• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于地质结构探测的多滑面边坡系统可靠度分析

    梁姚颖 彭铭 刘鎏 石振明 王登一 沈健

    梁姚颖, 彭铭, 刘鎏, 石振明, 王登一, 沈健, 2025. 基于地质结构探测的多滑面边坡系统可靠度分析. 地球科学, 50(10): 3982-3996. doi: 10.3799/dqkx.2025.063
    引用本文: 梁姚颖, 彭铭, 刘鎏, 石振明, 王登一, 沈健, 2025. 基于地质结构探测的多滑面边坡系统可靠度分析. 地球科学, 50(10): 3982-3996. doi: 10.3799/dqkx.2025.063
    Liang Yaoying, Peng Ming, Liu Liu, Shi Zhenming, Wang Dengyi, Shen Jian, 2025. System Reliability Analysis of Multi-Slip Surface Slopes Based on Geological Structure Detection. Earth Science, 50(10): 3982-3996. doi: 10.3799/dqkx.2025.063
    Citation: Liang Yaoying, Peng Ming, Liu Liu, Shi Zhenming, Wang Dengyi, Shen Jian, 2025. System Reliability Analysis of Multi-Slip Surface Slopes Based on Geological Structure Detection. Earth Science, 50(10): 3982-3996. doi: 10.3799/dqkx.2025.063

    基于地质结构探测的多滑面边坡系统可靠度分析

    doi: 10.3799/dqkx.2025.063
    基金项目: 

    国家自然科学基金-联合基金重点项目 U23A2044

    国家自然科学基金-国际合作项目 42061160480

    国家自然科学基金-面上项目 42071010

    国家自然科学基金-面上项目 42477195

    详细信息
      作者简介:

      梁姚颖(1994-),女,博士生,主要从事边坡地质结构勘探及可靠度分析方面研究.E-mail:tjlyy@tongji.edu.cn

      通讯作者:

      刘鎏(1992-), 男,副研究员,E-mail: liuliu@mail.whrsm.ac.cn

    • 中图分类号: P642

    System Reliability Analysis of Multi-Slip Surface Slopes Based on Geological Structure Detection

    • 摘要:

      地质结构识别与强度参数不确定性量化是岩质边坡稳定性评估的核心问题.为此,提出了一种基于地质结构探测的多滑面边坡系统可靠度分析方法.该方法首先结合多道勒夫波分析(multichannel analysis of Love waves,MALW)与初至旅行时层析成像(first-arrival travel time tomography,FATT),实现软弱层与断层探测效果的互补.随后,通过弹性波速折减软弱层强度参数,统计获取其概率分布.最后,考虑参数不确定性,计算边坡地表位移及单一滑面与系统失效概率.该方法在两个边坡案例的测试中表明:多阶频散曲线对边坡深部及浅部软弱层的反演精度均优于基阶频散曲线,且勒夫波较瑞雷波受岩层界面起伏的影响更小.边坡断层在初至旅行时记录中表现为特定范围内的波动特征,基于该特征的反演可定位局部断层.对于多滑面边坡案例,结合地表位移,地质结构与各滑面单一失效概率,确定边坡主要受深层滑面控制.且该边坡系统失效概率受内摩擦角变异系数的影响远大于黏聚力.此方法能够有效探测边坡地质结构,定位软弱层与断层.可考虑软弱层内部裂隙结构和风化程度的影响,折减强度参数并量化其不确定性.能够准确识别关键控制滑动面,定量评估各潜在滑动面及系统失效概率,为边坡防治提供了科学依据和参考.

       

    • 图  1  基于地质结构探测的多滑面边坡系统可靠度计算流程

      Fig.  1.  Workflow for system reliability analysis of multi-slip surface slopes based on geological structure detection

      图  2  算例边坡横波速度剖面及MALW、FATT布设

      a.模型Ⅰ及MALW测点;b.模型Ⅱ及FATT炮点和接收器;c.MALW线性阵列

      Fig.  2.  Shear wave velocity profiles of the example slope and layout for MALW and FATT

      图  3  边坡倾斜面二维交错有限差分网格

      Fig.  3.  2D staggered finite difference grid of the inclined slope surface

      图  4  模型Ⅰ测点P1多道勒夫波信号及其频散能量分布

      a.多道勒夫波记录;b.频散能量图

      Fig.  4.  Multichannel Love wave signals and dispersion energy distribution at observation point P1 of Model I

