Formation Mode of Geothermal Resources in Fujian Province Ⅱ: Circulation Conceptual Model and Driving Force of Hydrothermal System
-
摘要: 福建省地处华南陆缘高热流地热异常区,地热流体循环演化与成藏机制研究对区域地热资源科学利用具有重要意义.在系统梳理区域地热地质条件基础上,本文通过对地热流体的水化学和同位素分析,探讨了省域内不同类型地热系统的流体循环演化机制与地热驱动力差异,建立了分区地热成藏概念模型.结果表明,福建省水热型地热成因可分为闽西北隆起山地断裂深循环对流型、闽西南断陷盆地对流传导复合型、闽东‒闽西南断坳带断裂深循环对流型三种类型.区内地热资源成藏受控于区域构造与地壳热结构差异,政和‒大浦断裂以西武夷隆起带与闽东滨海陆缘带具有不同的热源机制,但水热通道形式相对统一.闽西武夷隆起带地热系统热源以幔源热为主,闽东火山坳陷带为“热壳冷幔”岩石圈热结构,壳内岩体放射性衰变生热对地热系统聚热贡献较高.区域张性‒张扭性NW向断裂构成地热系统的导水通道,压性为主的NE向断裂则构成热聚敛的阻水‒导热通道.由水热系统流体温度和盐度变化导致的闽西北、闽西南和闽东火山断坳带与滨海地区地热驱动力的标准水头分别为+218.75 m、+202.24~+250.60 m、+261.72 m和+308.32 m.闽西永梅坳陷带、闽东NW与NE向深大断裂交汇处、断陷盆地‒断陷海湾深入大陆段、福州与漳州等断陷盆地基底隆起带、永泰‒德化‒仙游等环状火山构造带与NE向深大断裂交汇处地热热储温度超过150 ℃,为福建省域内中高温地热资源成藏潜力区.Abstract: Fujian Province is one of the most important geothermal anomaly areas in the southern margin of China. It is of great significance for the scientific utilization of geothermal resources to reveal the formation mechanisms of geothermal system in the area. The circulation and evolutionary characteristics of geothermal fluid were clarified, and the conceptual formation mode and driving force of hydrothermal system were established in each hydrogeochemical zone based on the implications of hydrochemical and isotopic characteristics of geothermal water samples, GIS spatial analysis, and the overview of regional geothermal geological and crustal thermal structure conditions. The results show that the geothermal system in Fujian Province can be divided into deep circulation convection type of uplifted mountain faults in northwestern region, complex convection conduction hydrothermal type of fault basin in southeastern region, and deep circulation convection type of fault depression zone in eastern and southeastern region. The endowment of geothermal resources in Fujian is controlled by regional tectonics and crustal thermal structure that the geothermal systems of Wuyi uplift zone in western Zhenghe-Dapu fault and the coastal margin zone in eastern Fujian obtained different crust and mantle heat source compositions, but relatively uniform hydrothermal transmission channels. The heat accumulation of the geothermal system in the Wuyi uplift zone is mainly derived by mantle conduction, while the lithospheric thermal structure of eastern volcanic depression zone is the "hot crust-cold mantle" type in which radioactive element decay of intrusive-volcanic rock mass contributed a relatively high amount of crustal heat accumulation. The regional tensile torsional NW faults turned out to be the water conducting channels of geothermal systems, while compression-dominated NE-trending faults were the water-blocking and heat-conducting channels for heat accumulation. The standard head of total geothermal driving force generated by temperature rise and salinity increase in hydrothermal system of northwestern, southwestern, eastern volcanic depression zone and coastal margin region was +218.75 m, +202.24~+250.60 m, +261.72 m and +308.32 m respectively. The Yongmei depression zone in western Fujian, and intersection zones of regional NW and NE deep faults, namely the hydraulic fracture of the faulted basin and the sunken bay extend deep into the mainland, the basement uplift zone of fault basins such as Fuzhou and Zhangzhou basins, intersection zones of regional NE deep faults and ring-shaped volcanic apparatus in eastern Fujian were the optimal target areas for exploitation of medium-high temperature geothermal resources in bulk.
