• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    藏南裂谷系正断层带孕震潜力和地震危险性讨论

    胡贵明 徐岳仁 刘晗 袁瑞敏 陆玲玉

    胡贵明, 徐岳仁, 刘晗, 袁瑞敏, 陆玲玉, 2025. 藏南裂谷系正断层带孕震潜力和地震危险性讨论. 地球科学, 50(5): 1794-1812. doi: 10.3799/dqkx.2025.055
    引用本文: 胡贵明, 徐岳仁, 刘晗, 袁瑞敏, 陆玲玉, 2025. 藏南裂谷系正断层带孕震潜力和地震危险性讨论. 地球科学, 50(5): 1794-1812. doi: 10.3799/dqkx.2025.055
    Hu Guiming, Xu Yueren, Liu Han, Yuan Ruimin, Lu Lingyu, 2025. Estimation of the Maximum Magnitude of Normal Faults and Seismic Risk in the Southern Tibetan Rift Zones. Earth Science, 50(5): 1794-1812. doi: 10.3799/dqkx.2025.055
    Citation: Hu Guiming, Xu Yueren, Liu Han, Yuan Ruimin, Lu Lingyu, 2025. Estimation of the Maximum Magnitude of Normal Faults and Seismic Risk in the Southern Tibetan Rift Zones. Earth Science, 50(5): 1794-1812. doi: 10.3799/dqkx.2025.055

    藏南裂谷系正断层带孕震潜力和地震危险性讨论

    doi: 10.3799/dqkx.2025.055
    基金项目: 

    国家自然科学基金青年项目 42202212

    国家自然科学基金项目 42072248

    中国地震局地震预测研究所基本科研业务专项项目 CEAIEF20240302

    中国地震局地震预测研究所基本科研业务专项项目 CEAIEF20250101

    详细信息
      作者简介:

      胡贵明(1988-),男,助理研究员,主要从事活动构造、古地震和释光年代学等方面的研究.ORCID:0009-0002-9506-7090. E-mail:huchm@ief.ac.cn

      通讯作者:

      徐岳仁, ORCID: 0000-0001-7342-2210. E-mail: xuyr@ief.ac.cn

    • 中图分类号: P65

    Estimation of the Maximum Magnitude of Normal Faults and Seismic Risk in the Southern Tibetan Rift Zones

    • 摘要:

      青藏高原南部自西向东分布有多组近南北向的藏南裂谷系,作为块体内部重要的构造伸展区,发育了一系列的正断层和正断层型强震.自晚第四纪以来,该区域构造活动强烈,地震频繁且诱发的灾害大,例如2025年1月7日定日Mw7.1地震便呈现出“小震大灾”的特征.为了评估裂谷系内正断层的孕震能力以及了解这些正断层的致灾程度,依据断层的几何特征划分了92条正断层,并统计了每条断层的迹线长度.基于地震导致断层沿地表迹线全段破裂的假设,结合全球正断层地震破裂尺度与矩震级的关系经验公式,估算了藏南裂谷系内各正断层潜在的最大震级.研究结果表明,这些正断层的孕震上限介于Mw6.5至Mw7.5.这些正断层普遍具有较强的孕震能力,但也呈现出东强西弱的特征.裂谷系内的正断层带被南北两侧大型断裂带所围限且南侧主边界断裂带和块体内部存在多个历史地震空区,考虑到2015年尼泊尔Mw7.8强震加快了临界断层库仑应力加载过程和边界主断裂带上的强震可能存在联动或触发效应的背景下,该地区雅鲁藏布江以南的正断层,尤其是定日‒聂拉木一带、雄曲断层未来具有较高的强震危险性.

       

    • 图  1  青藏高原藏南裂谷系及周边主要活动断层和主要强震分布

      喜马拉雅弧形构造带上的白色区域为历史地震空区(Bilham, 2019); 地震数据分别来自《西藏地震史料汇编》、中国地震台网中心(https://news.ceic.ac.cn)和美国USGS地震数据中心(https://earthquake.usgs.gov); 橙色椭圆为2015年尼泊尔Mw7.8地震之后加德满都附近地震空区仍存在的破裂空段分布范围, 具备发生震级~M8的可能; 绿色的椭圆为尼泊尔中部比哈地震空区(改自Srivastava et al., 2013)

      Fig.  1.  Map of active faults and seismic distribution within and around the Southern Tibetan Rift Zones

      图  2  依据断层破裂长度与地震经验公式计算获得的藏南裂谷系正断层最大矩震级分布

      粉色和黄色区域为1411年羊八井和1952年当雄地震的极震区(国家地震局地质研究所, 1992; 左嘉梦等, 2020)

      Fig.  2.  Distribution of maximum moment magnitudes for normal faults in the Southern Tibetan Rift Zones calculated based on fault rupture lengths and empirical seismic relationships

