Aftershock Relocation and Intensity Distribution of the Dingri MS6.8 Earthquake in 2025
-
摘要:
为了解2025年西藏定日MS6.8地震余震序列和地震烈度分布,采用双差定位法对72 h内余震进行重新定位,并对重定位余震进行震级加权的标准差椭圆拟合;同时对震中附近150 km的强震动数据进行处理得到仪器烈度值.精定位余震呈南北向展布,2 h余震分布情况与72 h一致,余震中心和宏观震中均位于震中北向,余震长轴方向与烈度等震线Ⅸ度长轴方向相差5°,余震沿长轴方向展布71 km.震中附近强震台站较少,计算的仪器烈度在烈度等震线Ⅵ度及以上区域只有4个值,其中2个值与宏观烈度相吻合.基于余震空间分布和震源机制解成果,推断定日MS6.8发震断层节面参数为走向181°/倾角51°/滑动角‒81°.地震呈现出明显的上/下盘效应,上盘高烈度区大于下盘,余震主要分布于上盘.
Abstract:In order to understand the aftershock sequence and intensity distribution of the Dingri MS6.8 earthquake in 2025, the double-difference location method has been utilized to relocate the aftershocks within 72 hours and the standard deviation ellipse weighted by magnitude has been used to analyze the relocated aftershocks. Meanwhile, the instrumental intensities have been calculated with the strong-motion data within 150 km away from the epicenter. The relocated aftershocks are distributed in a north-south direction, and the distribution of aftershocks within 2 hours shows consistence with that of the 72 hours. The aftershock center and macroseismic epicenter are both located to the north of the epicenter, and the major-axis direction of the aftershock area is 5° different from that of the intensity Ⅸ of the isoseismal lines. The distribution length of the aftershocks along the major axis is 71 km. There are few strong motion stations around the epicenter, therefore only 4 calculated intensity values have been obtained in areas of intensity Ⅵ and above, 2 of which show agreement with the macroseismic intensities. Based on the spatial distribution of aftershocks and the focal mechanism solution, it is inferred that the nodal parameters of the seismogenic fault of the Dingri MS6.8 earthquake are 181°/51°/‒81° for strike/dip/rake angles. This earthquake shows a significant upper/lower wall effect, with greater high-intensity areas and a concentrated distribution of aftershocks in the upper wall.
-
Key words:
- aftershock /
- instrumental intensity /
- double-difference location /
- focal mechanism /
- isoseismal line /
- earthquake /
- disasters
-
表 1 震中150 km范围地震动参数
Table 1. Strong-motion data within 150 km of the epicenter
序号 台站位置 台站
代码经度
(°E)纬度
(°N)震中距(km) PGA(cm·s-2) PGV(cm·s-1) IPGA IPGV 仪器烈度 烈度等震线 东西 北南 垂直 东西 北南 垂直 1 定结县 D0004 87.78 28.37 35.4 103.5 103.7 61.1 13.4 8.6 4.8 6.8 7.3 7.3 Ⅶ 2 拉孜县 D0007 87.63 29.09 67.7 371.5 395.3 292.1 25.3 18.9 15.0 8.5 8.0 8.0 Ⅶ 3 萨迦县 DS002 88.02 28.90 71.2 38.7 41.1 37.4 2.9 3.3 2.1 5.3 5.6 5.4 Ⅵ 4 昂仁县 D0001 87.24 29.30 91.0 52.2 33.0 35.0 5.9 4.3 5.8 5.9 6.3 6.1 Ⅵ 5 岗巴县 D0005 88.41 28.24 98.4 16.6 16.3 16.5 2.1 1.8 1.8 4.4 5.0 4.7 V 6 谢通门县 DX001 88.26 29.44 130.7 11.9 14.6 5.5 3.6 2.1 1.8 4.6 6.3 5.4 V 表 2 不同研究机构给出的定日MS6.8级地震震源机制解
Table 2. The focal mechanism solutions for Dingri MS6.8 earthquake obtained by various institutions
发震时刻 震中位置 节面Ⅰ(°) 节面Ⅱ(°) 矩震级(MW) 矩心深度(km) 产出机构 年-月-日时:分:秒 北纬(°) 东经(°) 走向 倾角 滑动角 走向 倾角 滑动角 2025-01-07 09:05:18 28.598 87.33 3488 408 -100 1818 518 -81 7.1 15 CENC 2025-01-07 01:05:17 (UTC) 28.56 87.47 356 42 -88 173 48 -92 7.1 12 GCMT 2025-01-07 01:05:16 (UTC) 28.639 87.361 349 42 -103 187 49 -78 7.1 11.5 USGS -
