• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑迈龙金矿区花岗质岩浆岩锆石U-Pb定年和地球化学特征及其地质意义

    于小亮 李华 魏小林 张晖青 李杰 谷超 童海奎 陈华勇 肖兵 汪浩 张斌顺

    于小亮, 李华, 魏小林, 张晖青, 李杰, 谷超, 童海奎, 陈华勇, 肖兵, 汪浩, 张斌顺, 2025. 东昆仑迈龙金矿区花岗质岩浆岩锆石U-Pb定年和地球化学特征及其地质意义. 地球科学, 50(6): 2107-2123. doi: 10.3799/dqkx.2025.046
    引用本文: 于小亮, 李华, 魏小林, 张晖青, 李杰, 谷超, 童海奎, 陈华勇, 肖兵, 汪浩, 张斌顺, 2025. 东昆仑迈龙金矿区花岗质岩浆岩锆石U-Pb定年和地球化学特征及其地质意义. 地球科学, 50(6): 2107-2123. doi: 10.3799/dqkx.2025.046
    Yu Xiaoliang, Li Hua, Wei Xiaolin, Zhang Huiqing, Li Jie, Gu Chao, Tong Haikui, Chen Huayong, Xiao Bing, Wang Hao, Zhang Binshun, 2025. Zircon U-Pb Age and Geochemical Characteristics of Granitic Magmatic Rocks in Mailong Gold Deposit, East Kunlun, and Their Geological Significance. Earth Science, 50(6): 2107-2123. doi: 10.3799/dqkx.2025.046
    Citation: Yu Xiaoliang, Li Hua, Wei Xiaolin, Zhang Huiqing, Li Jie, Gu Chao, Tong Haikui, Chen Huayong, Xiao Bing, Wang Hao, Zhang Binshun, 2025. Zircon U-Pb Age and Geochemical Characteristics of Granitic Magmatic Rocks in Mailong Gold Deposit, East Kunlun, and Their Geological Significance. Earth Science, 50(6): 2107-2123. doi: 10.3799/dqkx.2025.046

    东昆仑迈龙金矿区花岗质岩浆岩锆石U-Pb定年和地球化学特征及其地质意义

    doi: 10.3799/dqkx.2025.046
    基金项目: 

    青海省地质勘查基金“青海省重要矿集区深部找矿突破示范”项目 2023085029ky004

    “青海省柴周缘主要矿集区矿产资源深部勘查方法技术示范研究”项目 2021074008ky008

    2023年度青海省“昆仑英才·高端创新创业人才”项目及广州市科技计划项目(青年博士“启航”项目) 2024A04J4749

    详细信息
      作者简介:

      于小亮(1988-),女,博士研究生,主要从事地质找矿勘查,矿床学和地球化学研究. ORCID:0009-0008-0203-9159. E-mail:xiaoliangyu1988@foxmail.com

      通讯作者:

      肖兵,E-mail:xiaobing@gig.ac.cn

    • 中图分类号: P581

    Zircon U-Pb Age and Geochemical Characteristics of Granitic Magmatic Rocks in Mailong Gold Deposit, East Kunlun, and Their Geological Significance

    • 摘要: 为了揭示东昆仑造山带原特提斯洋和古特提斯洋的构造演化过程及其与金矿成矿的成因联系,对迈龙金矿区的二长花岗岩和花岗闪长岩开展了岩相学、地球化学和LA-ICP-MS锆石U-Pb年代学研究.结果表明,二长花岗岩和花岗闪长岩的结晶年龄分别为421±11 Ma(晚志留世)和228±4 Ma(晚三叠世),具有准铝质、高钾钙碱性系列特征,富集轻稀土(LREE),大离子亲石元素(LILE:Rb,K)和地球化学性质活泼的不相容元素(U,Th,Pb),亏损高场强元素(HFSE:Nb,Ta,P,Ti),显示岛弧花岗岩的地球化学特征.结合区域地质背景,认为二者形成于造山后伸展阶段的壳幔相互作用,迈龙金矿的矿化与古特提斯造山后伸展阶段的构造-岩浆作用密切相关.该研究为区域构造演化和金矿成矿背景提供了重要依据,对矿产勘探具有指导意义.