      图  3  2025年1月7日定日地震的主震及余震序列分布(蓝色标注)

      Fig.  3.  Distribution map of aftershock sequences following the main shock on January 7, 2025 (marked in blue)

      图  4  1411年羊八井地震和1952年当雄地震地表破裂范围.烈度线参考西藏自治区科学技术委员会(1982)

      Fig.  4.  Surface rupture extents of the 1411 Yangbajain earthquake and 1952 Damxung earthquake, with intensity contours referencing Compilation of Historical Earthquake Records in Xizang

      图  5  藏南裂谷系正断层全段破裂与矩震级的关系以及重新标定前后的历史地震数据(a)和基于Wells and Coppersmith(1994)经验数据和藏南裂谷系正断层震级的投图(b)

      Fig.  5.  Relationship between full-segment rupture of normal faults in the southern Tibetan rift zones and moment magnitude, with historical earthquake data before and after recalibration (a) and magnitude scaling plot based on empirical data from Wells and Coppersmith (1994) and normal fault magnitudes in the southern Tibetan rift zones (b)

      表  1  藏南裂谷系及周边主要历史强震列表,包括了2015年尼泊尔地震和2025年1月7日定日地震

      Table  1.   Major historical earthquakes within and around the southern Tibetan rift zones, including the 2015 Gorkha earthquake and the Tingri earthquake on January 7, 2025

      地震 时间 参考震中 地表破裂长度(km) 震级
      羊八井地震 1411.09.28 29.7°N;90.2°E ~136 M8.1~8.6
      当雄地震 1952.08.18 30.63°N;91.52°E 57.7 M7.5
      木斯塘地震 1505.06.06 30°N;82°E; ~500~600 M8.2
      不丹地震 1714.05.04 27.5°N;89.6°E > 240 M8~8.2
      加德满都地震 1833.08.26 28.83°N;78.5°E < 130 M7.7~7.8
      西陇高原地震 1897.06.12 25.13°N;90.07°E ~95 M8.1~8.3
      坎格拉地震 1905.04.04 32.636°N;76.788°E ~100 M7.8~7.9
      比哈地震 1934.01.15 27.55°N;87.09°E > 150 M8.4
      察隅地震 1950.08.15 28.363°N;96.445°E 250 M8.7
      藏南 1951.11.18 30.98°N;91.49°E 200 M8
      尼泊尔地震 2015.04.25 28.147°N;89.708°E ~120~140 Mw7.8
      定日地震 2025.01.07 87.45°E,28.50°N ~36.5 Mw7.1(CENC: Ms6.9)
      下载: 导出CSV