Bai, X. F., Dai, Y. Q., Li, Y. Q., et al., 2011. Rapid Assessment of the Macro-Epicenter and Earthquake- Effected Field Based on Aftershocks: A Case Study of Yunnan Area. Journal of Seismological Research, 34(4): 525-532 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0666.2011.04.020 Chen, C., Xu, Y., 2013. Relocation of the Lushan MS7.0 Earthquake Sequence and Its Tectonic Implication. Chinese Journal of Geophysics, 56(12): 4028-4036 (in Chinese with English abstract). doi: 10.6038/cjg20131208 Chen, K., Wang, Y. Z., Xi, N., et al., 2021. Earthquake Ground Motion Intensity Map of the 21 May, 2021 MS6.4 Yangbi, Yunnan Earthquake. Seismology and Geology, 43(4): 899-907 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2021.04.010 Cilia, M. G., Mooney, W. D., Robinson, A., 2017. A Seismic Intensity Survey of the 1 April 2014 M 8.2 Iquique, Chile, Earthquake and Tsunami, and a Comparison with Strong-Motion Data. Seismological Research Letters, 88(5): 1232-1240. https://doi.org/10.1785/0220170030 Galli, P., Castenetto, S., Peronace, E., 2017. The Macroseismic Intensity Distribution of the 30 October 2016 Earthquake in Central Italy (M 6.6): Seismotectonic Implications. Tectonics, 36(10): 2179-2191. https://doi.org/10.1002/2017TC004583 Institute of Geophysics, Academia Sinica, 1981. Explosion Seismic Study for Velocity Distribution and Structure of the Crust and Upper Mantle from Damxung to Yadang of Tibet Plateau. Acta Geophysica Sinica, 24(2): 155-170 (in Chinese with English abstract). Jiang, P., Li, P. P., Li, T. L., et al., 2023. The Characteristics of Strong Motion Records of the 2022 Luding, Sichuan MS6.8 Earthquake. Journal of Seismological Research, 46(4): 593-603 (in Chinese with English abstract). Katsumata, K., 2024. Not Trench-Parallel But Trench- Normal Source Fault of the 1994 Hokkaido Toho-Oki Earthquake as Revealed by the Aftershock Relocation Using HypoDD. Earth, Planets and Space, 76: 126. https://doi.org/10.1186/s40623-024-02069-6 Kiani, A., Torabi, M., Mirhosseini, S. M., 2019. Intensity Measures for the Seismic Response Evaluation of Buried Steel Pipelines under Near-Field Pulse-Like Ground Motions. Earthquake Engineering and Engineering Vibration, 18(4): 917-931. doi: 10.1007/s11803-019-0543-4 King, G., Stein, R., Lin, J., 1994. Static Stress Changes and the Triggering of Earthquakes. Bulletin of the Seismological Society of America, 84(3): 935-953. Kisslinger, C., Jones, L. M., 1991. Properties of Aftershock Sequences in Southern California. Journal of Geophysical Research: Solid Earth, 96(B7): 11947-11958. https://doi.org/10.1029/91jb01200 Li, D. N., Gao, Y., Zhu, H. Y., et al., 2017. Research on Double-Difference Relocations and Focal Mechanism Solutions of the 2014 Yunnan Jinggu MS6.6 Earthquake Sequence. Journal of Seismological Research, 40(3): 465-473 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0666.2017.03.024 Li, P. E., Liao, L., Feng, J. Z., 