      图  5  边坡反演层状结构

      a.模型Ⅰ测点P1一维反演结果;b.模型Ⅰ二维速度剖面

      Fig.  5.  Inverted layered structure of the slope

      图  6  模型II测点P9多道勒夫波信号

      Fig.  6.  Scattered Love waves from the fault

      图  7  速度模型与初至旅行时

      a.初始速度模型;b.反演速度剖面;c.观测与初始初至旅行时对比;d.反演与初始初至旅行时对比

      Fig.  7.  Velocity model and first-arrival travel times

      图  8  标准化残差

      Fig.  8.  Normalized residuals

      图  9  FLAC3D模型及测点布置

      Fig.  9.  FLAC3D model and measurement point layout

      图  10  响应面预测与数值模拟对比

      a. X方向地表位移对比;b. 安全系数对比

      Fig.  10.  Comparison between response surface predictions and numerical simulations

      图  11  X方向地表位移概率分布

      a.测点D8;b.测点D9;c.测点D10

      Fig.  11.  Probability distribution of surface displacement in the X-direction

      图  12  边坡X方向位移云图及潜在滑动面

      a.滑动面S1;b.滑动面S2

      Fig.  12.  Contour map of slope displacement in the X-direction and potential sliding surfaces

      图  13  边坡安全系数收敛图及概率分布

      a~b. 滑动面S1;c~d. 滑动面S2

      Fig.  13.  Convergence and probability distribution of slope safety factors

      图  14  不同波动范围模型及对应频散能量图

      a~c. 横波速度模型;d~f. 瑞雷波频散能量图;g~i. 勒夫波频散能量图

      Fig.  14.  Models with different fluctuation ranges and corresponding dispersion energy diagrams

      图  15  基阶及多阶反演速度剖面

      Fig.  15.  Fundamental and higher-order inverted velocity profiles

      图  16  不同变异系数下系统失效概率

      Fig.  16.  System failure probability under different coefficients of variation

      表  1  各层参数设置

      Table  1.   Parameters of each layer

      层号 Vs
      (m/s)
      Kv ρ
      (g/cm3)
      υ c (kPa) φ (°) E (GPa)
      1 1 180 / 2.13 0.25 300 31 2.00
      2 906 0.6 2.0 0.30 20 20 0.68
      3 1 790 / 2.36 0.25 800 40 6.00
      4 1 078 0.7 2.0 0.30 20 20 0.68
      5 2 200 / 2.46 0.25 1 300 47 9.00
      断层 232 / 1.75 0.30 30 25 0.50
      注:Vs为横波波速;Kv为岩石完整性系数;ρ为密度,υ为泊松比;c为黏聚力;φ为内摩擦角.
      下载: 导出CSV

      表  2  勒夫波模拟的边界条件设置

      Table  2.   Boundary condition settings for Love wave simulation

      网格类型 $ {\rho }_{y} $ $ \mu $ $ {\tau }_{xy} $ $ {\tau }_{zy} $
      H 0.5$ {\rho }_{1} $ $ {\mu }_{1} $ 0 /
      VR 0.5$ {\rho }_{1} $ $ {\mu }_{1} $ / 0
      IR 0.5$ {\rho }_{1} $ $ {\mu }_{1} $ 0 /
      OR 0.5$ {\rho }_{1} $ $ {\mu }_{1} $ / 0
      注:$ {\rho }_{y} $及$ \mu $为自由界面网格的密度和拉梅系数;$ {\rho }_{1} $及$ {\mu }_{1} $为相邻固体网格的密度和拉梅系数;$ {\tau }_{xy} $及$ {\tau }_{zy} $为xy方向和zy方向应力分量.
      下载: 导出CSV

      表  3  边坡强度参数

      Table  3.   Strength parameters of the slope

      层号 ρ (g/cm3) c (kPa) φ (°)
      1 2.13 300 31
      2 2.00 logN (17.90, 2.14) logN (17.82, 2.29)
      3 2.36 800 40
      4 2.00 logN (18.60, 2.74) logN (18.53, 2.85)
      5 2.46 1 300 47
      断层 1.75 logN (30, 6) logN (25, 4)
      注:ρ为密度;cφ为黏聚力和内摩擦角;logN (μ, σ) 表示参数服从均值和标准差分别为μσ的对数正态分布.
      下载: 导出CSV

      表  4  地表位移及安全系数响应面系数

      Table  4.   Response surface coefficients for surface displacement and safety factor