-
Key words:
- geothermal water /
- groundwater circulation /
- geothermal driving force /
- formation mode /
- Fujian Province /
- hydrochemistry /
- isotopes
-
图 1 福建省地质建造与地热温泉样品分布(a)、中生代火山岩时空分布(b)、岩浆活动‒火山活动与地热水文地球化学分区(c)、区域大地构造框架(d)与太平洋俯冲消减带上部岩浆岩与火山岩断坳带热储体成因模式(e)
图b据Xu et al.(2021,2024)、余明刚等(2021);图d据Faure et al.(2017);图e据Zhou and Li(2000)
Fig. 1. Regional geological formation and sampling sites of geothermal water (a), spatiotemporal distribution of Mesozoic volcanics (b), magma-volcanic activity sequence and hydrogeochemical zoning(c), regional geological section (d) and schematic diagram of the genetic of felsic magma and deep thermal reservoirs in the subduction zone of the Pacific plate (e) in Fujian Province
图 2 福建省典型地热钻孔地温曲线(a、b),大地热流(c)、居里等温面(d)、主要侵入岩体放射性生热率(e)与莫霍面埋深(f)分布
典型钻孔测温曲线参考中国科学院地球物理研究所(1992)、赵亮亮(2011)、李成龙(2019)、蔺文静等(2020, 2024)、李全力(2021)、甘秋玲(2023)、甘浩男(2023)等;大地热流、莫霍面和居里面埋深参考祖辅平(2012)、滕吉文等(2017)、黄昌旗等(2018)、姜光政等(2016);放射性生热率参考赵平(1995)、林乐夫等(2017)、李科甫和朱传庆(2023)
Fig. 2. The temperature distribution curve of typical geothermal borehole (a, b), terrestrial heat flow (c), and burial depth for Curie isotherm surface (d), radioactive heat generation rate of main invading rock mass(e) and depth of Moho surface (f) in Fujian Province
图 3 福建省及相邻地区不同类型水样δ18O-δD相关关系
数据来源:漳州盆地据庞忠和(1987)、庞忠和等(1990);武功山据Jia et al.(2024);台湾岛据谢越宁等(1986)、赵永红等(2017).水岩作用水文过程氢氧同位素指示据Pang et al.(2017):①全球大气降水线GMWL(the global meteoric water line,δD=8×δ18O+10‰);②水汽再循环;③与H2S同位素交换;④与CO2同位素交换;⑤地热水系统水岩作用;⑥与安山岩‒英安岩内生水混合作用;⑦蒸发过程;⑧与海水混合;⑨与硅酸盐(水合硅酸盐)矿物交换;⑩水分凝结过程;⑪古大气降水;⑫与烃类同位素交换;⑬与黏土矿物同位素交换
Fig. 3. Relationships between δ18O and δD of different water samples in Fujian Province and adjacent areas
图 9 福建省域地热成藏模式概念立体图
图据熊绍柏等(2002)、Chen and Grapes(2007)、王晶等(2011)、祖辅平(2012)、汪啸(2018)、Dong et al.(2020)、Zhou et al.(2020b)、蔺文静等(2024)等
Fig. 9. Genetic mechanism model of geothermal resources in Fujian Province
图 10 福建省地热水温度和盐度变化引起的压力水头变化与管道模型确定的地热水循环深度
图d和图e中(Ts-T0)/(Tr-T0)为管道模型无量纲温度参数,其中T0为流体补给初始温度,Ts为流体出露温度,Tr为流体热储温度;M′为地下热水上涌流速
Fig. 10. Pressure head change resulted from the changes of temperature and salinity of geothermal water and the groundwater circulation depth determined by pipeline model in Fujian Province
-
Bath, A. H., Williamson, K. H., 1983. Isotopic and Chemical Evidence for Water Sources and Mixing in the Cerro Pando Geothermal Area, Republic of Panama. Geothermics, 12(2-3): 177-184. https://doi.org/10.1016/0375-6505(83)90028-7 Batzle, M., Wang, Z. J., 1992. Seismic Properties of Pore Fluids. Geophysics, 57(11): 1396-1408. https://doi.org/10.1190/1.1443207 Chen, G. N., Grapes, R., 2007. Granite Genesis: In Situ Melting and Crustal Evolution. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5891-2 Chen, J. C., Chen, J., Zhang, X. C. J., et al., 2024. Stable Hydrogen Isoscape in Precipitation Generated Using Data Fusion for East China. Science in China (Series D), 54(9): 3023-3039 (in Chinese with English abstract). Chen, L. M., 2019. Isotopic Characteristic Analysis of Hydrogen-Oxygen Environment in Geothermal Water in Fujian Province. Geology of Fujian, 38(1): 61-68 (in Chinese with English abstract). Chen, T. D., 2018. Petroleum Geology Condition Analysis and Exploration Targets in Fujian, Zhejiang and Jiangxi Area (Dissertation). China University of Petroleum, Dongying (in Chinese with English abstract). Chen, Y. T., Wang, Z. P., Huang, Q. T., et al., 1998. Downfaulted Basin, Plain, Bay and Earthquakes of Coastland in Fujian Province. Journal of Geodesy and Geodynamics, 18(4): 55-61 (in Chinese with English abstract). Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702 Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x Dong, S. W., Li, J. H., Cawood, P. A., et al., 2020. Mantle Influx Compensates Crustal Thinning beneath the Cathaysia Block, South China: Evidence from SINOPROBE Reflection Profiling. Earth and Planetary Science Letters, 544: 116360. https://doi.org/10.1016/j.epsl.2020.116360 Faure, M., Chen, Y., Feng, Z. H., et al., 2017. Tectonics and Geodynamics of South China: An Introductory Note. Journal of Asian Earth Sciences, 141: 1-6. https://doi.org/10.1016/j.jseaes.2016.11.031 Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4 Fournier, R. O., Truesdell, A. H., 1973. An Empirical