      表  2  藏南裂谷系各断层几何参数及最大发震能力

      Table  2.   Summary of fault parameters in the southern Tibetan rift zones

      裂谷名称 序号 破裂长度(km) Mw 断层带 走向 运动性质 裂谷名称 序号 破裂长度(km) Mw 断层带 走向 运动性质
      错那‒沃卡裂谷 1 86 7.4 错那‒拿日雍措断层 近南北 正断层 聂拉木‒措勤裂谷 47 56 7.2 佩枯措东断层 北北西 正断层
      2 50 7.1 邛多江断层 北北东 正断层 48 36 6.9 佩枯措西断层 近南北 正断层
      3 71 7.3 沃卡断层 北北东 正断层 49 31 6.8 穆林错东断层 北北东 正断层
      亚当‒谷露裂谷 4 46 7.1 帕里断层 北北东 正断层 50 18 6.5 穆林错西断层 北北东 正断层
      5 45 7.0 多庆错断层 北北东 正断层 51 21 6.6 松那断层 北北东 正断层
      6 30 6.8 冲巴雍错断层 北北东 正断层 52 48 7.0 打加错东断层 北北西 正断层
      7 62 7.2 涅如断层 近南北 正断层 53 38 6.9 打加错西断层 北北西 正断层
      8 58 7.2 热龙断层 北北东 正断层 54 55 7.2 惩香错东断层 北北西 正断层
      9 40 7.0 安岗断层 近南北 正断层 55 26 6.7 惩香错西断层南段 北北西 正断层
      10 30 6.8 羊易断层 近南北 正断层 56 18 6.5 惩香错西断层北段 北北西 正断层
      11 136 7.5 1411地表破裂 北东 左旋走滑兼具正断 57 60 7.2 杰萨错断层 北北西 正断层
      12 57.7 7.2 1952年地表破裂 近南北 正断层 58 28 6.8 达瓦错断层西段 近南北 正断层
      申扎‒定结裂谷 13 25 6.7 弄曲断层 北北东 正断层 59 28 6.8 达瓦错断层中段 近南北 正断层
      14 60 7.2 登么错断层 近南北 正断层 60 29 6.8 达瓦错断层东段 近南北 正断层
      15 41 7.0 郭加东断层南段 北北东 正断层 仲巴‒塔若错裂谷 61 61 7.2 布多断层东段 北西 正断层
      16 75 7.3 郭加东断层北段 近南北 正断层 62 103 7.5 布多断层西段 北西 正断层
      17 33 6.9 郭加西断层 近南北 正断层 63 49 7.1 布多断层北段 北西 正断层
      18 60 7.2 定结断层 北北东 正断层 64 20 6.6 麦穷错断层西段 近南北 正断层
      19 50 7.1 尼色断层 北北东 正断层 65 20 6.6 麦穷错断层北段 近南北 正断层
      20 25 6.7 麻布加断层 北北东 正断层 66 26 6.7 塔若错西段 北西 正断层
      21 21 6.6 通门乡断层 近南北 正断层 67 49 7.1 薄莫断层 北北西 正断层
      22 28 6.8 错查断层 近南北 正断层 68 36 6.9 森里错断层 北北西 正断层
      23 45 7.0 查布‒南木切断层 近南北 正断层 69 30 6.8 雄曲断层东段 近南北 正断层
      24 57 7.2 青都东断层 近南北 正断层 70 98 7.5 雄曲断层西段 近南北 正断层
      25 32 6.9 青都西断层 北北东 正断层 江曲藏布‒改则裂谷 71 20 6.6 江曲藏布断层 近南北 正断层
      26 33 6.9 查藏错东断层 北北东 正断层 72 40 7.0 错惹则断层 近南北 正断层
      27 29 6.8 越恰错东断层 北北东 正断层 73 23 6.7 泻浪藏布西断层 近南北 正断层
      28 40 7.1 查藏错西断层 北北东 正断层 74 24 6.7 泻浪藏布东断层 近南北 正断层
      29 56 7.0 越恰错西断层 北北东 正断层 75 34 6.9 噶昌断层 近南北 正断层
      岗嘎‒当惹雍错裂谷 30 50 7.1 帮色曲断层 近南北 正断层 76 27 6.7 帕龙错西缘断层南段 近南北 正断层
      31 26 6.7 克玛乡断层 北北东 正断层 77 24 6.7 雅曲藏布断层东段 近南北 正断层
      32 56 7.2 苦塘嘎东断层 近南北 正断层 78 35 6.9 措日布者断层 近南北 正断层
      33 61 7.2 苦塘嘎西断层 近南北 正断层 79 40 7.0 供阿藏布断层 近南北 正断层
      34 32 6.9 曲珍错断层 近南北 正断层 80 71 7.3 仁多正断层 近南北 正断层
      35 34 6.9 阿木错东断层 近南北 正断层 81 35 6.9 帕龙错西缘断层北段 近南北 正断层
      36 20 6.6 阿木错西断层 近南北 正断层 82 68 7.3 隆格尔雪山断层西支断层 近南北 正断层
      37 26 6.7 阿木错北断层 北东 正断层 83 55 7.2 隆格尔雪山正断层东段 近南北 正断层
      38 37 6.9 许如错东断层 近南北 正断层 84 34 6.9 克勤村西山麓断层 近南北 正断层
      39 23 6.7 查孜乡西断层 近南北 正断层 85 51 7.1 扎龙藏布断层 近南北 正断层
      40 57 7.2 许如错西断层 近南北 正断层 86 35 6.9 康玛村山前断层 近南北 正断层
      41 81 7.4 当惹雍错东支南断层 近南北 正断层 热布杰错‒文布当桑裂谷 87 70 7.3 阿果错断层 北西 正断层
      42 58 7.2 当惹雍错东支北断层 近南北 正断层 88 51 7.1 茶里错北断层 近南北 正断层
      43 45 7.0 当惹雍错西支南断层 北北东 正断层 89 79 7.3 茶里错西断层 近南北 正断层
      44 41 7.0 当惹雍错西支北断层 北北东 正断层 90 80 7.4 茶里错东断层 近南北 正断层
      45 21 6.6 当穹错东断层 北东 正断层 91 39 7.0 热西断层 近南北 正断层
      46 55 7.2 当穹错西断层 北北东 正断层 92 23 6.7 茶里错北断层 北西 正断层
      93 28 6.8 洞古错断层 北北东 正断层
      下载: 导出CSV
    • Ader, T., Avouac, J. P., Jing, L. Z., et al., 2012. Convergence Rate across the Nepal Himalaya and Interseismic Coupling on the Main Himalayan Thrust: Implications for Seismic Hazard. Journal of Geophysical Research: Solid Earth, 117(B4): B04403. https://doi.org/10.1029/2011JB009071
      Anderson, H., Jackson, J., 1987. Active Tectonics of the Adriatic Region. Geophysical Journal of the Royal Astronomical Society, 91(3): 937-983. https://doi.org/10.1111/j.1365-246X.1987.tb01675.x
      Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/JB091iB14p13803
      Bilham, R., 2019. Himalayan Earthquakes: A Review of Historical Seismicity and Early 21st Century Slip Potential, Himalayan Tectonics: A Modern Synthesis. Geological Society, London, 483.
