Rupture Process and Aftershock Distribution of the MS6.8 Earthquake in Dingri, Xizang, on January 7, 2025
-
摘要:
为了解西藏定日MS6.8地震的破裂机制,利用远震波形反演了主震的破裂过程并采用双差定位方法对地震序列进行了精定位.研究结果显示,主震破裂过程持续约22 s,破裂面沿发震断层向北单侧扩展,破裂长度约60 km,在主震以北约30 km附近,最大滑移量2.4 m并在地表形成同震破裂带,与野外地质调查结果相吻合.余震序列呈南北分带特征,可大致划分为三个余震丛集区,其中,南部和中部丛集区的地震分布表明发震断层较为复杂,揭示了多条次级断裂的联动活动.早期余震集中分布于主破裂区外围的低滑移区,与高滑移区(> 1.5 m)形成空间互补,符合“应力阴影”效应;后期余震向南迁移,并形成NE-SW与NW-SE向共轭集中区,揭示震后的多向应力调整过程.结果表明,区域构造应力场对地震破裂过程具有显著控制作用,余震分布与主震破裂后的应力调整过程和区域构造密切相关.
Abstract:To investigate the rupture mechanism of the MS6.8 earthquake in Dingri, Xizang, it inverted the rupture process of the mainshock using teleseismic waveforms and refined the hypocenter locations of the aftershock sequence through the double-difference relocation method. The results indicate that the rupture process lasted approximately 22 seconds, with unilateral propagation northward along the causative fault.The rupture extended for about 60 km, and the maximum slip reached 2.4 m, located roughly 30 km north of the mainshock, forming a co-seismic surface rupture zone that is consistent with the results of field geological surveys. The aftershock sequence exhibits a characteristic north-south distribution, which can be roughly categorized into three clusters. The earthquake distribution in the southern and central clusters indicates a complex fault structure and suggests the co-seismic activation of multiple secondary faults. Early aftershocks are concentrated in the low-slip regions at the periphery of the main rupture zone, complementing the high-slip areas (> 1.5 m), consistent with the "stress shadow" effect. Subsequent aftershocks migrated southward and formed conjugate clusters trending NE-SW and NW-SE, revealing a multi-directional stress adjustment process in the post-seismic stage. These findings suggest that the regional tectonic stress field plays a significant role in controlling the rupture process, and that the aftershock distribution is closely related to post-rupture stress redistribution and regional tectonics.
-
图 9 定日地震断层面滑移量和早期余震分布
a.黑色圆点为余震位置,彩色区域为断层面滑移量在地面投影;b.沿纬度地震频次统计;地表破裂数据来自石峰等(2025)
Fig. 9. Fault plane slip and the distribution of early aftershocks for the Dingri earthquake
表 1 定日地震震源机制解参数
Table 1. Seismic source mechanism parameters of the Dingri earthquake
序号 节面Ⅰ 节面Ⅱ 地震矩(1019N·m) 发布机构和作者 走向(°) 倾角(°) 滑动角(°) 走向(°) 倾角(°) 滑动角(°) 1 348 40 -100 181 51 -81 - 中国地震台网中心 2 356 42 -88 173 48 -92 5.29 GCMT 3 349 42 -103 187 49 -78 4.749 USGS 4 346 49 -95 174 42 -85 4.046 9 张喆等 5 333 43 -112 182 51 -71 - 郭祥云 6 341 51 -113 196 44 -64 7.02 IPGP 7 151 56 -116 12 41 -56 5.024 6 GFZ 8 344 45 255 185 47 285 3.3 张勇等 9 331 59 -110 186 36 -60 - 陈鲲等 注:USGS. 美国地质调查局;GCMT. 全球地震矩张量;IPGP. 巴黎地球物理学院;GFZ. 德国地球科学研究中心. -
Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/JB091iB14p13803 Bai, L., Chen, Z. W., Wang, S. J., 2025. The 2025 Dingri MS6.8 Earthquake in Xizang: Analysis of Tectonic Background and Discussion of Source Characteristics. Reviews of Geophysics and Planetary Physics, 56(3): 258-263 (in Chinese with English abstract). Chen, K., Yang, T., Wang, Y. Z., et al., 2025. Quick Output Parameters Related to the 7 January 2025 M6.8 Earthquake in Dingri County, Xizang. Progress in Earthquake Sciences, 55(3): 164-171 (in Chinese with English abstract). Chu, Y., Guo, Y. L., Liu, T. J., et