       

    • 图  1  沟里地区地质简图(据陈加杰,2018修改)

      Fig.  1.  Geological sketch map of the GouLi area (after Chen, 2018)

      图  2  迈龙金矿区地质简图(据沈志远等,2022修改)

      Fig.  2.  Geological sketch map of the Mailong gold deposit (after Shen et al., 2022)

      图  3  迈龙金矿区岩体手标本和显微照片

      a,c,e.为二长花岗岩手标本及镜下特征;b,d,f.为花岗闪长岩手标本及镜下特征;矿物缩写:Qz.石英;Pl.斜长石;Kf.钾长石;Bt.黑云母;Hb.角闪石;Mt.磁铁矿

      Fig.  3.  The hand specimens and microscopic characteristics of the granitic intrusions in the Mailong gold deposit

      图  4  迈龙二长花岗岩和花岗闪长岩QAP图解(底图据Streckeisen and LeMaitre,1979)

      Fig.  4.  QAP diagram for the Mailong monzogranite and granodiorite (base map after Streckeisen and LeMaitre, 1979)

      图  5  二长花岗岩和花岗闪长岩SiO2/(Na2O+K2O)图解(a.据Middlemost,1994)、SiO2/K2O图解(b.据Rickwood,1989)、球粒陨石标准化稀土元素分配图解(c)和原始地幔标准化蛛网图(d)(标准化值据Sun and McDonough,1989)

      Fig.  5.  SiO2 vs. (Na2O+K2O) (a.after Middlemost, 1994), SiO2 vs. K2O (b.after Rickwood, 1989), chondrite-normalized REE (c)and primitive-mantle-normalized diagrams (d) (normalized data after Sun and McDonough, 1989) of the monzogranite and granodiorite

      图  6  二长花岗岩和花岗闪长岩锆石年龄谐和图(a和d)和球粒陨石标准化稀土元素分配图解(b和e)以及阴极发光图像(c和f)

      Fig.  6.  U-Pb concordia diagrams (a and d), chondrite-normalized REE patternsand (b and e) and representative CL images (c and f) for the zircon grains of the monzogranite and granodiorite

      图  7  (K2O+Na2O)/CaO vs. (Zr+Nb+Ce+Y)图解(a)和SiO2 vs. P2O5图解(b)

      Whalen et al.(1987);FG:分异的M,I和S型花岗岩;OGT:未分异的M,I和S型花岗岩

      Fig.  7.  (K2O+Na2O)/CaO vs. (Zr+Nb+Ce+Y) (a) and SiO2 vs. P2O5 (b)

      图  8  迈龙花岗岩C/MF-A/MF图解(据Gerdes et al.,2000)

      Fig.  8.  C/MF-A/MF diagram for Mailong granite (after Gerdes et al., 2000)

      图  9  二长花岗岩和花岗闪长岩Sr/Y与Y图解和Rb与(Yb+Nb)图解(修改自Pearce et al.,1996)

      Fig.  9.  Sr/Y vs. Y and Rb vs. (Yb+Nb) diagrams of the monzogranite and granodiorite (modified from Pearce et al., 1996)

      表  1  迈龙二长花岗岩和花岗闪长岩体全岩主量(%)、微量(10-6)和稀土元素(10-6)分析结果

      Table  1.   Analytic results of the major (%), trace (10-6) and rare earth elements (10-6) of the Mailong monzogranite and granodiorite