Na-K-Ca Geothermometer for Natural Waters. Geochimica et Cosmochimica Acta, 37(5): 1255-1275. https://doi.org/10.1016/0016-7037(73)90060-4 Gan, H. N., 2023. Thermo-Rheological Structure of the Lithosphere and Geodynamic Evolution of the Coastal Fujian and Adjacent Region, China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). Gan, H. N., Wang, G. L., Wang, X., et al., 2019. Research on the Hydrochemistry and Fault Control Mechanism of Geothermal Water in Northwestern Zhangzhou Basin. Geofluids, 2019: 3925462. https://doi.org/10.1155/2019/3925462 Gan, Q. L., 2023. Preliminary Exploration of Geological Characteristics and Metallogenic Regularity of Feiluan Geothermal Resources in Ningde City, Fujian Province. Geology of Fujian, 42(1): 48-55 (in Chinese with English abstract). Ghomshei, M. M., Clark, I. D., 1993. Oxygen and Hydrogen Isotopes in Deep Thermal Waters from the South Meager Creek Geothermal Area, British Columbia, Canada. Geothermics, 22(2): 79-89. https://doi.org/10.1016/0375-6505(93)90048-R Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3 Giggenbach, W. F., 1992. Isotopic Shifts in Waters from Geothermal and Volcanic Systems along Convergent Plate Boundaries and Their Origin. Earth and Planetary Science Letters, 113(4): 495-510. https://doi.org/10.1016/0012-821X(92)90127-H Guo, F., Wu, Y. M., Zhang, B., et al., 2021. Magmatic Responses to Cretaceous Subduction and Tearing of the Paleo-Pacific Plate in SE China: An Overview. Earth-Science Reviews, 212: 103448. https://doi.org/10.1016/j.earscirev.2020.103448 Hochstein, M. P., Yang, Z. K., Ehara, S., 1990. The Fuzhou Geothermal System (People's Republic of China): Modelling Study of a Low Temperature Fracture-Zone System. Geothermics, 19(1): 43-60. https://doi.org/10.1016/0375-6505(90)90065-J Hu, S. B., Wang, J. Y., 2000. Heat Flow, Deep Temperature and Thermal Structure across the Orogenic Belts in Southeast China. Journal of Geodynamics, 30(4): 461-473. https://doi.org/10.1016/S0264-3707(00)00010-7 Huang, C. Q., Lin, F. J., Ye, B. F., 2018. The Characteristics of Radioactive Heat Production Rate and Assessment of Hot Dry Rock in High-Value Areas of Heat Flow, Fujian Province. Geology of Fujian, 37(3): 227-237 (in Chinese with English abstract). Huang, H. F., Goff, F., 1986. Hydrogeochemistry and Reservoir Model of Fuzhou Geothermal Field, China. Journal of Volcanology and Geothermal Research, 27(3-4): 203-227. https://doi.org/10.1016/0377-0273(86)90014-4 Huang, R., Xu, Y. X., Zhu, L. P., et al., 2015. Detailed Moho Geometry beneath Southeastern China and Its Implications on Thinning of Continental Crust. Journal of Asian Earth Sciences, 112: 42-48. https://doi.org/10.1016/j.jseaes.2015.09.002 Institute of Geophysics, Chinese Academy of Sciences, 1992. Geothermal Geophysical Research in Fujian Province. China Science and Technology Press, Beijing (in Chinese). Jia, W. H., Liu, K., Yan, J. K., et al., 2024. Characteristics of Geothermal Waters in Eastern Wugongshan Based on Hydrogen, Oxygen, and Strontium Isotopes. Applied Geochemistry, 161: 105874. https://doi.org/10.1016/j.apgeochem.2023.105874 Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910 (in Chinese with English abstract). Jiang, G. Z., Hu, S. B., Shi, Y. Z., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics, 753: 36-48. https://doi.org/10.1016/j.tecto.2019.01.006 Kang, F. X., Sui, H. B., Zheng, T. T., et al., 2024. Formation Mechanism of Cold Springs and Hot Springs in Karst Groundwater Systems in North China: A Study of Baotu Spring. Earth Science, 49(8): 2862-2878 (in Chinese with English abstract). Kell, G. S., 1977. Effects of Isotopic Composition, Temperature, Pressure, and Dissolved Gases on the Density of Liquid Water. Journal of Physical and Chemical Reference Data, 6(4): 1109-1131. https://doi.org/10.1063/1.555561 Li, C. L., 2019. Geological and Geochemical Characteristics of Tangyang Geothermal Anomalies Area in Zhangzhou, Fujian Province (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract). Li, J. X., Sagoe, G., Yang, G., et al., 2018a. Evaluation of Mineral-Aqueous Chemical Equilibria of Felsic Reservoirs with Low-Medium Temperature: A Comparative Study in Yangbajing Geothermal Field and Guangdong Geothermal Fields. Journal