      Bollinger, L., Tapponnier, P., Sapkota, S., 2015. Balance and Deficit of Seismic Slip in Central Nepal: Implication for a Repeat of the 1344 Earthquake in Nepal. Journal of Nepal Geology Society, 48: 25.
      Chen, H., Qu, C. Y., Zhao, D. Z., et al., 2024. Large-Scale Extensional Strain in Southern Tibet from Sentinel-1 InSAR and GNSS Data. Geophysical Research Letters, 51(19): e2024GL110512. https://doi.org/10.1029/2024GL110512
      Chen, J., Chen, Y. K., Ding, G. Y., et al., 2003. Surface Rupture Zones of the 2001 Earthquake Ms 8.1 West of Kunlun Pass, Northern Qinqhai-Xizang Plateau. Quaternary Sciences, 23(6): 629-639, 717-718 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2003.06.006
      Chen, Q. Z., Freymueller, J. T., Wang, Q., et al., 2004. A Deforming Block Model for the Present-Day Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 109(B1): 97. https://doi.org/10.1029/2002JB002151
      Cheng, J., Xu, C., Ma, J., et al., 2023. From Active Fault Segmentation to Risks of Earthquake Hazards and Property and Life Losses—A Case Study from the Xianshuihe-Xiaojiang Fault Zone. Science China Earth Sciences, 66(6): 1345-1364. https://doi.org/10.1007/s11430-022-1076-y
      Deng, Q. D., Gao, X., Chen, G. H., et al., 2010. Recent Tectonic Activity of Bayankala Fault-Block and the Kunlun-Wenchuan Earthquake Series of the Tibetan Plateau. Earth Science Frontiers, 17(5): 163-178 (in Chinese with English abstract).
      DePolo, C. M., Clark, D. G., Slemmons, D. B., et al., 1991. Historical Surface Faulting in the Basin and Range Province, Western North America: Implications for Fault Segmentation. Journal of Structural Geology, 13(2): 123-136. https://doi.org/10.1016/0191-8141(91)90061-m
      Di Giacomo, D., 2020. ISC-GEM Solution for the Haiyuan Earthquake of 16 December 1920. ISC Seismological Dataset Repository, Edinburgh.
      Doser, D. I., Smith, R. B., 1989. An Assessment of Source Parameters of Earthquakes in the Cordillera of the Western United States. Bulletin of the Seismological Society of America, 79: 1383-1409.
      Eaton, G. P., 1982. The Basin and Range Province: Origin and Tectonic Significance. Annual Review of Earth and Planetary Sciences, 10(1): 409. https://doi.org/10.1146/annurev.ea.10.050182.002205
      Elliott, J. L., Grapenthin, R., Parameswaran, R. M., et al., 2022. Cascading Rupture of a Megathrust. Science Advances, 8(18): eabm4131. https://doi.org/10.1126/sciadv.abm4131
      Elliott, J. R., Walters, R. J., England, P. C., et al., 2010. Extension on the Tibetan Plateau: Recent Normal Faulting Measured by InSAR and Body Wave Seismology. Geophysical Journal International, 183(2): 503-535. doi: 10.1111/j.1365-246X.2010.04754.x
      Feng, X., Ma, J., Zhou, Y., et al., 2020. Geomorphology and Paleoseismology of the Weinan Fault, Shaanxi, Central China, and the Source of the 1556 Huaxian Earthquake. Journal of Geophysical Research: Solid Earth, 125(12): e2019JB017848. https://doi.org/10.1029/2019JB017848
      Gao, Y., Li, M., Wu, Z. H., et al., 2024. Late Quaternary Normal Faulting along the Western Boundary Fault of Peiku Co Graben in Southern Nyalam-Coqen Rift: Implications for Extensional Deformation in Southern Tibet and Seismic Hazard. Journal of Structural Geology, 181: 105087. https://doi.org/10.1016/j.jsg.2024.105087
      Gao, Y., Wu, Z. H., Zuo, J. M., et al., 2024. Spatial-Temporal Activity of Quaternary Faults at Southern End of Nyalam-Coqen Rift, Southern Tibet. Earth Science, 49(7): 2552-2569 (in Chinese with English abstract).
      Glasgow, M. E., Schmandt, B., Bilek, S. L., 2023. Cascading Multi-Segment Rupture in an Injection-Induced Earthquake Sequence with a Mw 5.3 Mainshock. Earth and Planetary Science Letters, 620: 118335. https://doi.org/10.1016/j.epsl.2023.118335