      样品编号 MLD056 MLD143 MLD104 MLD112 MLD186 MLD182 MLD099 MLD152 MLD151
      代表岩性 二长花岗岩 花岗闪长岩
      主量元素(%)
      SiO2 69.69 67.93 67.74 72.53 65.52 64.78 61.99 63.82 63.60
      TiO2 0.48 0.33 0.60 0.23 0.54 0.59 0.68 0.68 0.67
      Al2O3 14.42 16.80 15.22 14.20 15.50 15.48 16.59 15.28 15.38
      Fe2O3 3.44 2.47 4.20 1.92 4.10 4.64 5.27 5.05 5.11
      MnO 0.05 0.03 0.05 0.02 0.06 0.07 0.08 0.08 0.08
      MgO 0.89 1.23 1.20 0.43 2.02 2.31 2.44 2.67 2.57
      CaO 2.24 3.44 2.96 1.65 4.08 4.36 4.90 4.46 4.43
      Na2O 2.94 4.90 3.11 3.01 3.40 3.37 3.66 3.29 3.33
      K2O 4.16 1.64 3.48 4.96 2.83 2.88 2.52 3.11 3.00
      P2O5 0.14 0.09 0.21 0.05 0.13 0.15 0.17 0.12 0.12
      LOI 0.91 0.79 0.75 0.75 0.89 0.67 0.75 0.91 0.97
      A/CNK 1.08 1.04 1.07 1.07 0.96 0.93 0.94 0.90 0.92
      A/NK 1.50 1.70 1.70 1.40 1.80 1.80 1.90 1.70 1.80
      Mg# 34 50 36 31 49 50 48 51 50
      Na2O+K2O 7.10 6.54 6.59 7.97 6.23 6.25 6.18 6.40 6.33
      微量元素(10-6)
      Rb 147.0 93.4 132.0 163.5 104.5 110.5 98.1 111.5 125.5
      Ba 1 300 100 1 300 1 300 600 700 700 700 600
      Th 24.00 8.17 33.00 23.50 23.00 22.50 12.55 15.85 16.75
      U 2.55 1.24 2.05 4.74 1.80 1.95 1.46 2.03 2.10
      Nb 17.8 6.1 16.4 10.5 9.5 10.8 11.8 12.6 13.1
      Ta 0.88 0.47 0.60 0.73 0.82 0.77 0.77 0.80 0.84
      La 65.1 22.0 80.8 61.6 60.8 60.8 36.0 36.1 38.6
      Ce 127.0 45.3 153.5 108.5 108.0 112.5 73.5 71.5 78.1
      Pr 13.45 5.25 15.75 10.90 10.35 11.05 8.21 8.10 8.90
      Sr 320 462 456 297 485 481 563 375 408
      Nd 46.5 19.4 52.0 34.5 32.7 36.4 29.6 29.8 32.1
      Sm 7.54 3.39 7.92 5.03 4.35 5.46 5.16 5.42 5.67
      Zr 364 142 359 191 161 168 242 243 425
      Hf 8.8 3.6 8.4 5.1 4.5 4.8 6.1 6.4 10.7
      Eu 1.44 0.86 1.38 0.76 0.92 1.07 1.18 1.14 1.14
      Gd 5.71 2.50 5.40 3.42 3.00 3.90 4.17 4.64 4.53
      Tb 0.84 0.36 0.76 0.49 0.46 0.56 0.63 0.69 0.71
      Dy 4.59 1.82 3.79 2.40 2.37 3.11 3.33 3.96 4.00
      Ho 0.86 0.33 0.70 0.46 0.45 0.58 0.65 0.78 0.79
      Y 21.9 8.7 17.0 12.6 12.0 15.6 17.0 19.5 21.4
      Er 2.38 0.86 1.67 1.30 1.26 1.58 1.75 2.11 2.26
      Tm 0.33 0.11 0.23 0.19 0.18 0.23 0.25 0.30 0.34
      Yb 2.10 0.70 1.50 1.27 1.18 1.46 1.59 1.93 2.16
      Lu 0.33 0.11 0.22 0.20 0.19 0.24 0.24 0.32 0.35
      ΣREE(10-6) 300.07 111.69 342.62 243.62 238.21 254.54 183.26 186.29 201.05
      LREE/HREE 6.69 6.21 9.96 9.91 10.29 8.34 5.19 4.44 4.50
      (La/Yb)N 22.24 22.54 38.64 34.79 36.96 29.87 16.24 13.42 12.82
      (La/Sm)N 5.57 4.19 6.59 7.91 9.02 7.19 4.50 4.30 4.39
      (Gd/Yb)N 2.25 2.95 2.98 2.23 2.10 2.21 2.17 1.99 1.73
      δEu 0.67 0.90 0.65 0.56 0.78 0.71 0.78 0.69 0.69
      δCe 1.05 1.03 1.05 1.03 1.06 1.06 1.05 1.03 1.03
      下载: 导出CSV

      表  2  迈龙二长花岗岩和花岗闪长岩体锆石LA-ICP-MS U-Pb测年结果

      Table  2.   Zircon LA-ICP-MS U-Pb dating results of the Mailong monzogranite and granodiorite