of Volcanology and Geothermal Research, 352: 92-105. https://doi.org/10.1016/j.jvolgeores.2018.01.008 Li, K. F., Zhu, C. Q., 2023. Heat Generation Rate of Granite in the Cathaysia Block and Its Influence on Geothermal Fields, SouthEast China. Petroleum Science Bulletin, 8(3): 259-289 (in Chinese with English abstract). Li, Q. L., 2021. Geothermal Characteristics and Prospect Analysis of Longmen Canyon in Dehua County, Fujian Province. Geology of Fujian, 40(4): 305-313 (in Chinese with English abstract). Li, R., Chen, Q. C., Zhang, C. Y., et al., 2016. In Situ Stress Characteristics in the Western Coast of Taiwan Strait. Acta Geologica Sinica, 90(8): 1703-1714 (in Chinese with English abstract). Li, S., Han, J. T., Liu, L. J., et al., 2022. The Deep Electrical Structure and Thermal Characteristics of the Zhangshu-Ningde Magnetotelluric Profile in South China. Chinese Journal of Geophysics, 65(4): 1354-1375 (in Chinese with English abstract). Li, Z., Wang, X. C., Wilde, S. A., et al., 2018b. Role of Deep-Earth Water Cycling in the Growth and Evolution of Continental Crust: Constraints from Cretaceous Magmatism in SouthEast China. Lithos, 302: 126-141. https://doi.org/10.1016/j.lithos.2017.12.028 Liang, C. H., Xu, X. S., He, Z. Y., 2022. Connected Volcanic and Plutonic Association by Crystal-Melt Segregation in the Daiyunshan Volcanic Field, SE China. Tectonophysics, 836: 229409. https://doi.org/10.1016/j.tecto.2022.229409 Liao, Z. J., 2012. Deep-Circulation Hydrothermal Systems without Magmatic Heat Source in Fujian Province. Geoscience, 26(1): 85-98 (in Chinese with English abstract). Lin, L. F., Sun, Z. X., Wang, A. D., et al., 2017. Radioactive Geochemical Characteristics of Mesozoic Granites from Nanling Region and Southeast Coastal Region and Their Constraints on Lithospheric Thermal Structure. Acta Petrologica et Mineralogica, 36(4): 488-500 (in Chinese with English abstract). Lin, W. J., Chen, X. Y., Gan, H. N., et al., 2020. Geothermal, Geological Characteristics and Exploration Direction of Hot Dry Rocks in the Xiamen Bay-Zhangzhou Basin, Southeastern China. Acta Geologica Sinica, 94(7): 2066-2077 (in Chinese with English abstract). Lin, W. J., Wang, G. L., Gan, H. N., et al., 2023. Heat Source Model for Enhanced Geothermal Systems (EGS) under Different Geological Conditions in China. Gondwana Research, 122: 243-259. https://doi.org/10.1016/j.gr.2022.08.007 Lin, W. J., Wang, G. L., Gan, H. N., 2024. Differential Crustal Thermal Structure and Geothermal Significance in the Igneous Region of Southeastern China. Acta Geologica Sinica, 98(2): 544-557 (in Chinese with English abstract). Lin, W. J., Yin, X. X., 2022. Temperature Estimation of a Deep Geothermal Reservoir Based on Multiple Methods: A Case Study in Southeastern China. Water, 14(20): 3205. https://doi.org/10.3390/w14203205 Liu, C. L., Li, Y. S., Cao, S. W., et al., 2022. Effects of Seawater Recharge on the Formation of Geothermal Resources in Coastal Areas and Their Mechanisms: A Case Study of Xiamen City, Fujian Province, China. Frontiers in Earth Science, 10: 872620. https://doi.org/10.3389/feart.2022.872620 Liu, C. L., Zhang, Y. J., Li, Y. S., 2025. Distribution Characteristics and Genesis of Seawater-Replenished Geothermal Systems on the Western Coast of the Taiwan Strait. Geothermics, 131: 103368. https://doi.org/10.1016/j.geothermics.2025.103368 Liu, J. R., Song, X. F., Yuan, G. F., et al., 2009. Characteristics of δ18O in Precipitation over Eastern Monsoon China and the Water Vapor Sources. Chinese Science Bulletin, 54(22): 3521-3531 (in Chinese). doi: 10.1360/csb2009-54-22-3521 Liu, K. K., Yui, T. F., Shieh, Y. N., et al., 1990. Hydrogen and Oxygen Isotopic Compositions of Meteoric and Thermal Waters from the Chingshui Geothermal Area, Northern Taiwan. Proceedings of the Geological Society of China, 33(2): 143-165. Lu, G. P., Wang, X., Li, F. S., et al., 2017. Deep Geothermal Processes Acting on Faults and Solid Tides in Coastal Xinzhou Geothermal Field, Guangdong, China. Physics of the Earth and Planetary Interiors, 264: 76-88. https://doi.org/10.1016/j.pepi.2016.12.004 Luo, J., Li, Y. M., Tian, J., et al., 2022. Geochemistry of Geothermal Fluid with Implications on Circulation and Evolution in Fengshun-Tangkeng