出版社.
      中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2020. GB/T 17742-2020中国地震烈度表. 北京: 中国标准出版社.
      韩光洁, 孙丽, 杨志高, 2023. 利用反投影技术快速测定中强震矩震级及破裂过程——以2023年9月9日摩洛哥Mw 6.9地震为例. 中国地震, 39(3): 680-688. doi: 10.3969/j.issn.1001-4683.2023.03.018
      黄婷, 吴中海, 韩帅, 等, 2024. 西藏日喀则地区的活断层基本特征及地震灾害潜在风险评估. 地震科学进展, 54(10): 696-711.
      秦维泽, 2017. 大地震破裂成像的时间域和频率域反投影方法研究及应用(博士学位论文). 合肥: 中国科学技术大学.
      石峰, 梁明剑, 罗全星, 等, 2025.2025年1月7日西藏定日6.8级地震发震构造与同震地表破裂特征. 地震地质, 47(1): 1-15. doi: 10.3969/j.issn.0253-4967.2025.01.001
      田婷婷, 吴中海, 2023. 西藏申扎‒定结裂谷南段丁木错正断层的最新史前大地震事件及其地震地质意义. 地质论评, 69(S1): 53-55.
      张灿, 陈文凯, 司宏俊, 等, 2021. 青海玛多7.4级地震烈度快速评估. 地震工程学报, 43(4): 876-882. doi: 10.3969/j.issn.1000-0844.2021.04.876
      赵怀群, 何少林, 陈文凯, 等, 2022. 基于余震序列的地震烈度快速评估方法研究: 以青海门源6.9级地震为例. 地震工程学报, 44(2): 432-439.
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  1306
    • HTML全文浏览量:  24
    • PDF下载量:  98
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-01-24
    • 刊出日期:  2025-05-25

    目录

      /

      返回文章
      返回