      点号 含量(10-6) Th/U 同位素比值 同位素年龄(Ma)
      Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
      样品MLD056
      1 193.6 484 0.4 0.053 75 1.93 0.504 6 2.0 0.067 36 0.7 414 7.0 420 2.5
      2 95.6 478 0.2 0.058 53 4.27 0.550 8 4.0 0.068 29 1.0 444 15.0 426 4.0
      3 247.2 618 0.4 0.056 13 2.10 0.519 9 2.1 0.067 26 0.8 424 7.0 420 3.5
      4 188.4 314 0.6 0.055 29 3.28 0.507 3 3.3 0.066 19 1.2 415 11.5 413 4.5
      5 170.0 340 0.5 0.053 83 3.45 0.496 4 3.6 0.066 52 1.0 408 12.5 415 4.0
      6 146.0 292 0.5 0.055 61 2.66 0.516 7 2.4 0.067 54 0.9 426 7.5 421 4.0
      7 222.0 444 0.5 0.056 92 2.91 0.528 3 3.2 0.067 27 1.3 430 11.0 420 5.5
      8 210.8 527 0.4 0.056 48 2.62 0.513 7 2.3 0.066 24 1.0 420 8.0 413 4.0
      9 171.0 285 0.6 0.058 02 2.82 0.529 5 2.7 0.066 26 1.1 430 9.5 414 4.5
      10 232.4 332 0.7 0.056 33 3.27 0.510 4 3.1 0.065 89 1.1 417 10.5 411 4.5
      11 345.9 1 153 0.3 0.054 75 2.49 0.522 1 2.5 0.068 54 0.8 426 8.5 427 3.5
      12 264.4 661 0.4 0.054 78 2.78 0.514 1 3.1 0.067 97 1.1 420 11.0 424 4.5
      13 241.0 482 0.5 0.053 85 1.87 0.494 7 1.9 0.066 61 0.9 407 6.5 416 3.5
      14 226.0 565 0.4 0.054 90 2.47 0.512 4 2.8 0.067 61 0.9 419 9.5 422 4.0
      15 199.2 249 0.8 0.056 86 3.27 0.517 5 3.2 0.065 83 1.5 423 11.5 411 6.0
      16 239.0 478 0.5 0.057 29 3.05 0.546 1 2.5 0.069 25 1.0 442 9.0 432 4.5
      17 238.2 397 0.6 0.055 96 1.81 0.518 8 1.9 0.067 20 0.7 424 6.5 419 2.5
      18 237.5 475 0.5 0.055 41 2.65 0.548 0 2.6 0.071 10 0.8 443 9.5 443 3.0
      19 372.0 620 0.6 0.055 04 2.38 0.514 9 2.5 0.067 62 0.8 421 8.5 422 3.5
      20 214.4 536 0.4 0.055 70 2.27 0.539 0 2.0 0.069 87 0.6 437 7.5 435 2.5
      21 305.0 305 1.0 0.054 92 3.28 0.507 9 3.3 0.066 59 0.7 416 11.5 416 3.0
      22 273.0 273 1.0 0.056 18 2.34 0.517 8 2.1 0.066 94 0.9 423 7.5 418 3.5
      23 270.0 675 0.4 0.053 68 1.62 0.499 8 1.5 0.067 44 0.8 411 5.0 421 3.0
      24 66.2 662 0.1 0.055 34 2.20 0.514 8 2.1 0.067 49 1.1 421 7.5 421 4.5
      25 165.6 414 0.5 0.056 05 2.66 0.519 5 2.6 0.067 29 1.1 424 8.5 420 4.5
      26 83.2 208 0.4 0.054 06 2.90 0.500 7 2.8 0.067 10 0.9 411 9.5 419 3.5
      27 145.8 486 0.3 0.055 47 2.15 0.514 2 2.0 0.067 38 1.1 421 6.5 420 4.5
      28 176.0 352 0.5 0.055 09 2.42 0.512 5 2.1 0.067 10 0.7 419 7.5 419 2.5
      29 144.4 361 0.4 0.054 09 1.97 0.501 9 2.2 0.067 13 0.7 412 7.5 419 3.0
      30 328.0 410 0.8 0.054 31 3.53 0.483 9 2.9 0.064 92 1.3 400 9.5 405 5.0
      31 155.2 388 0.4 0.055 85 2.08 0.516 4 2.0 0.066 98 0.7 422 7.0 418 2.5
      样品MLD186
      1 120.8 302 0.4 0.054 81 3.51 0.267 5 3.2 0.035 51 1.3 240 7.0 225 3.0
      2 101.4 169 0.6 0.052 63 4.11 0.255 5 3.7 0.035 99 1.2 230 7.5 228 2.5
      3 168.5 337 0.5 0.053 02 3.27 0.265 7 3.5 0.036 27 1.1 238 7.5 230 2.5
      4 120.8 302 0.4 0.051 24 3.16 0.254 7 3.2 0.036 06 1.2 230 6.5 228 2.5
      5 146.4 244 0.6 0.055 42 7.77 0.271 4 7.8 0.035 47 1.4 242 17.0 225 3.0
      6 103.5 207 0.5 0.052 87 4.05 0.262 1 4.1 0.035 97 1.4 235 8.5 228 3.0
      7 213.0 426 0.5 0.053 92 2.93 0.269 1 3.0 0.036 12 0.9 241 6.5 229 2.0
      8 87.0 174 0.5 0.051 52 4.50 0.260 2 4.5 0.036 60 1.1 233 9.5 232 2.5
      9 110.6 158 0.7 0.050 54 4.34 0.247 7 4.2 0.035 57 1.3 223 8.5 225 3.0
      10 151.8 253 0.6 0.048 12 3.98 0.242 1 3.9 0.036 54 1.3 219 8.0 231 3.0
      11 210.6 351 0.6 0.051 81 2.50 0.259 1 2.5 0.036 19 0.9 233 5.5 229 2.0
      12 131.0 262 0.5 0.052 29 3.48 0.255 2 3.4 0.035 94 1.3 234 8.0 228 3.0
      13 111.0 222 0.5 0.049 79 4.87 0.252 0 4.9 0.036 49 1.2 226 9.5 231 3.0
      14 125.0 250 0.5 0.054 28 5.02 0.267 9 4.7 0.035 85 2.2 240 10.0 227 5.0
      15 211.0 422 0.5 0.052 25 2.55 0.259 1 2.7 0.035 85 1.1 233 5.5 227 2.5
      16 223.8 373 0.6 0.052 24 2.73 0.260 1 2.4 0.036 57 1.0 234 5.0 232 2.5
      17 196.8 328 0.6 0.051 23 3.12 0.258 2 3.2 0.036 47 1.2 236 7.5 231 2.5
      18 196.2 327 0.6 0.051 77 3.62 0.257 1 3.5 0.035 97 1.0 231 7.5 228 2.5
      19 290.0 580 0.5 0.050 44 2.52 0.252 5 2.5 0.036 18 0.7 228 5.0 229 1.5
      20 258.6 431 0.6 0.052 28 2.92 0.258 0 2.8 0.035 74 0.9 232 6.0 226 2.0
      21 240.0 400 0.6 0.050 42 2.66 0.249 1 2.6 0.035 74 1.0 225 5.5 226 2.0
      22 108.5 217 0.5 0.051 55 3.83 0.253 5 4.2 0.035 32 1.3 228 9.0 224 3.0
      23 290.4 484 0.6 0.052 44 2.94 0.259 6 2.9 0.035 86 1.1 234 6.0 227 2.5
      24 298.8 498 0.6 0.052 14 2.30 0.258 1 2.4 0.035 77 0.9 233 5.0 227 2.0
      25 180.5 361 0.5 0.054 09 3.70 0.265 1 3.9 0.035 35 1.0 238 8.0 224 2.0
      26 180.5 361 0.5 0.053 11 3.37 0.256 3 3.2 0.034 97 1.2 231 6.5 222 2.5
      27 327.6 546 0.6 0.051 92 2.80 0.258 6 2.7 0.036 05 0.9 233 5.5 228 2.0
      28 174.0 348 0.5 0.049 42 2.38 0.248 9 2.6 0.036 33 1.0 225 5.5 230 2.5
      下载: 导出CSV