al., 2024. South Tibetan Detachment System Activity and Leucogranite Emplacement: Insights from the Shisha Pangma Regions. Acta Petrologica Sinica, 40(5): 1461-1474 (in Chinese with English abstract). doi: 10.18654/1000-0569/2024.05.08 Dreger, D. S., Gee, L., Lombard, P., et al., 2005. Rapid Finite-Source Analysis and Near-Fault Strong Ground Motions: Application to the 2003 Mw 6.5 San Simeon and 2004 Mw 6.0 Parkfield Earthquakes. Seismological Research Letters, 76(1): 40-48. https://doi.org/10.1785/gssrl.76.1.40 England, P., Houseman, G., 1989. Extension during Continental Convergence, with Application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. https://doi.org/10.1029/JB094iB12p17561 Felzer, K. R., Brodsky, E. E., 2005. Testing the Stress Shadow Hypothesis. Journal of Geophysical Research: Solid Earth, 110(B5): B05S09. https://doi.org/10.1029/2004JB003277 Fielding, E. J., 1996. Tibet Uplift and Erosion. Tectonophysics, 260(1/2/3): 55-84. https://doi.org/10.1016/0040-1951(96)00076-5 Gao, R., Lu, Z. W., Klemperer, S. L., et al., 2016. Crustal-Scale Duplexing beneath the Yarlung Zangbo Suture in the Western Himalaya. Nature Geoscience, 9(7): 555-560. https://doi.org/10.1038/ngeo2730 Harrison, T. M., Copeland, P., Kidd, W. S. F., et al., 1992. Raising Tibet. Science, 255(5052): 1663-1670. https://doi.org/10.1126/science.255.5052.1663 Ichinose, G. A., 2000. Relative Importance of Near-, Intermediate- and Far-Field Displacement Terms in Layered Earth Synthetic Seismograms. Bulletin of the Seismological Society of America, 90(2): 531-536. https://doi.org/10.1785/0119990134 Ji, C., 2002. Source Description of the 1999 Hector Mine, California, Earthquake, Part I: Wavelet Domain Inversion Theory and Resolution Analysis. Bulletin of the Seismological Society of America, 92(4): 1192-1207. https://doi.org/10.1785/0120000916 Kusky, T. M., Meng, J. N., 2025. Perspectives on the M7.1 2025 Southern Tibetan Plateau (Xizang) Earthquake. Journal of Earth Science, 36(2): 843-846. doi: 10.1007/s12583-025-0174-9 Li, N., Liu, L. Q., Zhu, L. D., et al., 2024. Quaternary Soft-Sediment Deformation Structures in the Dingmucuo Graben, Northern Himalaya. Journal of Chengdu University of Technology (Science & Technology Edition), 51(6): 1048-1056, 1069 (in Chinese with English abstract). Li, S. L., Yue, H. F., Song, Z. L., 1986. Inferring the Tectonic Stress Field of Himalaya Arcuate Structure from the Multiple Focal Mechanisms. Chinese Journal of Geophysics, 29(4): 419-423 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.1986.04.012 Li, Y. S., Li, W. L., Xu, Q., et al., 2025. InSAR Co- Seismic Deformation Detection and Fault Slip Distribution Inversion of the MS6.8 Earthquake in Dingri, Tibet on January 7, 2025. Journal of Chengdu University of Technology (Science & Technology Edition), 1-13 (in Chinese with English abstract). Liu, C., Dong, P. Y., Zhu, B. J., et al., 2018. Stress Shadow on the Southwest Portion of the Longmen Shan Fault Impacted the 2008 Wenchuan Earthquake Rupture. Journal of Geophysical Research: Solid Earth, 123(11): 9963-9981. https://doi.org/10.1029/2018JB015633 Liu, H. S., 1985. Geodynamical Basis for Crustal Deformation under the Tibetan Plateau. Physics of the Earth and Planetary Interiors, 40(1): 43-60. https://doi.org/10.1016/0031-9201(85)90004-4 