      系数 D8 D9 D10 系数 FS1 FS2
      a 94.239 4 97.855 0 0.177 8 a 2.413 6 0.803 1
      b1 0.077 3 0.167 8 -0.000 2 b1 -0.052 0 0.014 3
      b2 -1.636 6 -0.055 3 0.000 1 b2 0.025 6 0.005 8
      b3 -0.351 4 -0.511 9 0.010 3 b3 -0.038 7 -0.037 8
      b4 -5.560 9 -7.465 9 0.036 1 b4 -0.043 4 0.016 9
      b5 -0.050 4 -0.037 3 -0.000 3 c1 0.001 7 -0.000 1
      b6 -0.233 3 -0.272 3 -0.001 3 c2 0.000 8 0.001 6
      c1 -0.004 1 -0.004 8 0 c3 0.000 7 0.000 6
      c2 0.035 0 -0.000 7 0 c4 0.000 9 -0.000 3
      c3 0.007 1 0.010 3 -0.000 2 ε 0.023 0 0.026 0
      c4 0.130 4 0.173 4 -0.000 8 R2 0.971 5 0.954 6
      c5 0.000 1 -0.000 2 0
      c6 0.002 4 0.002 5 0
      ε 0.211 0 0.250 9 0.002 0
      R2 0.965 0 0.977 9 0.955 6
      注:D8D9D10分别为对应测点的X方向位移;FS1为沿潜在滑动面S1破坏的安全系数;FS2为沿潜在滑动面S2破坏的安全系数.
      下载: 导出CSV