Geothermal Field, South China. Geothermics, 100: 102323. https://doi.org/10.1016/j.geothermics.2021.102323 Lyu, H. J., Yang, Z. H., Chen, H. Q., 1989. The "Earthquake Window" and Its Mechanism at Zhangzhou-Huaan, Fujian Province. Seismology and Geology, 11(2): 33-38 (in Chinese with English abstract). Ma, F., Wang, G. L., Sun, H. L., et al., 2022. Indication of Hydrogen and Oxygen Stable Isotopes on the Characteristics and Circulation Patterns of Medium-Low Temperature Geothermal Resources in the Guanzhong Basin, China. Journal of Groundwater Science and Engineering, 10(1): 70-86. https://doi.org/10.19637/j.cnki.2305-7068.2022.01.007 Mao, X. M., Ye, J. Q., Dong, Y. Q., et al., 2022. Geothermal Driving Force: A New Additional Non-Gravity Action Driving the Migration of Geothermal Water in the Xinzhou Geothermal Field of Yangjiang, Guangdong. Bulletin of Geological Science and Technology, 41(1): 137-145 (in Chinese with English abstract). Pang, Z. H., 1987. Zhangzhou Basin Geothermal System-Genesis Model, Energy Potential and the Occurrence of Thermal Water (Dissertation). Institute of Geology and Geophysics, CAS, Beijing (in Chinese with English abstract). Pang, Z. H., Fan, Z. C., Wang, J. Y., 1990. Isotope Evidence for Geothermal Water Genesis and Seawater Involvement in Zhangzhou Basin, Southeast China. Geochimica, 19(4): 296-302 (in Chinese with English abstract). Pang, Z. H., Kong, Y. L., Li, J., et al., 2017. An Isotopic Geoindicator in the Hydrological Cycle. Procedia Earth and Planetary Science, 17: 534-537. https://doi.org/10.1016/j.proeps.2016.12.135 Phillips, S. L., Igbene, A., Fair, J. A., et al., 1981. A Technical Databook for Geothermal Energy Utilization. Lawrence Berkeley National Laboratory, Berkeley. Qi, S. H., 2021. Geothermal Geochemical Exploration. Science Press, Beijing (in Chinese). Rybach, L., Muffler, L. J. P., 1987. Geothermal Systems Principles and Case Histories. Translated by Geothermal Research of Department of Geology, Peking University. Geological Publishing House, Beijing. Saar, M. O., 2011. Review: Geothermal Heat as a Tracer of Large-Scale Groundwater Flow and as a Means to Determine Permeability Fields. Hydrogeology Journal, 19(1): 31-52. https://doi.org/10.1007/s10040-010-0657-2 Shi, Z. D., Mao, X. M., Ye, J. Q., et al., 2024. Source Analysis of Sodium of Low-Salinity High-Sodium Geothermal Water in Huangshadong Geothermal Field from East Guangdong. Earth Science, 49(1): 271-287 (in Chinese with English abstract). Shu, L. S., Yao, J. L., Wang, B., et al., 2021. Neoproterozoic Plate Tectonic Process and Phanerozoic Geodynamic Evolution of the South China Block. Earth-Science Reviews, 216: 103596. https://doi.org/10.1016/j.earscirev.2021.103596 Stefánsson, A., Arnórsson, S., Sveinbjörnsdóttir, Á. E., et al., 2019. Isotope (δD, δ18O, 3H, δ13C, 14C) and Chemical (B, Cl) Constrains on Water Origin, Mixing, Water-Rock Interaction and Age of Low-Temperature Geothermal Water. Applied Geochemistry, 108: 104380. https://doi.org/10.1016/j.apgeochem.2019.104380 Sun, H. Y., 2023. Mechanism of Strontium Enrichment in Sallow Groundwater Driven by the Coupling of Rock Weathering and Water-Rock Interaction in Central Chengde (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). Sun, H. Y., Ma, F., Wang, G. L., et al., 2025a. Spatial Variation Characteristics and Source Apportionment of Geothermal Hydrochemical Components with Therapeutic Benefits in Fujian Province Based on Machine Learning. Acta Geologica Sinica, Online (in Chinese with English abstract). https://doi.org/10.19762/j.cnki.dizhixuebao.2024440 Sun, H. Y., Ma, F., Zhu, X., et al., 2025b. Hydrogeochemical Evolution of Geothermal Fluids and Its Indications in the Yanshan Uplift-North China Fault Basin, Northern Hebei. Acta Geologica Sinica, 99(5): 1711-1742 (in Chinese with English abstract). Sun, H. Y., Sun, X. M., Wei, X. F., et al., 2023. Geochemical Characteristics and Origin of Nuanquanzi Geothermal Water in Yudaokou, Chengde, Hebei, North China. Journal of Earth Science, 34(3): 838-856. https://doi.org/10.1007/s12583-022-1635-z Temizel, E. H., Gültekin, F., Ersoy, A. F., et al., 2021. Multi-Isotopic (O, H, C, S, Sr, B, Li) Characterization of Waters in a Low-Enthalpy Geothermal System