Liu, M., Yang, Y. Q., 2003. Extensional Collapse of the Tibetan Plateau: Results of Three-Dimensional Finite Element Modeling. Journal of Geophysical Research: Solid Earth, 108(B8): 2361. https://doi.org/10.1029/2002JB002248 Mercier, J. L., Armijo, R., Tapponnier, P., et al., 1987. Change from Late Tertiary Compression to Quaternary Extension in Southern Tibet during the India-Asia Collision. Tectonics, 6(3): 275-304. https://doi.org/10.1029/TC006i003p00275 Molnar, P., Tapponnier, P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. https://doi.org/10.1029/JB083iB11p05361 Moratto, L., Saraò, A., Vuan, A., et al., 2017. The 2011 Mw 5.2 Lorca Earthquake as a Case Study to Investigate the Ground Motion Variability Related to the Source Model. Bulletin of Earthquake Engineering, 15(9): 3463-3482. https://doi.org/10.1007/s10518-017-0110-1 Shi, F., Liang, M. J., Luo, Q. X., et al., 2025. Seismogenic Fault and Coseismic Surface Deformation of the Dingri MS6.8 Earthquake in Xizang, China. Seismology and Geology, 47(1): 1-15 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.001 Taylor, M., Yin, A., 2009. Active Structures of the Himalayan-Tibetan Orogen and Their Relationships to Earthquake Distribution, Contemporary Strain Field, and Cenozoic Volcanism. Geosphere, 5(3): 199-214. https://doi.org/10.1130/ges00217.1 Tian, T. T., Wu, Z. H., 2023. Recent Prehistoric Major Earthquake Event of Dingmucuo Normal Fault in the Southern Segment of Shenzha-Dingjie Rift and Its Seismic Geological Significance. Geological Review, 69(S1): 53-55 (in Chinese with English abstract). Waldhauser, F., 2000. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. The Bulletin of the Seismological Society of America, 90(6): 1353-1368. https://doi.org/10.1785/0120000006 Wang, G. C., Zhang, K. X., Cao, K., et al., 2010. Expanding Processes of the Qinghai-Tibet Plateau during Cenozoic: An Insight from Spatio-Temporal Difference of Uplift. Earth Science, 35(5): 713-727 (in Chinese with English abstract). Wang, H., Elliott, J. R., Craig, T. J., et al., 2014. Normal Faulting Sequence in the Pumqu-Xainza Rift Constrained by InSAR and Teleseismic Body-Wave Seismology. Geochemistry, Geophysics, Geosystems, 15(7): 2947-2963. https://doi.org/10.1002/2014GC005369 Wang, L. J., Wu, Z. H., Wang, W., et al., 2006. Numerical Modeling of the Present Tectonic Stress Field in the Central Qinghai-Tibet Plateau. Journal of Geomechanics, 12(2): 140-149 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6616.2006.02.005 Wang, N., Li, Y. S., Shen, W. H., et al., 2025. Source Parameters and Rapid Simulation of Strong Ground Motion of the MS6.8 Earthquake on January 7, 2025 in Dingri(Xizang, China) Derived from InSAR Observation. Geomatics and Information Science of Wuhan University, 50(2): 404-411 (in Chinese with English abstract). Wu, Z. H., Hu, D. G., Wu, Z. H., et al., 2005. Slip Rates and Driving Mechanism of Active Faults in Middle Tibetan Plateau. Acta Geosicientia Sinica, 26(2): 99-104 (in Chinese with English abstract). Yang, X. Y., Zhang, J. J., Qi, G. W., et al., 2009. Structure and Deformation around the Gyirong Basin, North Himalaya, and Onset of the South Tibetan Detachment System. Science in China (Series D: Earth Sciences), 52(8): 1046-1058. https://doi.org/10.1007/s11430-009-0111-2 