      表  5  边坡模型参数

      Table  5.   Parameters of the slope model

      层号 Vs (m/s) Vp (m/s) ρ (g/cm3) h
      1 400 980 1.7 5
      2 200 490 1.7 5
      3 600 1470 1.7 半无限空间
      注:Vs及Vp分别为横波速度及纵波速度;ρ为密度;h为层厚.
      下载: 导出CSV
    • Akay, B., Karaboga, D., 2009. Parameter Tuning for the Artificial Bee Colony Algorithm. Springer, Berlin, Heidelberg, 608-619.
      Bucher, C. G., Bourgund, U., 1990. A Fast and Efficient Response Surface Approach for Structural Reliability Problems. Structural Safety, 7(1): 57-66. https://doi.org/10.1016/0167-4730(90)90012-E
      Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006
      Crosta, G. B., di Prisco, C., Frattini, P., et al., 2014. Chasing a Complete Understanding of the Triggering Mechanisms of a Large Rapidly Evolving Rockslide. Landslides, 11(5): 747-764. https://doi.org/10.1007/s10346-013-0433-1
      Dou, J., Xiang, Z. L., Xu, Q., et al., 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 48(5): 1657-1674 (in Chinese with English abstract).
      Dou, J., Xing, K., Wang, L. Z., et al., 2025. Air-Space-Ground Synergistic Observations for Rapid Post-Seismic Disaster Assessment of 2025 Ms6.8 Xigazê Earthquake, Xizang. Journal of Earth Science. https://doi.org/10.1007/s12583-025-0160-2
      Dunne, J., Beresford, G., 1995. A Review of the τ-p Transform, Its Implementation and Its Applications in Seismic Processing. Exploration Geophysics, 26(1): 19-36. https://doi.org/10.1071/eg995019
      Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., et al., 2007. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Analytica Chimica Acta, 597(2): 179-186. https://doi.org/10.1016/j.aca.2007.07.011
      Gao, L. L., Xia, J. H., Pan, Y. D., 2014. Misidentification Caused by Leaky Surface Wave in High-Frequency Surface Wave Method. Geophysical Journal International, 199(3): 1452-1462. https://doi.org/10.1093/gji/ggu337
      Guo, R., Li, M. K., Yang, F., et al., 2019. First Arrival Traveltime Tomography Using Supervised Descent Learning Technique. Inverse Problems, 35(10): 105008. https://doi.org/10.1088/1361-6420/ab32f7
      Jean, V., 1984. SH-Wave Propagation in Heterogeneous Media; Velocity-Stress Finite-Difference Method. Geophysics, 49(11): 1933-1942. https://doi.org/10.1190/1.1441605
      Jiang, S. H., Liu, Y., Zhang, H. L., et al., 2020. Quantitatively Evaluating the Effects of Prior Probability Distribution and Likelihood Function Models on Slope Reliability Assessment. Rock and Soil Mechanics, 41(9): 3087-3097 (in Chinese with English abstract).
      Jiang, S. H., Li, D. Q., Cao, Z. J., et al., 2015. Efficient System Reliability Analysis of Slope Stability in Spatially Variable Soils Using Monte Carlo Simulation. Journal of Geotechnical and Geoenvironmental Engineering, 141(2): 04014096. https://doi.org/10.1061/(asce)gt.1943-5606.0001227
      Karaboga, D., Akay, B., 2009. A Comparative Study of Artificial Bee Colony Algorithm. Applied Mathematics and Computation, 214(1): 108-132. https://doi.org/10.1016/j.amc.2009.03.090
      Knopoff, L., 1964. A Matrix Method for Elastic Wave Problems. Bulletin of the Seismological Society of America, 54(1): 431-438. https://doi.org/10.1785/BSSA0540010431
      Li, J. P., Cheng, Y. G., Li, D. Q., et al., 2016. System Reliability Analysis of Spatially Variable Soil Slopes Using the Multiple Response Surfaces Method. Rock and Soil Mechanics, 37(1): 147-155, 165(in Chinese with English abstract).
      Li, W. L., Xu, Q., Lu, H. Y., et al., 2019. Tracking the Deformation History of Large-Scale Rocky Landslides and Its Enlightenment. Geomatics and Information Science of Wuhan University, 44(7): 1043-1053 (in Chinese with English abstract).
      Liu, G. F., Feng, K., Yan, C. G., et al., 2023. Probabilistic Evaluation of Excavation Unloading Response of Rock Slope Considering the Uncertainty of Mechanical Parameters. Rock and Soil Mechanics, 44(7): 2115-2128(in Chinese with English abstract).
      Liu, H., Zhou, H. W., Liu, W. G., et al., 2010. Tomographic Velocity Model Building of the near Surface with Velocity-Inversion Interfaces: A Test Using the Yilmaz Model. Geophysics, 75(6): U39-U47. https://doi.org/10.1190/1.3502665
      Liu, G. F., Feng, K., Yan, C. G., et al., 2023. Probabilistic Evaluation of Excavation Unloading Response of Rock Slope Considering the Uncertainty of Mechanical Parameters. Rock and Soil Mechanics, 44(7): 2115-2128 (in Chinese with English abstract).
      Luo, Y. H., Xia, J. H., Liu, J. P., et al., 2007. Joint Inversion of High-Frequency Surface Waves with Fundamental and Higher Modes. Journal of Applied Geophysics, 62(4): 375-384. https://doi.org/10.1016/j.jappgeo.2007.02.004
      Luu, K., Noble, M., Gesret, A., et al., 2018. A Parallel Competitive Particle Swarm Optimization for Non-Linear First Arrival Traveltime Tomography and Uncertainty Quantification. Computers & Geosciences, 113: 81-93. https://doi.org/10.1016/j.cageo.2018.01.016