in Havza (Samsun), Turkey. Geothermics, 97: 102240. https://doi.org/10.1016/j.geothermics.2021.102240 Teng, J. W., Si, X., Zhuang, Q. X., et al., 2017. Abnormal Structure of Crust and Mantle and Analysis of Deep Thermal Potential in Fujian Continental Margin. Science Technology and Engineering, 17(17): 6-38 (in Chinese with English abstract). Tian, J., Stefánsson, A., Li, Y. M., et al., 2023. Geochemistry of Thermal Fluids and the Genesis of Granite-Hosted Huangshadong Geothermal System, SouthEast China. Geothermics, 109: 102647. https://doi.org/10.1016/j.geothermics.2023.102647 Tóth, J., 1999. Groundwater as a Geologic Agent: An Overview of the Causes, Processes, and Manifestations. Hydrogeology Journal, 7(1): 1-14. https://doi.org/10.1007/s100400050176 Wagner, W., Kretzschmar, H. J., 2008. International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97 (Second Edition). Springer-Verlag, Berlin. Wan, T. F., Chu, M. J., Chen, M. Y., 1988. Thermal Regimes of the Lithosphere and Geothermal Resources Potential in Fujian Province. Acta Geological Sinica, 62(2): 178-189 (in Chinese with English abstract). Wang, G. L., Lin, W. J., Liu, F., et al., 2023. Theory and Survey Practice of Deep Heat Accumulation in Geothermal System and Exploration Practice. Acta Geologica Sinica, 97(3): 639-660 (in Chinese with English abstract). Wang, G. L., Lin, W. J., 2020. Main Hydro-Geothermal Systems and Their Genetic Models in China. Acta Geologica Sinica, 94(7): 1923-1937 (in Chinese with English abstract). Wang, J., Chen, G. N., Grapes, R., et al., 2011. The Relationship between Evolution of the Intracrustal Magma Layer and Development of Basins: An Example from the Mesozoic Basins in SouthEast China. Earth Science Frontiers, 18(1): 24-31 (in Chinese with English abstract). Wang, K., Xiong, X., 2012. Refining Thermal Structure of the Lithosphere in Eastern Section of Heishui-Quanzhou Geotransect with Geodetic Observations. Progress in Geophysics, 27(4): 1366-1376 (in Chinese with English abstract). Wang, S. J., Zhang, M., Huang, X. L., et al., 2024. Geothermometry Calculation and Geothermal Fluid Evolution of Karst Geothermal Reservoir in Longmen County, Guangdong Province. Earth Science, 49(3): 992-1004 (in Chinese with English abstract). Wang, X., Lu, G. P., Hu, B. X., 2018. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China. Geofluids, 2018(1): 8715080. https://doi.org/10.1155/2018/8715080 Wang, X., 2018. Formation Conditions and Hydrogeochemical Characteristics of the Geothermal Water in Typical Coastal Geothermal Field with Deep Faults, Guangdong Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019 Wei, S. Y., Liu, S. C., Ao, G. H., et al., 1988. The Geothermal Activity and the Characteristics of Geophysics Field in Continental Margin of Fujian Province. Northwestern Seismological Journal, 10(3): 74-81 (in Chinese with English abstract). Wu, C. F., Xu, D., Yang, S. J., et al., 2025. Deep Thermal State on the Southern Margin of the Zhangzhou Basin Based on the Electrical Conductivity Model. Geothermics, 125: 103188. https://doi.org/10.1016/j.geothermics.2024.103188 Xiao, Z. C., Wang, S., Qi, S. H., et al., 2023. Crustal Thermo-Structure and Geothermal Implication of the Huangshadong Geothermal Field in Guangdong Province. Journal of Earth Science, 34(1): 194-204. https://doi.org/10.1007/s12583-021-1486-z Xie, Y. N., Cheng, F. P., He, R. Y., et al., 1986. Hydrogen and Oxygen Isotopes of Precipitation and Geothermal Water in Taiwan Province. Geology-Geochemistry, 14(3): 42-46 (in Chinese). Xiong, S. B., Liu, H. B., Wang, Y. X., 2002. A Study on Velocity Distribution in Upper Crust and Tectonics of Basement and Cover in South China. Chinese Journal of Geophysics, 45(6): 784-791, 902-904 (in Chinese with English abstract). Xu, F. Y. M., Lu, G. P., 2017. Hydrochemical Characteristics of Xinzhou Geothermal Field, Coastal Guangdong and the Hydrodynamic Characteristics of Seawater Intrusion in the Field. Safety and Environmental Engineering, 24(1): 1-10 (in Chinese with English abstract). Xu, Q. J., Liu, S. F., Wang, Z. F., et al., 2019. Provenance of the East Guangdong Basin and Yong'an Basin in SouthEast China: Response to the Mesozoic Tectonic Regime Transformation. Journal of Asian Earth