      Ha, G. H., Wu, Z. H., Gai, H. L., et al., 2019a. New Discovery of Surface Rupture of Large Paleo-Earthquake along Northern Pagri-Duoqing Co Graben, Southern Yadong-Gulu Rift. Acta Geologica Sinica-English Edition, 93(4): 1135-1136. https://doi.org/10.1111/1755-6724.13829
      Ha, G. H., Wu, Z. H., Liu, F., 2019b. Late Quaternary Vertical Slip Rates along the Southern Yadong-Gulu Rift, Southern Tibetan Plateau. Tectonophysics, 755: 75-90. https://doi.org/10.1016/j.tecto.2019.02.014
      Hou, J. J., Han, M. K., Chai, B. L., et al., 1998. Geomorphological Observations of Active Faults in the Epicentral Region of the Huaxian Large Earthquake in 1556 in Shaanxi Province, China. Journal of Structural Geology, 20(5): 549-557. https://doi.org/10.1016/S0191-8141(97)00112-0
      Hough, S. E., Hutton, K., 2008. Revisiting the 1872 Owens Valley, California, Earthquake. Bulletin of the Seismological Society of America, 98(2): 931-949. https://doi.org/10.1785/0120070186
      Hu, Y., Han, S., Wu, Z. H., et al., 2024. Major Active Faults and Recent Coseismic Surface Rupture Characteristics of the Horba-Tsam Tso Rift in Southern Tibet. Progress in Earthquake Sciences, 54(10): 649-660 (in Chinese with English abstract).
      Huang, T., Wu, Z. H., Han, S., et al., 2024. The Basic Characteristics of Active Faults in the Region of Xigaze, Xizang and the Assessment of Potential Earthquake Disaster Risks. Progress in Earthquake Sciences, 54(10): 696-711 (in Chinese with English abstract).
      Institute of Geology, National Seismological Administration, 1992. Active Faults in the Central Tibet. Seismological Press, Beijing (in Chinese with English abstract).
      Jackson, J., 1994. Active Tectonics of the Aegean Region. Annual Review of Earth and Planetary Sciences, 22: 239-271. https://doi.org/10.1146/annurev.ea.22.050194.001323
      Li, Y. B., Ran, Y. K., Wang, H., et al., 2016. Paleoseismic Records of Large Earthquakes on the Cross-Basin Fault in the Salt Lake Pull-apart Basin and Cascade Rupture Events on the Haiyuan Fault. Seismology and Geology, 38(4): 830-843 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2016.04.003
      Li, Y. C., Shan, X. J., Qu, C. Y., et al., 2025. Slip Deficit Rate and Seismic Potential on Crustal Faults in Tibet. Geophysical Research Letters, 52(1): e2024GL112122. https://doi.org/10.1029/2024GL112122
      Liang P., Xu, Y., Zhou, X., et al., 2025. Coseismic Surface Ruptures of MW7.8 and MW7.5 Earthquakes Occurred on February 6, 2023, and Seismic Hazard Assessment of the East Anatolian Fault Zone, Southeastern Türkiye. Scientia Sinica (Terrae), 55(2): 626-641 (in Chinese with English abstract).
      Liu, J., Ji, C., Zhang, J. Y., et al., 2015. Tectonic Setting and General Features of Coseismic Rupture of the 25 April, 2015 MW7.8 Gorkha, Nepal Earthquake. Chinese Science Bulletin, 60(27): 2640-2655 (in Chinese with English abstract). doi: 10.1360/N972015-00559
      Liu, J., Xu, J., Ou, Q., et al., 2023. Discussion on the Overestimated Magnitude of the 1920 Haiyuan Earthquake. Acta Seismologica Sinica, 45(4): 579-596 (in Chinese with English abstract).
      Liu, L., Shao, Y. X., Wang, W., et al., 2022. Study on the Tectonic Geomorphology and Fault Activity Characteristics of the Zhongba Rift, Southern Tibet. Earth Science, 47(8): 3029-3044 (in Chinese with English abstract).
      Liu-Zeng, J., Shao, Y. X., Klinger, Y., et al., 2015. Variability in Magnitude of Paleoearthquakes Revealed by Trenching and Historical Records, along the Haiyuan Fault, China. Journal of Geophysical Research: Solid Earth, 120(12): 8304-8333. https://doi.org/10.1002/2015JB012163