Yang, Z. G., Xu, T. R., Liang, J. H., 2024. Towards Fast Focal Mechanism Inversion of Shallow Crustal Earthquakes in the Chinese Mainland. Earthquake Research Advances, 4(2): 100273. https://doi.org/10.1016/j.eqrea.2023.100273 Yao, J. Y., Yao, D. D., Chen, F., et al., 2025. A Preliminary Catalog of Early Aftershocks Following the 7 January 2025 MS6.8 Dingri, Xizang Earthquake. Journal of Earth Science, 1-5. https://doi.org/10.1007/s12583-025-0210-9 Yu, C., Li, Z. H., Hu, X. N., et al., 2025. Source Parameters and Induced Hazards of the 2025 Mw 7.1 Dingri Earthquake on the Southern Tibetan Plateau (Xizhang), China, as Revealed by Imaging Geodesy. Journal of Earth Science, 1-5. https://doi.org/10.1007/s12583-025-0175-8 Yue, H., Zhang, Y., Ge, Z. X., et al., 2020. Resolving Rupture Processes of Great Earthquakes: Reviews and Perspective from Fast Response to Joint Inversion. Science China Earth Sciences, 63(4): 492-511. https://doi.org/10.1007/s11430-019-9549-1. Zhang, J. J., Ding, L., 2003. East-West Extension in Tibetan Plateau and Its Significance to Tectonic Evolution. Scientia Geologica Sinica, 38(2): 189-198 (in Chinese with English abstract). Zhang, J. W., Li, H. A., Zhang, H. P., et al., 2020. Research Progress in Cenozoic N-S Striking Rifts in Tibetan Plateau. Advances in Earth Science, 35(8): 848-862 (in Chinese with English abstract). Zhang, Y., Feng, W. P., Chen, Y. T., et al., 2012. The 2009 L'Aquila MW 6.3 Earthquake: A New Technique to Locate the Hypocentre in the Joint Inversion of Earthquake Rupture Process. Geophysical Journal International, 191(3): 1417-1426. https://doi.org/10.1111/j.1365-246X.2012.05694.x. Zhao, W. H., Xu, Q., Ji, F., et al., 2025. Deformation Field Characteristics and Site Effect Analysis of the MS6.8 Dingri Earthquake in Xizang on January 7, 2025. Journal of Chengdu University of Technology (Science & Technology Edition), 1-12 (in Chinese with English abstract). 白玲, 陈治文, 王绍俊, 2025. 2025年西藏定日6.8级地震: 构造背景分析与震源特征探讨. 地球与行星物理论评(中英文), 56(3): 258-263. 陈鲲, 杨婷, 王永哲, 等, 2025. 2025年1月7日西藏定日6.8级地震的快速产出参数. 地震科学进展, 55(3): 164-171. 褚杨, 郭宜琳, 刘谭杰, 等, 2024. 藏南拆离系活动与淡色花岗岩就位: 以希夏邦马峰地区为例. 岩石学报, 40(5): 1461-1474. 李楠, 刘陇强, 朱利东, 等, 2024. 喜马拉雅北缘丁木错地堑第四纪软沉积物变形构造. 成都理工大学学报(自然科学版), 51(6): 1048-1056, 1069. 李松林, 岳华峰, 宋占龙, 1986. 由多个地震的震源机制解推断喜马拉雅弧形山系的构造应力场. 地球物理学报, 29(4): 419-423. doi: 10.3321/j.issn:0001-5733.1986.04.012 李雨森, 李为乐, 许强, 等, 2025. 2025年1月7日西藏定日MS6.8级地震InSAR同震形变探测与断层滑动分布反演. 成都理工大学学报(自然科学版), 1-13. 石峰, 梁明剑, 罗全星, 等, 2025. 2025年1月7日西藏定日6.8级地震发震构造与同震地表破裂特征. 地震地质, 47(1): 1-15. doi: 10.3969/j.issn.0253-4967.2025.01.001 田婷婷, 吴中海, 2023. 西藏申扎‒定结裂谷南段丁木错正断层的最新史前大地震事件及其地震地质意义. 地质论评, 69(S1): 53-55. 王国灿, 张克信, 曹凯, 等, 2010. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程. 地球科学, 35(5): 713-727. doi: 10.3799/dqkx.2010.086. 王连捷, 吴珍汉, 王薇, 等, 2006. 青藏高原中段现今构造应力场的数值模拟. 地质力学学报, 12(2): 140-149. doi: 10.3969/j.issn.1006-6616.2006.02.005 王楠, 李永生, 申文豪, 等, 2025.2025年1月7日西藏定日MS6.8地震震源机制InSAR反演及强地面运动快速模拟. 武汉大学学报(信息科学版), 50(2): 404-411. 吴珍汉, 胡道功, 吴中海, 等, 2005. 青藏高原中段活动断层运动速度及驱动机理. 地球学报, 26(2): 99-104. doi: 10.3321/j.issn:1006-3021.2005.02.001 张进江, 丁林, 2003. 青藏高原东西向伸展及其地质意义. 地质科学, 38(2): 179-189. doi: 10.3321/j.issn:0563-5020.2003.02.005 张佳伟, 李汉敖, 张会平, 等, 2020. 青藏高原新生代南北走向裂谷研究进展. 地球科学进展, 35(8): 848-862. 赵伟华, 许强, 吉锋, 等, 2025.2025年1月7日西藏定日MS6.8级地震形变场特征及场地效应分析. 成都理工大学学报(自然科学版), 1-12. -