Sciences, 185: 104024. https://doi.org/10.1016/j.jseaes.2019.104024 Xu, X. S., Wang, X. Y., Ma, Z. W., et al., 2024. Petrogenesis of Episodic Volcanic-Intrusive Rocks in SE China: Crystal-Melt Segregation and Magma Mixing. Chemical Geology, 670: 122457. https://doi.org/10.1016/j.chemgeo.2024.122457 Xu, X. S., Zhao, K., He, Z. Y., et al., 2021. Cretaceous Volcanic-Plutonic Magmatism in SE China and a Genetic Model. Lithos, 402: 105728. https://doi.org/10.1016/j.lithos.2020.105728 Ye, J. Q., Mao, X. M., 2024. Changes of Temperature and Driving Force during Phase Change in High Temperature Hydrothermal System. Earth Science, 49(10): 3773-3783 (in Chinese with English abstract). Yu, M. G., Hong, W. T., Yang, Z. L., et al., 2021. Classification of Yanshanian Volcanic Cycle and the Related Mineralization in the Coast Area of Southeastern China. Geological Bulletin of China, 40(6): 845-863 (in Chinese with English abstract). Yuan, H. W., Jing, T. Y., Yin, Y. L., et al., 2024. Geothermal Model and Development Area of a Fault-Controlled Geothermal Zone along the Fujian Coastal Area of Southeastern China. Natural Gas Industry B, 11(1): 28-41. https://doi.org/10.1016/j.ngib.2024.01.005 Zhang, C. R., Zhang, G. B., Jiang, G. M., et al., 2021. Seismic Pumping for Mineralization in Southern Fujian, Cathaysia Block: New Insights from a Teleseismic Full Waveform Inversion. Ore Geology Reviews, 131: 104036. https://doi.org/10.1016/j.oregeorev.2021.104036 Zhang, C. Y., Li, B., Li, H. L., et al., 2023. Stress Estimation in a 3 km-Deep Geothermal Borehole: A Snapshot of Stress State in Southern Cathaysia Block, China. Tectonophysics, 864: 230031. https://doi.org/10.1016/j.tecto.2023.230031 Zhang, J., He, Y. B., Fan, Y. X., 2024. Geophysical Analysis of Heat Source Composition in the Fujian Coastal Geothermal Anomaly Area. Earth Science Frontiers, 31(3): 392-401 (in Chinese with English abstract). Zhang, J., Wang, B. Y., Tang, X. C., et al., 2018. Temperature Structure and Dynamic Background of Crust and Mantle beneath the High Heat Flow Area of the South China Continental Margin. Chinese Journal of Geophysics, 61(10): 3917-3932 (in Chinese with English abstract). Zhang, K., Ma, H. M., Cai, J. B., 2002. Discussion on the Origins of Hot Spring along the Coast of South China. Acta Scientiarum Naturalium Universitatis Sunyatseni, 41(1): 82-86 (in Chinese with English abstract). Zhao, F. Y., Suo, Y. H., Liu, L. J., et al., 2023. Fine Lithospheric Structure Controlling Meso-Cenozoic Tectono-Magmatism in the South China Block: Inference from a Multidisciplinary Analysis. Earth-Science Reviews, 244: 104524. https://doi.org/10.1016/j.earscirev.2023.104524 Zhao, L. L., 2011. Analysis on Gui'an Geothermal Resource Potential in Lianjiang County of Fujian Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Zhao, P., Wang, J. Y., Wang, J. A., et al., 1995. Characteristics of Heat Production Distribution in SE China. Acta Petrologica Sinica, 11(3): 292-305 (in Chinese with English abstract). Zhao, Y. H., Yang, J. Y., Wang, H., et al., 2017. Hydrogen and Oxygen Isotope Distribution Characteristics of Geothermal Water. Progress in Geophysics, 32(6): 2415-2423 (in Chinese with English abstract). Zheng, H. R., Luo, J., 2024. Progress in Research on the Exploration and Evaluation of Deep Geothermal Resources in the Fujian-Guangdong-Hainan Region, China. Energy Geoscience, 5(2): 100232. https://doi.org/10.1016/j.engeos.2023.100232 Zhou, P. X., Xia, S. H., Hetényi, G., et al., 2020a. Seismic Imaging of a Mid-Crustal Low-Velocity Layer beneath the Northern Coast of the South China Sea and Its Tectonic Implications. Physics of the Earth and Planetary Interiors, 308: 106573. https://doi.org/10.1016/j.pepi.2020.106573 Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3-4): 269-287. https://doi.org/10.1016/S0040-1951(00)00120-7 Zhou, X., Song, C., Li, T., 2016. Estimation of the Inland Extending Length of the Freshwater-Saltwater Interface in Coastal Unconfined Aquifers. Hydrological Sciences Journal, 61(13): 2367-2375. https://doi.org/10.1080/02626667.2015.1111516 Zhou, X., Zhuo, L. Y., Wu, Y. Q., et al., 2023. Origin of Some Hot Springs as Conceptual Geothermal Models. Journal of Hydrology, 624: 