2022. Relationship between Stress Evolution and Aftershocks after Changning M6.0 Earthquake in Sichuan on 17 June, 2019. Earth Science, 47(6): 2149-2164 (in Chinese with English abstract). Li, Q. L., Li, Y. L., Tu, H. W., et al., 2021. The Relocation, Focal Mechanisms of the Dingqing Earthquakes and a Preliminary Study of Its Seismogenic Structure. Seismology and Geology, 43(1): 209-231 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2021.01.013 Mitchell, A., 2009. The Esri Guide to GIS Analysis. Volume 2: Spatial Measurement & Statistics, Esri, California. Qu, Z., Fu, X., Kishiki, S., et al., 2020. Behavior of Masonry Infilled Chuandou Timber Frames Subjected to In-Plane Cyclic Loading. Engineering Structures, 211: 110449. https://doi.org/10.1016/j.engstruct.2020.110449 Smith, E. M., Mooney, W. D., 2021. A Seismic Intensity Survey of the 16 April 2016 Mw7.8 Pedernales, Ecuador, Earthquake: A Comparison with Strong-Motion Data and Teleseismic Backprojection. Seismological Research Letters, 92(4): 2156-2171. https://doi.org/10.1785/0220200290 Waldhauser, F., 2000. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. The Bulletin of the Seismological Society of America, 90(6): 1353-1368. https://doi.org/10.1785/0120000006 Wang, D., 2010. The Fanging Wall/Footwall Effects of Near-fault Ground Motions (Dissertation). Institute of Engineering Mechanics, China Earthquake Administration, Harbin (in Chinese). Wang, D., Xie, L., Abrahamson, N. A., et al., 2010. Comparison of Strong Ground Motion from the Wenchuan, China, Earthquake of 12 May 2008 with the Next Generation Attenuation (NGA) Ground-Motion Models. Bulletin of the Seismological Society of America, 100(5B): 2381-2395. https://doi.org/10.1785/0120090009 Wang, T. L., Zhang, S. Z., Cui, B. W., et al., 2024. Microearthquake Detection and Seismicity Analysis of the 2020 Guye MS5.1 Earthquake Sequence. Chinese Journal of Geophysics, 67(4): 1501-1514 (in Chinese with English abstract). Wang, W. K., Li, Z. Q., Li, X. L., 2011. Rapid Determination of Macro Epicenter Based on Aftershocks. Technology for Earthquake Disaster Prevention, 6(1): 36-48 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5722.2011.01.004 Wen, R. Z., Ren, Y. F., Huang, X. T., et al., 2013. Strong Motion Records and Their Engineering Damage Implications for Lushan Earthquake on April 20, 2013. Journal of Earthquake Engineering and Engineering Vibration, 33(4): 1-14 (in Chinese with English abstract). Wu, J. J., Chen, W. K., Jia, Y. J., et al., 2025. Rapid Seismic Intensity and Disaster Assessment Based on Dense Seismic Array: An Case of the 2025 Rikaze MS6.8 Earthquake in Xizang. Earth Science, 50(5): 1770-1781 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2025.035 Xu, F. K., Liu, Z. F., Zhang, Z. Q., et al., 2015. Double Difference Relocation and Focal Mechanisms of the Jinggu MS6.6 Earthquake Sequences in Yunnan Province in 2014. Earth Science, 40(10): 1741-1754 (in Chinese with English abstract). Xu, Q., Tian, X. F., Wang, W. H., et al., 2018. A Comparison