      Liu-Zeng, J., Zhang, Z., Rollins, C., et al., 2020. Postseismic Deformation Following the 2015 MW7.8 Gorkha (Nepal) Earthquake: New GPS Data, Kinematic and Dynamic Models, and the Roles of Afterslip and Viscoelastic Relaxation. Journal of Geophysical Research: Solid Earth, 125(9): e2020JB019852. https://doi.org/10.1029/2020JB019852
      Molnar, P., England, P., Martinod, J., 1993. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4): 357-396. https://doi.org/10.1029/93RG02030
      Molnar, P., Tapponnier, P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. https://doi.org/10.1029/JB083iB11p05361
      Ou, Q., Kulikova, G., Yu, J., et al., 2020. Magnitude of the 1920 Haiyuan Earthquake Reestimated Using Seismological and Geomorphological Methods. Journal of Geophysical Research: Solid Earth, 125(8): e2019JB019244. https://doi.org/10.1029/2019JB019244
      Ren, C. M., Wang, Z. X., Taymaz, T., et al., 2024. Supershear Triggering and Cascading Fault Ruptures of the 2023 Kahramanmaraş, Türkiye, Earthquake Doublet. Science, 383(6680): 305-311. https://doi.org/10.1126/science.adi1519
      Rodriguez Padilla, A. M., Oskin, M. E., Brodsky, E. E., et al., 2024. The Influence of Fault Geometrical Complexity on Surface Rupture Length. Geophysical Research Letters, 51(20): e2024GL109957. https://doi.org/10.1029/2024GL109957
      Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788
      Science and Technology Commission of the Tibet Autonomous Region, 1982. Compilation of Historical Materials of Earthquakes in Tibet. Tibet People's Publishing House, Tibet (in Chinese).
      Shao, Y. X., Wang, A. S., Liu, J., et al. 2025. Preliminary Results of Surface Rupture Characteristics and Field Coseismic Displacement Measurement of the Dingri Earthquake in Tibet on January 7, 2025. Earth Science, 50(5): 1677-1695 (in Chinese with English abstract).
      Shi, F., Liang, M. J., Luo, Q. X., et al., 2025. Seismogenic Fault and Coseismic Surface Deformation of the Dingri MS6.8 Earthquake in Xizang, China. Seismology and Geology, 47(1): 1-15 (in Chinese) doi: 10.3969/j.issn.0253-4967.2025.01.001
      Srivastava, H. N., Verma, M., Bansal, B. K., et al., 2013. Discriminatory Characteristics of Seismic Gaps in Himalaya. Geomatics, Natural Hazards and Risk, 6(3): 224-242. https://doi.org/10.1080/19475705.2013.839483
      Tian, T. T., Wu, Z. H., 2023. Recent Prehistoric Major Earthquake Event of Dingmucuo Normal Fault in the Southern Segment of Shenzha-Dingjie Rift and Its Seismic Geological Significance. Geological Review, 69(S1): 53-55 (in Chinese with English abstract).
      Wan, Y. G., Sheng, S. Z., Li, X., et al., 2015. Stress Influence of the 2015 Nepal Earthquake Sequence on Chinese Mainland. Chinese Journal of Geophysics, 58(11): 4277-4286 (in Chinese with English abstract). doi: 10.6038/cjg20151132
      Wang, H., Wright, T. J., Jing, L. Z., et al., 2019. Strain Rate Distribution in South-Central Tibet from Two Decades of InSAR and GPS. Geophysical Research Letters, 46(10): 5170-5179. https://doi.org/10.1029/2019GL081916
      Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/bssa0840040974
      Wu, Z. H., 2024. The MW≥6.5 Strong Earthquake Events since 1990 around the Tibetan Plateau and Control-Earthquake Effect of Active Tectonic System. Progress in Earthquake Sciences, 54(1): 10-24 (in Chinese with English abstract).
      Wu, Z. H., Ha, G., Wang, H., et al., 2019. Abnormal Disappearance of Duoqing Co Lake between November 2015 and April 2016, Due to Far-Field Aseismic Creeping of the Southern Yadong-Gulu Rift of Tibet, Triggered by the 2015 MS8.1 Nepal Earthquake. International Geology Review, 61(18): 2313-2327. https://doi.org/10.1080/00206814.2019.1594410