      表  3  东昆仑造山带与原特提斯造山作用有关的部分岩体U-Pb年龄统计

      Table  3.   U-Pb ages of rock related to the Proto-Tethys orogeny in the East Kunlun orogenic belt

      岩体位置 岩性 测试年龄 文献来源
      都兰县可可沙地区 石英闪长岩 515±4 Ma 张亚峰等(2010)
      格尔木南水泥厂地区 玄武岩 474± 8 Ma 陈有炘等(2013)
      东昆仑南缘白日切特及地区 花岗闪长岩 441±6 Ma 刘战庆等(2011)
      流纹斑岩 438±3 Ma
      东昆仑南缘亿可哈拉尔地区 花岗闪长岩 435±3 Ma Li et al. (2015)
      花岗岩 436.9±5.7 Ma
      白干湖钨锡矿田 二长花岗岩 431±1 Ma 高永宝(2013)
      沟里敖洼得地区 花岗闪长岩 454±2 Ma 陈加杰(2018)
      沟里淡水沟地区 二长花岗岩 418±3 Ma
      正长花岗岩 418±3 Ma
      沟里念堂地区 正长花岗岩 403±2 Ma
      沟里浪木日地区 黑云母花岗岩 414.5±8.8 Ma 童海奎等(2023)
      下载: 导出CSV

      表  4  东昆仑造山带与古特提斯造山作用有关的部分岩体U-Pb年龄统计

      Table  4.   U-Pb ages of rock related to the Paleo-Tethys orogeny in the East Kunlun orogenic belt