and Analysis of Instrumental Intensity and Macroseismic Survey Intensity of the 2013 Minxian- Zhangxian MS6.6 Earthquake in Gansu Province. China Earthquake Engineering Journal, 40(1): 124-129 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2018.01.124 Xu, X. W., Li, F., Cheng, J., et al., 2023. Advances in Research on Active Faults and Exploration of Relevant Frontier Scientific Problems. Coal Geology & Exploration, 51(12): 1-16 (in Chinese with English abstract). Xu, Y. J., Pang, W. D., 2021. Application of the Rapid Intensity Reporting Subsystem to the 2021 Yangbi, Yunnan MS6.4 Earthquake. Journal of Seismological Research, 44(3): 407-413 (in Chinese with English abstract). Xu, Z. S., Liu, J., Yalikun, A., et al., 2023. Determination of the Major Axis Direction and Macroseismic Epicenter of the Assessed Intensity Map Based on Relocated Aftershock Sequences. Frontiers in Earth Science, 11: 1128827. https://doi.org/10.3389/feart.2023.1128827 Xu, Z. S., Liu, J., Zheng, T. Y., et al., 2020. Isoseismal Line of Sichuan Changning MS6.0 Earthquake in 2019 Based on Precisely Located Aftershocks Sequence. Acta Seismologica Sinica, 42(4): 447-456, 509 (in Chinese with English abstract). Xu, Z. S., Ren, J., Tan, Z. T., et al., 2022. Determination of the Long-Axis Direction of the Seismic Influence Field Using the Strike of the Focal Mechanism Solution. Journal of Seismological Research, 45(1): 88-99 (in Chinese with English abstract). Yang, T., Wang, S. G., Fang, L. H., et al., 2025. Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau. Earth Science, 50(5): 1721-1732 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2025.033 Yang, T. Q., Jiang, L. X., Dong, M., et al., 2015. Rapid Determination Method of Extreme Earthquake Disaster Area Based on Aftershock Sequence Spatial Distribution. Journal of Catastrophology, 30(1): 8-15 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-811X.2015.01.003 Yu, Y. X., Gao, M. T., 2001. Effects of the Hanging Wall and Footwall on Peak Acceleration during the Chi-Chi Earthquake, Taiwan. Acta Seismologica Sinica, 23(6): 615-621 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-3782.2001.06.007 Zhang, E. H., Zhao, T., Zhang, Y. Q., et al., 2024. Seismogenic Structure of Gaoling Seismic Swarm in Weihe Basin. Earth Science, 49(7): 2662-2674 (in Chinese with English abstract). Zhang, G. W., Zhang, H. Y., Sun, C. Q., 2016. Mechanism of the 2015 Pishan, Xinjiang, MS6.5 Mainshock and Relocation of Its Aftershock Sequences. Seismology and Geology, 38(3): 711-720 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2016.03.016 Zhang, X. T., Jiang, X. H., Xue, Y., et al., 2020. Summary of March 20, 2020, Tibet Dingri MS5.9 Earthquake. Seismological and Geomagnetic Observation and Research, 41(4): 193-203 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-3246.2020.04.024 Zheng, Y., Xie, Z. J., 2017. Present Status and Prospect of Earthquake Focal Depth Locating. Journal of Seismological Research, 40(2): 167-175, 333 