Adams K.D., Wesnousky S.G., Bills B.G., 1999. Isostatic Rebound, Active Faulting, and Potential Geomorphic Effects in the Lake Lahontan Basin, Nevada and California. Geological Society of America Bulletin. 111(12): 1739-1756. doi: 10.1130/0016-7606(1999)111<1739:IRAFAP>2.3.CO;2. |
Armijo R., Tapponnier P., Han T., 1989. Late Cenozoic Right-Lateral Strike-Slip Faulting in Southern Tibet. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838. doi: 10/c6nvxb. |
Chen P.G., He X.H., Xu S.F., et al.,2023 Earthquake Relocation and Regional Stress Field around the Eastern Himalayan Syntaxis. Reviews of Geophysics and Planetary Physics, 54 (6), 667–683 (in Chinese with English abstract). |
Chung, L. 2014.Activity of the Eastern Karakoram‐Jiali Fault Zone in Tibet. Taiwan: National Taiwan University. 81-107(in Chinese). |
Gao Y., Wu Z.H., Zuo J.M., et al., 2024. Spatial-Temporal Activity of Quaternary Faults at Southern End of Nyalam-Coqen Rift, Southern Tibet. Earth Science, 49(7): 2552-2569. doi:10.3799/dqkx.2023.009 (in Chinese with English abstract). |
Grosset J., Mazzotti S., Vernant P., 2023. Glacial-Isostatic-Adjustment Strain Rate–Stress Paradox in the Western Alps and Impact on Active Faults and Seismicity. Solid Earth. 14(10): 1067-1081. doi: 10.5194/se-14-1067-2023. |
Hampel A., Hetzel R., 2006. Response of Normal Faults to Glacial‐Interglacial Fluctuations of Ice and Water Masses on Earth’s Surface. Journal of Geophysical Research: Solid Earth, 111(B6):1-13. doi: 10.1029/2005JB004124. |
He Z.H., Yang D.M., Wang T.W., 2006. Zircon SHRIMP U-Pb Age and Petrochemical and Geochemical Features of Mesozoic Muscovite Monzonitic Granite at Ningzhong, Tibet. Acta Petrologica Sinica, 22(3): 653-660 (in Chinese with English abstract). |
Li C.Y., Zhang P.Z., Zhang J.X., et al., 2007. Late-Quaternary Activity and Slip Rate of the Western Qinling Fault Zone at Huangxianggou. Quaternary Sciences, 27(1): 54-63 (in Chinese with English abstract). |
Li H.R., Bai L., Zhan H.L., 2021. Research Progress of Jiali Fault Activity. Reviews of Geophysics and Planetary Physics, 52(2): 182-193. doi: 10.19975/j.dqyxx.2020-019 (in Chinese with English abstract). |
Li Z.J., Wang Y., Liu L.J., et al., 2024. Lithospheric Deformation and Corresponding Deep Geodynamic Process of the SE Tibetan Plateau. Science China Earth Sciences, 1-23. doi:10.1007/s11430-024-1414-4 (in Chinese with English abstract). |
Liu S., Lan H., Strom A., et al., 2024. Spatial Segmentation of Jiali Fault’s Holocene Activity in the Southeastern Tibetan Plateau. npj Natural Hazards, 1(1):1-12. doi: 10.1038/s44304-024-00038-3. |
Liu Y.H., Zhang Y.F., Shan X.J., et al., 2019, Use of Seismic Waveforms and Insar Data for Determination of the Seismotectonics of the Mainling Ms6.9 Earthquake on Nov.18, 2017, Seismology and Geology, 34(3):896-907. doi:10.6038/pg2019CC0195(in Chinese with English abstract). |
Miao S.Q., Hu Z.K., Zhang L., et al., 2021. Geomorphic Analysis of Strike-Slip Faulting at the Top of Alluvial Fan: A Case Study at Ahebiedou River on the Eastern Margin of Tacheng Basin, Xinjiang, China. Seismology and Geology, 43(3): 488-503 (in Chinese with English abstract). |
Molnar P. and Lyon-Caent H., 1989. Fault Plane Solutions of Earthquakes and Active Tectonics of the Tibetan Plateau and Its Margins. Geophysical Journal International, 99(1): 123-153. doi: 10/ft9fc7. |
Molnar P. and Tapponnier P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. doi: 10.1029/JB083iB11p05361. |
Nichols G., 2009. Sedimentology and Stratigraphy. UK : Ladybird, 420-425. |
Ren J.W., Shen J., Cao Z.Q., et al., 2000. Quaternary Faulting of Jiali Fault, Southeast Tibetan Plateau. Seismology and Geology, 22(4): 344-350 (in Chinese with English abstract). |
Royden L.H., Burchfiel B.C., King R.W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. DOI: 10/cph6x9. |