      岩体位置 岩性 测试年龄 文献来源
      巴龙南部瑙木浑地区 花岗闪长岩 261±2 Ma Xiong et al.(2012)
      五龙沟地区岩金沟矿区 花岗闪长岩 259±2 Ma 李希等(2014)
      哈拉尕吐地区 花岗闪长岩 255±4 Ma 孙雨等(2009)
      跃进山地区 煌斑岩脉 253±3 Ma Xiong et al. (2012)
      巴龙地区 花岗闪长岩 242.5±1.6 Ma Zhang et al. (2012)
      石英闪长岩 241.0±2.2 Ma
      正长花岗岩 231.0±2.6 Ma
      香日德地区 花岗闪长岩 242±1 Ma 陈加杰(2018)
      阿斯哈地区 花岗闪长岩 240±2 Ma 王凤林(2023)
      哈日扎地区 花岗岩 255 Ma 马忠元等(2024)
      下载: 导出CSV
    • Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
      Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
      Chen, G. C., Pei, X. Z., Li, R. B., et al., 2020. Late Palaeozoic-Early Mesozoic Tectonic-Magmatic Evolution and Mineralization in the Eastern Section of the East Kunlun Orogenic Belt. Earth Science Frontiers, 27(4): 33-48(in Chinese with English abstract).
      Chen, J. J., 2018. Paleozoic-Mesozoic Tectono-Magmatic Evolution and Gold Mineralization in Gouli Area, East End of East Kunlun Orogen (Dissertation). China University of Geosciences, Wuhan, 97-133(in Chinese with English abstract).
      Chen, J. J., Fu, L. B., Selby, D., et al., 2020. Multiple Episodes of Gold Mineralization in the East Kunlun Orogen, Western Central Orogenic Belt, China: Constraints from Re-Os Sulfide Geochronology. Ore Geology Reviews, 123: 103587. https://doi.org/10.1016/j.oregeorev.2020.103587
      Chen, Y. X., Pei, X. Z., Li, R. B., et al., 2013. Zircon U-Pb Age, Geochemical Characteristics and Tectonic Significance of Metavolcanic Rocks from Naij Tal Group, East Section of East Kunlun. Earth Science Frontiers, 20(6): 240-254(in Chinese with English abstract).
      Fan, X. Z., 2022. Research on Metallogenesis of Ag Polymetallic Deposits in the East Segment of the East Kunlun Orogenic Belt, Qinghai Province (Dissertation). Jilin University, Changchun, 172-175(in Chinese with English abstract).
      Feng, C. Y., Zhang, D. Q., Wang, F. C., et al., 2004. Geochemical Characteristics of Ore-Forming Fluids from the Orogenic Au (and Sb) Deposits in the Eastern Kunlun Area, Qinghai Province. Acta Petrologica Sinica, 20(4): 949-960 (in Chinese with English abstract).
      Gao, Y. B., 2013. The Intermediate-Acid Intrusive Magmatism and Mineralization in Qimantag, East Kunlun Moutains(Dissertation). Chang'an University, Xi'an, 36-54(in Chinese with English abstract).
      Gerdes, A., Wörner, G., Henk, A., 2000. Post-Collisional Granite Generation and HT-LP Metamorphism by Radiogenic Heating: The Variscan South Bohemian Batholith. Journal of the Geological Society, 157(3): 577-587. https://doi.org/10.1144/jgs.157.3.577
      Guo, X. Z., Jia, Q. Z., Li, J. C., et al., 2018. Zircon U-Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High-Pressure Metamorphic Belt. Earth Science, 43(12): 4300-4318(in Chinese with English abstract).
      Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010
      Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. https://doi.org/10.1016/s0012-821X(04)00007-X
      Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      Li, B., Wei, J. H., Gao, Q., et al., 2025. Geochronology, Geochemical Characteristics and Geological Significance of Early Paleozoic Mailong Granites in Eastern Section of East Kunlun. Earth Science, 50(4): 1417-1442(in Chinese with English abstract).
      Li, C. Y., Zhang, H., Wang, F. Y., et al., 2012. The Formation of the Dabaoshan Porphyry Molybdenum Deposit Induced by Slab Rollback. Lithos, 150: 101-110. https://doi.org/10.1016/j.lithos.2012.04.001