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0666.2017.02.001 Zhou, Z. H., Sun, Y. P., Zhu, R., 2024. Evaluation of Post-Earthquake Buried Personnel Based on a New Model of Seismic Intensity Rapid Assessment. Earth Science, 49(2): 437-450 (in Chinese with English abstract). Zhu, J. B., Liu, H. Y., Luan, S. C., et al., 2025. Prediction of On-Site Peak Ground Motion Based on Machine Learning and Transfer Learning. Earth Science, 50(5): 1842-1860 (in Chinese with English abstract). 白仙富, 戴雨芡, 李永强, 等, 2011. 基于余震信息的宏观震中和影响场方向快速判定方法: 以云南地区为例. 地震研究, 34(4): 525-532. doi: 10.3969/j.issn.1000-0666.2011.04.020 陈晨, 胥颐, 2013. 芦山MS7.0级地震余震序列重新定位及构造意义. 地球物理学报, 56(12): 4028-4036. doi: 10.6038/cjg20131208 陈鲲, 王永哲, 席楠, 等, 2021.2021年5月21日云南漾濞6.4级地震的地震动强度图. 地震地质, 43(4): 899-907. doi: 10.3969/j.issn.0253-4967.2021.04.010 中国科学院地球物理研究所, 1981. 西藏高原当雄‒亚东地带地壳与上地幔结果与速度分布的爆炸地震研究. 地球物理学报, 24(2): 155-170. doi: 10.3321/j.issn:0001-5733.1981.02.005 江鹏, 李萍萍, 李同林, 等, 2023. 2022年9月5日泸定MS6.8地震强震动记录特征分析. 地震研究, 46(4): 593-603. 李丹宁, 高洋, 朱慧宇, 等, 2017.2014年云南景谷MS6.6地震序列双差定位及震源机制解特征研究. 地震研究, 40(3): 465-473. doi: 10.3969/j.issn.1000-0666.2017.03.024 李平恩, 廖力, 奉建州, 2022.2019年6月17日四川长宁6.0级地震震后应力演化与余震关系. 地球科学, 47(6): 2149-2164. 李启雷, 李玉丽, 屠泓为, 等, 2021. 丁青地区地震重定位、震源机制及其发震构造初步分析. 地震地质, 43(1): 209-231. doi: 10.3969/j.issn.0253-4967.2021.01.013 王栋, 2010. 近断层地震动的上/下盘效应研究(博士学位论文). 哈尔滨: 中国地震局工程力学研究所. 王同利, 张盛中, 崔博闻, 等, 2024.2020年古冶MS5.1地震序列微震检测及活动性研究. 地球物理学报, 67(4): 1501-1514. 王伟锞, 李志强, 李晓丽, 2011. 利用余震法快速判定宏观震中的研究. 震灾防御技术, 6(1): 36-48. doi: 10.3969/j.issn.1673-5722.2011.01.004 温瑞智, 任叶飞, 黄旭涛, 等, 2013. 芦山7.0级地震强震动记录及其震害相关性. 地震工程与工程振动, 33(4): 1-14. 吴佳杰, 陈文凯, 贾艺娇, 等, 2025. 基于密集台阵的地震烈度及灾情快速评估: 以2025年西藏日喀则MS6.8地震为例. 地球科学, 50(5): 1770-1781. 徐甫坤, 刘自凤, 张竹琪, 等, 2015.2014年云南景谷MS6.6地震序列重定位与震源机制解特征. 地球科学, 40(10): 1741-1754. 徐钦, 田秀丰, 王维欢, 等, 2018.2013年甘肃岷县‒漳县6.6级地震仪器烈度与宏观调查烈度比较分析. 地震工程学报, 40(1): 124-129. doi: 10.3969/j.issn.1000-0844.2018.01.124 徐锡伟, 李峰, 程佳, 等, 2023. 活动断层研究进展及其科学前沿问题讨论. 煤田地质与勘探, 51(12): 1-16. doi: 10.12363/issn.1001-1986.23.12.0805 许亚吉, 庞卫东, 2021. 烈度速报子系统在2021年云南漾濞MS6.4地震中的应用. 地震研究, 44(3): 407-413. 徐志双, 刘杰, 郑通彦, 等, 2020. 基于精定位余震序列的2019年四川长宁MS6.0地震等震线研究. 地震学报, 42(4): 447-456, 509. 徐志双, 任静, 谭专条, 等, 2022. 利用震源机制解走向判定地震影响场长轴方向, 地震研究, 45(1): 88-99. 杨婷, 王世广, 房立华, 等, 2025.2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造. 地球科学, 50(5): 1721-1732. 杨天青, 姜立新, 董曼, 等, 2015. 基于余震序列分布信息的地震极灾区快速判断方法研究. 灾害学, 30(1): 8-15. doi: 10.3969/j.issn.1000-811X.2015.01.003 俞言祥, 高孟潭, 2001. 台湾集集地震近场地震动的上盘效应. 地震学报, 23(6): 615-621. doi: 10.3321/j.issn:0253-3782.2001.06.007 张恩会, 赵韬, 张永奇, 等, 2024. 渭河盆地高陵震群的发震构造. 地球科学, 49(7): 2662-2674. 张广伟, 张洪艳, 孙长青, 2016.2015年新疆皮山MS6.5地震震源机制及余震序列定位. 地震地质, 38(3): 711-720. doi: 10.3969/j.issn.0253-4967.2016.03.016 张小涛, 姜祥华, 薛艳, 等, 2020.2020年3月20日西藏定日MS5.9地震总结. 地震地磁观测与研究, 41(4): 193-203. doi: 10.3969/j.issn.1003-3246.2020.04.024 郑勇, 谢祖军, 2017. 地震震源深度定位研究的现状与展望. 地震研究, 40(2): 167-175, 333. doi: 10.3969/j.issn.1000-0666.2017.02.001 周中红, 孙艳萍, 朱瑞, 2024. 基于新型地震烈度快速评估方法的震后人员压埋估计. 地球科学, 49(2): 437-450. 朱景宝, 刘赫奕, 栾世成, 等, 2025. 基于机器学习和迁移学习的现地地震动峰值预测. 地球科学, 50(5): 1842-1860. -