      Meza-Fajardo, K. C., Papageorgiou, A. S., 2008. A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis. Bulletin of the Seismological Society of America, 98(4): 1811-1836. https://doi.org/10.1785/0120070223
      Mi, B. B., Xia, J. H., Shen, C., etal., 2018. Dispersion Energy Analysis of Rayleigh and Love Waves in the Presence of Low-Velocity Layers in Near-Surface Seismic Surveys. Surveys in Geophysics, 39(2): 271-288. https://doi.org/10.1007/s10712-017-9440-4
      Nocedal, J., Wright, S. J., 2006. Quasi-Newton Methods. In: Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, New York.
      Pan, Y. D., Gao, L. L., Bohlen, T., 2018. Time-Domain Full-Waveform Inversion of Rayleigh and Love Waves in Presence of Free-Surface Topography. Journal of Applied Geophysics, 152: 77-85. https://doi.org/10.1016/j.jappgeo.2018.03.006
      Park, C. B., Miller, R. D., Xia, J. H., 1998. Imaging Dispersion Curves of Surface Waves on Multi-Channel Record. SEG Technical Program Expanded Abstracts, 1377-1380. https://doi.org/10.1190/1.1820161
      Park, C. B., Miller, R. D., Xia, J. H., 1999. Multichannel Analysis of Surface Waves. Geophysics, 64(3): 800-808. https://doi.org/10.1190/1.1444590
      Peng, M., Li, X. Y., Li, D. Q., et al., 2014. Slope Safety Evaluation by Integrating Multi-Source Monitoring Information. Structural Safety, 49: 65-74. https://doi.org/10.1016/j.strusafe.2013.08.007
      Sun, Y., Huang, J. S., Jin, W., et al., 2019. Bayesian Updating for Progressive Excavation of High Rock Slopes Using Multi-Type Monitoring Data. Engineering Geology, 252: 1-13. https://doi.org/10.1016/j.enggeo.2019.02.013
      Taillandier, C., Noble, M., Chauris, H., et al., 2009. First-Arrival Traveltime Tomography Based on the Adjoint-State Method. Geophysics, 74(6): WCB1-WCB10. https://doi.org/10.1190/1.3250266
      Wang, L. Q., Liang, Y., Wu, Q., et al., 2010. Estimation Method of Rockmass Strength Parameters Based on Elastic Wave Velocity Ratio. Coal Geology & Exploration, 38(6): 37-42(in Chinese with English abstract).
      Wang, X. R., Wang, H., Liang, R. Y., 2018. A Method for Slope Stability Analysis Considering Subsurface Stratigraphic Uncertainty. Landslides, 15(5): 925-936. https://doi.org/10.1007/s10346-017-0925-5
      Wang, Z. N., Sun, C. Y., Wu, D. S., 2022. Near-Surface Site Characterization Based on Joint Iterative Analysis of First-Arrival and Surface-Wave Data. Surveys in Geophysics, 44(2): 357-386. https://doi.org/10.1007/s10712-022-09747-8
      Xia, J. H., 2014. Estimation of Near-Surface Shear-Wave Velocities and Quality Factors Using Multichannel Analysis of Surface-Wave Methods. Journal of Applied Geophysics, 103: 140-151. https://doi.org/10.1016/j.jappgeo.2014.01.016
      Xia, J. H., Xu, Y. X., Luo, Y. H., et al., 2012. Advantages of Using Multichannel Analysis of Love Waves (MALW) to Estimate Near-Surface Shear-Wave Velocity. Surveys in Geophysics, 33(5): 841-860. https://doi.org/10.1007/s10712-012-9174-2
      Xie, H., Liu, L. B., 2015. Near-Surface Anisotropic Structure Characterization by Love Wave Inversion for Assessing Ground Conditions in Urban Areas. Journal of Earth Science, 26(6): 807-812. https://doi.org/10.1007/s12583-015-0619-7
      Xu, Y. X., Xia, J. H., Miller, R. D., 2007. Numerical Investigation of Implementation of Air-Earth Boundary by Acoustic-Elastic Boundary Approach. Geophysics, 72(5): SM147-SM153. https://doi.org/10.1190/1.2753831
      Yang, Z. Y., Yin, C. C., Nie, J. Y., et al., 2022. Probability Density Function Estimation of Geotechnical Parameters Considering the Three-Dimensional Spatial Variability Based on Multi-Source Site Investigation Data. Rock and Soil Mechanics, 43(6): 1571-1584(in Chinese with English abstract).
      Zhao, H. K., 2004. A Fast Sweeping Method for Eikonal Equations. Mathematics of Computation, 74(250): 603-627. https://doi.org/10.1090/s0025-5718-04-01678-3
      Zheng, Z. Y., Yu, H. B., Xu, H. Q., 2016. Numerical Analysis of Failure Modes and Stability of Soft and Hard Rock Interbedded Slope. Journal of Yangtze River Scientific Research Institute, 33(9): 102-106 (in Chinese with English abstract).
      窦杰, 向子林, 许强, 等, 2023. 机器学习在滑坡智能防灾减灾中的应用与发展趋势. 地球科学, 48(5): 1657-1674. doi: 10.3799/dqkx.2022.419
      蒋水华, 刘源, 章浩龙, 等, 2020. 先验概率分布及似然函数模型的选择对边坡可靠度评价影响的定量评估. 岩土力学, 41(9): 3087-3097.
      李静萍, 程勇刚, 李典庆, 等, 2016. 基于多重响应面法的空间变异土坡系统可靠度分析. 岩土力学, 37(1): 147-155, 165.
      李为乐, 许强, 陆会燕, 等, 2019. 大型岩质滑坡形变历史回溯及其启示. 武汉大学学报(信息科学版), 44(7): 1043-1053.
      刘国锋, 冯坤, 晏长根, 等, 2023. 考虑力学参数不确定性的岩质边坡开挖卸荷响应概率评价. 岩土力学, 44(7): 2115-2128.
      王亮清, 梁烨, 吴琼, 等, 2010. 基于弹性波速比的岩体强度参数估算方法. 煤田地质与勘探, 38(6): 37-42.
      杨智勇, 尹城川, 聂家岩, 等, 2022. 考虑场地多源勘测数据三维空间相关性的土体参数概率密度函数估计. 岩土力学, 43(6): 1571-1584.
      郑志勇, 余海兵, 徐海清, 2016. 软硬岩互层边坡的破坏模式及稳定性研究. 长江科学院院报, 33(9): 102-106.
    • 加载中
    图(16) / 表(5)
    计量
    • 文章访问数:  182
    • HTML全文浏览量:  13
    • PDF下载量:  9
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-12-29
    • 刊出日期:  2025-10-25

    目录

      /

      返回文章
      返回