      Li, R. B., Pei, X. Z., Li, Z. C., et al., 2015. Geochemistry and Zircon U-Pb Geochronology of Granitic Rocks in the Buqingshan Tectonic Mélange Belt, Northern Tibet Plateau, China and Its Implications for Prototethyan Evolution. Journal of Asian Earth Sciences, 105: 374-389. https://doi.org/10.1016/j.jseaes.2015.02.004
      Li, X., Yuan, W. M., Hao, N. N., et al., 2014. Characteristics and Tectonic Setting of Granite in Wulonggou Area, East Kunlun Mountains. Global Geology, 33(2): 275-288(in Chinese with English abstract).
      Li, X. H., Qi, C. S., Liu, Y., et al., 2005. Petrogenesis of the Neoproterozoic Bimodal Volcanic Rocks along the Western Margin of the Yangtze Block: New Constraints from Hf Isotopes and Fe/Mn Ratios. Chinese Science Bulletin, 50(21): 2481-2486. https://doi.org/10.1360/982005-287
      Liu, Z. Q., Pei, X. Z., Li, R. B., et al., 2011. Early Paleozoic Intermediate-Acid Magmatic Activity in Bairiqiete Area along the Buqingshan Tectonic Melange Belt on the Southern Margin of East Kunlun: Constraints from Zircon U-Pb Dating and Geochemistry. Geology in China, 38(5): 1150-1167 (in Chinese with English abstract).
      Lu, L., Wu, Z. H., Hu, D. G., et al., 2010. Zircon U-Pb Age for Rhyolite of the Maoniushan Formation and Its Tectonic Significance in the East Kunlun Mountains. Acta Petrologica Sinica, 26(4): 1150-1158(in Chinese with English abstract).
      Ma, Z. Y., Chai, J. X., Zhang, A. K., et al., 2024. Geochronology, Geochemistry and Petrogenesis of the Harizha-Nagengkangqieer Granites in the East Kunlun Orogen. Earth Science, 49(5): 1778-1792(in Chinese with English abstract).
      Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract).
      Meng, F. C., Cui, M. H., Wu, X. K., et al., 2013. Magmatic and Metamorphic Events Recorded in Granitic Gneisses from the Qimantag, East Kunlun Mountains, Northwest China. Acta Petrologica Sinica, 29(6): 2107-2122(in Chinese with English abstract).
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
      Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 33(3): 267-309. https://doi.org/10.1029/95RG01302
      Shen, Z. Y., Wang, T. K., Jing, G. Z., et al., 2022. Analysis of Ore Prospecting of Mailong-Seri Area, Dulan County, Qinghai Province and the Target Delineation. Contributions to Geology and Mineral Resources Research, 37(3): 291-301(in Chinese with English abstract).
      Streckeisen, A., Le Maitre, W., 1979. A Chemical Approximation to the Model QAPF Classification of the Igneous Rocks. Neues Jahrb Mineral Abh, 136(2): 169-206.
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, Y., Pei, X. Z., Ding, S. P., et al., 2009. Halagatu Magma Mixing Granite in the East Kunlun Mountains—Evidence from Zircon U-Pb Dating. Acta Geologica Sinica, 83(7): 1000-1010(in Chinese with English abstract).
      Tong, H. K., Long, L. L., Wang, Y. W., et al., 2023. Metallogenic Characteristics of Langmuri Copper Polymetallic Deposit in East Kunlun and Its Ore Prospecting Enlightenment. Earth Science, 48(12): 4349-4369(in Chinese with English abstract).
      Wang, F. L., 2023. Metallogenic Mechanism and Prognosis Based on Comprehensive Information for Gold Deposits in the Asiha-Walega Area, Eastern Segment of the East Kunlun Orogen (Dissertation). China University of Geosciences, Wuhan, 63-79(in Chinese with English abstract).
      Whalen, J. B., Currie, K. L., van Breemen, O., 1987. Episodic Ordovician-Silurian Plutonism in the Topsails Igneous Terrane, Western Newfoundland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 78(1): 17-28. https://doi.org/10.1017/s0263593300010920
      Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2012. The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104(3): 211-224. https://doi.org/10.1007/s00710-011-0187-1
      Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2006. The Qinghai-Tibet Plateau and Continental Dynamics: A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33(2): 221-238(in Chinese with English abstract).
      Zhai, W., Zheng, S. Q., Zhang, L. Y., et al., 2021. In Situ Pyrite Sulfur Isotope and Trace Element Analyses of the World-Class Dachang Gold Deposit, Northern Qinghai-Tibetan Plateau: Implications for Metallogenesis. Ore Geology Reviews, 138: 104347. https://doi.org/10.1016/j.oregeorev.2021.104347
      Zhang, D. Q., Dang, X. Y., She, H. Q., et al., 2005. Ar-Ar Dating of Orogenic Gold Deposits in Northern Margin of Qaidam and East Kunlun Mountains and Its Geological Significance. Mineral Deposits, 24(2): 87-98(in Chinese with English abstract).
      Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2012. Petrogenesis and Tectonic Significance of the Late Permian-Middle Triassic Calc-Alkaline Granites in the Balong Region, Eastern Kunlun Orogen, China. Geological Magazine, 149(5): 892-908. https://doi.org/10.1017/S0016756811001142
      Zhang, Y. F., Pei, X. Z., Ding, S. P., et al., 2010. LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan County, Eastern Section of the East Kunlun Orogenic Belt, China and Its Significance. Geological Bulletin of China, 29(1): 79-85 (in Chinese with English abstract).
      陈国超, 裴先治, 李瑞保, 等, 2020. 东昆仑造山带东段晚古生代: 早中生代构造岩浆演化与成矿作用. 地学前缘, 27(4): 33-48.
      陈加杰, 2018. 东昆仑造山带东端沟里地区构造岩浆演化与金成矿(博士学位论文). 武汉: 中国地质大学, 97-133.
      陈有炘, 裴先治, 李瑞保, 等, 2013. 东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义. 地学前缘, 20(6): 240-254.
      范兴竹, 2022. 青海省东昆仑东段银多金属矿床成矿作用研究(博士学位论文). 长春: 吉林大学, 172-175.
      丰成友, 张德全, 王富春, 等, 2004. 青海东昆仑造山型金(锑)矿床成矿流体地球化学研究. 岩石学报, 20(4): 949-960.
      高永宝, 2013. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用(博士学位论文). 西安: 长安大学, 36-44.
      国显正, 贾群子, 李金超, 等, 2018. 东昆仑高压变质带榴辉岩年代学、地球化学及其地质意义. 地球科学, 43(12): 4300-4318. doi: 10.3799/dqkx.2018.142
      李斌, 魏俊浩, 高强, 等, 2025. 东昆仑东段沟里地区早古生代迈龙花岗岩年代学、岩石地球化学及地质意义. 地球科学, 50(4): 1417-1442. doi: 10.3799/dqkx.2024.025
      李希, 袁万明, 郝娜娜, 等, 2014. 东昆仑五龙沟花岗岩特征及其构造背景. 世界地质, 33(2): 275-288.
      刘战庆, 裴先治, 李瑞保, 等, 2011. 东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动: 来自锆石U-Pb测年及岩石地球化学证据. 中国地质, 38(5): 1150-1167.
      陆露, 吴珍汉, 胡道功, 等, 2010. 东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义. 岩石学报, 26(4): 1150-1158.
      马忠元, 柴佳兴, 张爱奎, 等, 2024. 东昆仑哈日扎-那更康切尔银矿区花岗岩年代学、地球化学及岩石成因. 地球科学, 49(5): 1778-1792. doi: 10.3799/dqkx.2022.418
      莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414.
      孟繁聪, 崔美慧, 吴祥珂, 等, 2013. 东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件. 岩石学报, 29(6): 2107-2122.
      沈志远, 汪统科, 井国正, 等, 2022. 青海省都兰县迈龙—色日地区找矿信息分析及靶区圈定. 地质找矿论丛, 37(3): 291-301.
      孙雨, 裴先治, 丁仨平, 等, 2009. 东昆仑哈拉尕吐岩浆混合花岗岩: 来自锆石U-Pb年代学的证据. 地质学报, 83(7): 1000-1010.
      童海奎, 龙灵利, 王玉往, 等, 2023. 东昆仑浪木日铜多金属矿床成矿特征及找矿启示. 地球科学, 48(12): 4349-4369 doi: 10.3799/dqkx.2023.028
      王凤林, 2023. 东昆仑东段阿斯哈-瓦勒尕地区金成矿机制研究及综合信息成矿预测(博士学位论文). 武汉: 中国地质大学, 63-79.
      许志琴, 杨经绥, 李海兵, 等, 2006. 青藏高原与大陆动力学: 地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221-238.
      张德全, 党兴彦, 佘宏全, 等, 2005. 柴北缘-东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义. 矿床地质, 24(2): 87-98.
      张亚峰, 裴先治, 丁仨平, 等, 2010. 东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义. 地质通报, 29(1): 79-85.
    • 加载中
    图(9) / 表(4)
    计量
    • 文章访问数:  105
    • HTML全文浏览量:  5
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-05-22
    • 刊出日期:  2025-06-25

    目录

      /

      返回文章
      返回