129927. https://doi.org/10.1016/j.jhydrol.2023.129927 Zhou, Z. M., Ma, C. Q., Qi, S. H., et al., 2020b. Late Mesozoic High-Heat-Producing (HHP) and High-Temperature Geothermal Reservoir Granitoids: The Most Significant Geothermal Mechanism in South China. Lithos, 366: 105568. https://doi.org/10.1016/j.lithos.2020.105568 Zhuang, Q. X., Li, D. W., Zheng, S. G., et al., 2019. Study on Geothermal Resources and Geological Response of Deep High Temperature Rock Mass in Zhangzhou Basin and Its Adjacent Areas. Geological Publishing House, Beijing (in Chinese). Zu, F. P., 2012. Evolution Features of Sedimentary and Structural Environment of Representative Basins since Late Palaeozoic in Southeast China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). 陈佳澄, 陈杰, Zhang, X. C. J., 等, 2024. 基于数据融合的中国东部降水氢稳定同位素数据集. 中国科学(D辑), 54(9): 3023-3039. 陈礼明, 2019. 福建地热水氢氧环境同位素特征浅析. 福建地质, 38(1): 61-68. 陈廷东, 2018. 闽浙赣地区油气地质条件分析与勘探选区(硕士学位论文). 东营: 中国石油大学(华东). 陈园田, 王志鹏, 黄卿团, 等, 1998. 福建沿海的断陷盆地、平原、海湾与地震. 地壳形变与地震, 18(4): 55-61. 甘浩男, 2023. 福建沿海及邻区岩石圈热‒流变结构及其构造演化(博士学位论文). 南京: 南京大学. 甘秋玲, 2023. 福建宁德飞鸾地热资源地质特征及成矿规律探讨. 福建地质, 42(1): 48-55. 黄昌旗, 林锋杰, 叶冰斐, 2018. 福建大地热流高值区岩体岩石放射性生热率特征及与干热岩有关的指标评价. 福建地质, 37(3): 227-237. 中国科学院地球物理研究所, 1992. 福建地热地球物理研究. 北京: 中国科学技术出版社. 姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910. 康凤新, 隋海波, 郑婷婷, 等, 2024. 岩溶地下水系统冷泉和热泉的形成机制: 以趵突泉群为例. 地球科学, 49(8): 2862-2878. doi: 10.3799/dqkx.2023.051 李成龙, 2019. 福建漳州汤洋地温异常区的地质与地球化学特征研究(硕士学位论文). 徐州: 中国矿业大学. 李科甫, 朱传庆, 2023. 华夏地块花岗岩生热率特征及其对地温场的影响. 石油科学通报, 8(3): 259-289. 李全力, 2021. 福建德化龙门大峡谷地热特征及前景分析. 福建地质, 40(4): 305-313. 李冉, 陈群策, 张重远, 等, 2016. 台湾海峡西岸地应力特征研究. 地质学报, 90(8): 1703-1714. 李帅, 韩江涛, 刘立家, 等, 2022. 华南地区樟树‒宁德大地电磁测深剖面深部电性结构及热特征. 地球物理学报, 65(4): 1354-1375. 廖志杰, 2012. 福建无岩浆热源的深循环水热系统. 现代地质, 26(1): 85-98. 林乐夫, 孙占学, 王安东, 等, 2017. 南岭地区与东南沿海地区中生代花岗岩放射性地球化学特征及岩石圈热结构对比研究. 岩石矿物学杂志, 36(4): 488-500. 蔺文静, 陈向阳, 甘浩男, 等, 2020. 东南沿海厦门湾‒漳州盆地地热地质特征及干热岩勘查方向. 地质学报, 94(7): 2066-2077. 蔺文静, 王贵玲, 甘浩男, 2024. 华南陆缘火成岩区差异性地壳热结构及地热意义. 地质学报, 98(2): 544-557. 柳鉴容, 宋献方, 袁国富, 等, 2009. 中国东部季风区大气降水δ18O的特征及水汽来源. 科学通报, 54(22): 3521-3531. 吕浩江, 杨志辉, 陈辉琼, 1989. 漳州‒华安"地震窗" 及其机制. 地震地质, 11(2): 33-38. 毛绪美, 叶建桥, 董亚群, 等, 2022. 地热驱动力: 广东阳江新洲地热田驱动地热水运移的一种额外非重力作用的分析方法. 地质科技通报, 41(1): 137-145. 庞忠和, 樊志成, 汪集旸, 1990. 漳州盆地地下热水成因与海水混入的同位素证据. 地球化学, 19(4): 296-302. 庞忠和, 1987. 漳州盆地地热系统‒成因模式、热能潜力与热水分布规律的研究(博士学位论文). 北京: 中国科学院地质与地球物理研究所. 祁士华, 2021. 地热地球化学勘查. 北京: 科学出版社. 史自德, 毛绪美, 叶建桥, 等, 2024. 中低温地热系统低盐度地热水高含量钠的地球化学成因: 以广东惠州黄沙洞地热田为例. 地球科学, 49(1): 271-287. doi: 10.3799/dqkx.2022.170 孙厚云, 2023. 承德中部浅层地下水锶富集的岩石风化与水岩作用驱动机制(博士学位论文). 北京: 中国地质大学. 孙厚云, 马峰, 王贵玲, 等, 2025a. 基于机器学习的福建省地热温泉理疗热矿水元素空间分异特征与物源解析. 地质学报, 在线出版. https://doi.org/10.19762/j.cnki.dizhixuebao.2024440. 孙厚云, 马峰, 朱喜, 等, 2025b. 冀北燕山隆起‒华北断陷盆地地热流体地球化学特征及地热学意义. 地质学报, 99(5): 1711-1742. 滕吉文, 司芗, 庄庆祥, 等, 2017. 福建陆缘壳幔异常结构与深部热储潜能分析. 科学技术与工程, 17(17): 6-38. 万天丰, 褚明记, 陈明佑, 1988. 福建省岩石圈的热状态与地热资源的远景评价. 地质学报, 62(2): 178-189. 王贵玲, 蔺文静, 刘峰, 等, 2023. 地热系统深部热能聚敛理论及勘查实践. 地质学报, 97(3): 639-660. 王贵玲, 蔺文静, 2020. 我国主要水热型地热系统形成机制与成因模式. 地质学报, 94(7): 1923-1937. 王晶, 陈国能, Grapes, R., 等, 2011. 壳内岩浆层演化的盆地效应: 以中国东南部中生代盆地为例. 地学前缘, 18(1): 24-31. 王恺, 熊熊, 2012. 利用大地测量和地热资料联合确定黑水‒泉州地学断面东段岩石圈热及强度结构. 地球物理学进展, 27(4): 1366-1376. 王思佳, 张敏, 黄学莲, 等, 2024. 广东省龙门岩溶热储温度计算及流体演化特征. 地球科学, 49(3): 992-1004. doi: 10.3799/dqkx.2022.430 汪啸, 2018. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征(博士学位论文). 武汉: 中国地质大学. 魏斯禹, 刘绍成, 敖光华, 等, 1988. 我国福建陆缘地带的地热活动与地球物理场特征. 西北地震学报, 10(3): 74-81. 谢越宁, 程枫萍, 何瑞因, 等, 1986. 台湾大气降水和地热水的氢、氧同位素研究. 地质地球化学, 14(3): 42-46. 熊绍柏, 刘宏兵, 王有学, 等, 2002. 华南上地壳速度分布与基底、盖层构造研究. 地球物理学报, 45(6): 784-791, 902-904. 徐钫一鸣, 卢国平, 2017. 广东海岸带型新洲地热田水化学及海水入侵水动力特征. 安全与环境工程, 24(1): 1-10. 叶建桥, 毛绪美, 2024. 高温水热系统中相变时温度和驱动力的变化. 地球科学, 49(10): 3773-3783. doi: 10.3799/dqkx.2023.126 余明刚, 洪文涛, 杨祝良, 等, 2021. 东南沿海燕山期火山活动旋回划分及其成矿规律. 地质通报, 40(6): 845-863. 张健, 何雨蓓, 范艳霞, 2024. 福建沿海地区地热异常热源成因的地球物理分析. 地学前缘, 31(3): 392-401. 张健, 王蓓羽, 唐显春, 等, 2018. 华南陆缘高热流区的壳幔温度结构与动力学背景. 地球物理学报, 61(10): 3917-3932. 张珂, 马浩明, 蔡剑波, 2002. 华南沿海温泉成因探讨. 中山大学学报(自然科学版), 41(1): 82-86. 赵亮亮, 2011. 福建省连江县贵安地热资源潜力分析(硕士学位论文). 武汉: 中国地质大学. 赵平, 汪集旸, 汪缉安, 等, 1995. 中国东南地区岩石生热率分布特征. 岩石学报, 11(3): 292-305. 赵永红, 杨家英, 王航, 等, 2017. 地热水氢氧同位素分布特性. 地球物理学进展, 32(6): 2415-2423. 庄庆祥, 李德威, 郑霜高, 等, 2019. 漳州盆地及邻区地热资源与深部高温岩体的地质响应研究. 北京: 地质出版社. 祖辅平, 2012. 中国东南部晚古生代以来典型盆地沉积构造环境演化特征(博士学位论文). 南京: 南京大学. -