      Wu, Z. H., Ye, P. S., Barosh, P. J., et al., 2011. The October 6, 2008 MW6.3 Magnitude Damxung Earthquake, Yadong-Gulu Rift, Tibet, and Implications for Present-Day Crustal Deformation within Tibet. Journal of Asian Earth Sciences, 40(4): 943-957. https://doi.org/10.1016/j.jseaes.2010.05.003
      Wu, Z. H., Zhang, Y. S., Hu, D. G., et al., 2008. Quaternary Normal Faulting and Its Dynamic Mechanism of the Cona-Nariyong Co Graben in South-Eastern Tibet. Quaternary Sciences, 28(2): 232-242 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2008.02.005
      Wu, Z. H., Zhao, G. M., Liu, J., 2016. Tectonic Genesis of the 2015 Ms8.1 Nepal Great Earthquake and Its Influence on Future Strong Earthquake Tendency of Tibetan Plateau and Its Adjacent Region. Acta Geologica Sinica, 90(6): 1062-1085 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.06.002
      Wu, Z. H., Zhao, G. M., Long, C. X., et al., 2014. The Seismic Hazard Assessment around South-East Area of Qinghai-Xizang Plateau: A Preliminary Results from Active Tectonics System Analysis. Acta Geologica Sinica, 88(8): 1401-1416 (in Chinese with English abstract).
      Wu, Z. M., Shentu, B. M., Cao, Z. Q., et al., 1990. The Surface Ruptures of Danxung (Tibet) Earthquake (M=8) in 1411. Seismology and Geology, 12(2): 98-108, 193-194.
      Xiong, W., Tan, K., Liu, G., et al., 2015. Effects of the 2015-2015 Mw7.9 Earthquake in Nepal on Co-Seismic and Post-Earthquake Stress of Active Faults on the Qinghai-Tibet Plateau. Chinese Journal of Geophysics, 58(11): 4305-4316 (in Chinese with English abstract).
      Xu, J., Li, H. Y., Shao, Z. G., et al., 2016. Effects of the 2015 Nepal MS8.1 Earthquake on China's Mainland Based on Coulomb Stress Changes. Earthquake, 36(1): 69-77 (in Chinese with English abstract).
      Xu, X. W., Deng, Q. D., 1988. The Basin-Range Structure in the Tensile Area at the Northern Part of Shanxi Province and Its Mechanism of Formation. Earthquake Research in China, 4(2): 19-27 (in Chinese with English abstract).
      Xu, X. W., Li, F., Cheng, J., et al., 2023. Advances in Research on Active Faults and Exploration of Relevant Frontier Scientific Problems. Coal Geology & Exploration, 51(12): 1-16 (in Chinese with English abstract).
      Xu, X. Y., 2019. Late Quaternary Activity and Its Environmental Effects of the N-S Trend Kharta Fault in Xainza-Dinggye Rift, Southern Tibet (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese).
      Xu, Y. R., He, H. L., Deng, Q. D., et al., 2018. The CE 1303 Hongdong Earthquake and the Huoshan Piedmont Fault, Shanxi Graben: Implications for Magnitude Limits of Normal Fault Earthquakes. Journal of Geophysical Research: Solid Earth, 123(4): 3098-3121. https://doi.org/10.1002/2017JB014928
      Xu, Y., Zhang, Y., 2023. Analysis of the Reasons Why Surface Wave Magnitude is Higher than Moment Magnitude in the Mainland of China from the Perspective of Source Rupture Parameters. Acta Scientiarum Naturalium Universitatis Pekinensis, 59(3): 407-414 (in Chinese with English abstract).
      Yang, P. X., Chen, Z. W., Zhang, J., et al., 2010. Structure and Activity between Cuoga Co and Nala Co of the Gyaring Co Fault Belt in Centeral Tibet Plateau. Quaternary Sciences, 30(5): 1012-1019 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-7410.2010.05.19
      Zhang, P. Z., Wang, W. T., Gan, W. J., et al., 2022. Present-Day Deformation and Geodynamic Processes of the Tibetan Plateau. Acta Geologica Sinica, 96(10): 3297-3313 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.10.003
      Zhang, P. Z., Slemmons, D. B., Mao, F. Y., 1991. Geometric Pattern, Rupture Termination and Fault Segmentation of the Dixie Valley—Pleasant Valley Active Normal Fault System, Nevada, U.S.A.. Journal of Structural Geology, 13(2): 165-176. https://doi.org/10.1016/0191-8141(91)90064-P
      Zheng, G., Wang, H., Wright, T. J., et al., 2017. Crustal Deformation in the India-Eurasia Collision Zone from 25 Years of GPS Measurements. Journal of Geophysical Research: Solid Earth, 122(11): 9290-9312. https://doi.org/10.1002/2017JB014465
      Zuo, J. M., Wu, Z. H., Gai, H. L., et al., 2020. The Latest Prehistoric Earthquake Relics and Its Age Evidence in Chongba Yumtso Fault Section of Duoqing Co Graben, Southern Tibet. Quaternary Sciences, 40(5): 1323-1333 (in Chinese with English abstract).
      Zuo, J. M., Wu, Z. H., Ha, G. H., et al., 2021. Spatial Variation of nearly NS-Trending Normal Faulting in the Southern Yadong-Gulu Rift, Tibet: New Constraints from the Chongba Yumtso Fault, Duoqing Co Graben. Journal of Structural Geology, 144: 104256. https://doi.org/10.1016/j.jsg.2020.104256
      陈杰, 陈宇坤, 丁国瑜, 等, 2003.2001年昆仑山口西8.1级地震地表破裂带. 第四纪研究, 23(6): 629-639, 717-718.
      邓起东, 高翔, 陈桂华, 等, 2010. 青藏高原昆仑‒汶川地震系列与巴颜喀喇断块的最新活动. 地学前缘, 17(5): 163-178.
      高扬, 吴中海, 左嘉梦, 等, 2024. 藏南聂拉木‒措勤裂谷南段第四纪正断层作用的时空特征. 地球科学, 49(7): 2552-2569. doi: 10.3799/dqkx.2023.009
      胡渊, 韩帅, 吴中海, 等, 2024. 藏南霍尔巴: 仓木错裂谷的主要活动断层与最新地震地表破裂特征. 地震科学进展, 54(10): 649-660.
      黄婷, 吴中海, 韩帅, 等, 2024. 西藏日喀则地区的活断层基本特征及地震灾害潜在风险评估. 地震科学进展, 54(10): 696-711.
      国家地震局地质研究所, 1992. 西藏中部活动断层. 北京: 地震出版社.
      李彦宝, 冉勇康, 王虎, 等, 2016. 干盐池拉分盆地盆内新生断层大地震记录与海原断裂带级联破裂地震事件. 地震地质, 38(4): 830-843.
      梁朋, 徐岳仁, 周晓成, 等, 2025.2023年2月6日土耳其MW7.8和MW7.5双强震地表破裂与东安纳托利亚断裂带强震危险性. 中国科学: 地球科学, 55(2): 626-641.
      刘静, 纪晨, 张金玉, 等, 2015.2015年4月25日尼泊尔Mw7.8级地震的孕震构造背景和特征. 科学通报, 60(27): 2640-2655.
      刘静, 徐晶, 偶奇, 等, 2023. 关于1920年海原大地震震级高估的讨论. 地震学报, 45(4): 579-596.
      刘璐, 邵延秀, 王伟, 等, 2022. 藏南仲巴裂谷带地貌和断裂活动特征研究. 地球科学, 47(8): 3029-3044. doi: 10.3799/dqkx.2022.086
      西藏自治区科学技术委员会, 1982. 西藏地震史料汇编. 拉萨: 西藏人民出版社.
      邵延秀, 王爱生, 刘静, 等, 2025. 2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果. 地球科学, 50(5): 1677-1695.
      石峰, 梁明剑, 罗全星, 等, 2025.2025年1月7日西藏定日6.8级地震发震构造与同震地表破裂特征. 地震地质, 47(1): 1-15.
      田婷婷, 吴中海, 2023. 西藏申扎‒定结裂谷南段丁木错正断层的最新史前大地震事件及其地震地质意义. 地质论评, 69(S1): 53-55.
      万永革, 盛书中, 李祥, 等, 2015.2015年尼泊尔强震序列对中国大陆的应力影响. 地球物理学报, 58(11): 4277-4286.
      吴中海, 2024. 青藏高原1990年以来的MW≥6.5强震事件及活动构造体系控震效应. 地震科学进展, 54(1): 10-24.
      吴中海, 张永双, 胡道功, 等, 2008. 西藏错那‒拿日雍错地堑的第四纪正断层作用及其形成机制探讨. 第四纪研究, 28(2): 232-242.
      吴中海, 赵根模, 刘杰, 2016.2015年尼泊尔MS8.1地震构造成因及对青藏高原及邻区未来强震趋势的影响. 地质学报, 90(6): 1062-1085.
      吴中海, 赵根模, 龙长兴, 等, 2014. 青藏高原东南缘现今大震活动特征及其趋势: 活动构造体系角度的初步分析结果. 地质学报, 88(8) : 1401-1416.
      熊维, 谭凯, 刘刚, 等, 2015. 2015年尼泊尔MW7.9地震对青藏高原活动断裂同震、震后应力影响. 地球物理学报, 58(11): 4305-4316.
      徐晶, 李海艳, 邵志刚, 等, 2016. 基于库仑应力变化分析2015年尼泊尔MS8.1地震对中国大陆的影响. 地震, 36(1): 69-77.
      徐心悦, 2019. 藏南申扎—定结断裂系卡达正断裂晚第四纪活动性及其环境效应(硕士学位论文). 北京: 中国地震局地质研究所.
      徐锡伟, 邓起东, 1988. 晋北张性区盆岭构造及其形成的力学机制. 中国地震, 4(2): 19-27.
      徐锡伟, 李峰, 程佳, 等, 2023. 活动断层研究进展及其科学前沿问题讨论. 煤田地质与勘探, 51(12): 1-166.
      许月怡, 张勇, 2023. 从震源破裂过程角度分析中国大陆强震面波震级高于矩震级的原因. 北京大学学报(自然科学版), 59(3): 407-414.
      杨攀新, 陈正位, 张俊, 等, 2010. 西藏中部格仁错断裂带错嘎错‒那拉错段细结构及活动性. 第四纪研究, 30(5): 1012-1019.
      张培震, 王伟涛, 甘卫军, 等, 2022. 青藏高原的现今构造变形与地球动力过程. 地质学报, 96(10): 3297-3313.
      左嘉梦, 吴中海, 盖海龙, 等, 2020. 藏南多庆错地堑冲巴雍错段最新史前大地震遗迹及其年龄证据. 第四纪研究, 40(5): 1323-1333.
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  147
    • HTML全文浏览量:  16
    • PDF下载量:  25
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-02-25
    • 刊出日期:  2025-05-25

    目录

      /

      返回文章
      返回