Song J., 2010. Study on Current Movement Characteristics and Numerical Simulation of the Main Faults Around the Eastern Himalayan Syntaxis. Beijing: Institute of Geology, China Earthquake Administration.34-43 (in Chinese with English abstract). |
Song J., Tang F.T., Deng Z.H., et al., 2010. Late Quaternary Movement Characteristic of Jiali Fault in Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(6): 973-980(in Chinese with English abstract). |
Steffen R., Wu P., Steffen H., et al., 2014. On the Implementation of Faults in Finite-Element Glacial Isostatic Adjustment Models. Computers & Geosciences, 62: 150-159. doi: 10.1016/j.cageo.2013.06.012. |
Stewart I.S., Sauber J., Rose J., 2000. Glacio-Seismotectonics: Ice Sheets, Crustal Deformation and Seismicity. Quaternary Science Reviews, 19(14-15): 1367-1389. doi: 10.1016/S0277-3791(00)00094-9. |
Tang F.T., Song J., Cao Z.Q., et al., 2010. The Movement Characters of Main Faults Around Eastern Himalayan Syntaxis Revealed by the Latest GPS Data. Chinese Journal of Geophysics, 53(9): 2119-2128, doi: 10.3969/j.issn.0001-5733.2010.09.012 (in Chinese with English abstract). |
Tapponnier P. and Molnar P., 1976. Slip-Line Field Theory and Large-Scale Continental Tectonics. Nature, 264(5584): 319-324. doi: 10.1038/264319a0. |
Taylor M., and Yin A., 2009. Active Structures of the Himalayan-Tibetan Orogen and Their Relationships to Earthquake Distribution, Contemporary Strain Field, and Cenozoic Volcanism. Geosphere, 5(3): 199-214. doi: 10.1130/GES00217.1. |
Taylor M., Yin A., Ryerson F.J., et al., 2003. Conjugate Strike-Slip Faulting along the Bangong-Nujiang Suture Zone Accommodates Coeval East-West Extension and North-South Shortening in the Interior of the Tibetan Plateau. Tectonics, 22(4): 1-25. doi: 10/b7rktj. |
Wang E., and Burchfiel B.C., 1997. Interpretation of Cenozoic Tectonics in the Right-Lateral Accommodating Zone Between the Ailao Shan Shear Zone and the Eastern Himalayan Synaxis. International Geology Review, 39: 191-219. doi: 10.1080/00206819709465267 |
Wang H., Li K., Chen L., et al., 2020. Evidence for Holocene Activity on the Jiali Fault, an Active Block Boundary in the Southeastern Tibetan Plateau. Seismological Research Letters, 91(3): 1776-1780. doi: 10.1785/0220190371. |
Wang M., and Shen Z., 2020. Present‐Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 125(2): 1-22. doi: 10/ghp62v. |
Wang S.Y., Ai M., Wu C.Y., et al., 2018. Application of DEM Generation Technology from High-Resolution Satellite Image in Quantitative Active Tectonics Study: A Case Study of Fault Scarps in the Southern Margin of Kumishi Basin. Seismology and Geology, 40(5): 999-1017 (in Chinese with English abstract). |
Wang X.N., 2018. The Current Movement Characters of Main Fault Zones Surrounding the Namcha Barwa Syntaxis. Institute of Geophysics, Beijing: China Earthquake Administration.15-66 (in Chinese with English abstract). |
Wu Z.H., Long C.X., Fan T.Y., et al., 2015. The Arc Rotational-Shear Active Tectonic System on the Southeastern Margin of Tibetan Plateau and Its Dynamic Characteristics and Mechanism. Geological Bulletin of China, 34(1): 1-31 (in Chinese with English abstract). |
Xiang S.Y.M., Ma X.M., Ze R.Z.X., et al., 2007. Record of Apatite Fission Track of the Differential Uplift in Both Sides of Jiali Fault Belt Since Late Cenozoic. Earth Science, 32(5): 615-621 (in Chinese with English abstract). |
Xu Z.Q., Li H.B., Tang Z.M., et al., 2011. The Transformation of the Terrain Structures of the Tibet Plateau Through Large-Scale Strike-Slip Faults. Acta Petrologica Sinica, 27(11): 3157-3170 (in Chinese with English abstract). |
Zhang J.J., Ji J.Q., Zhong D.L., et al., 2003, Discussion on the Tectonic Pattern and Formation Process of the South Ngangla Ring of the Eastern Himalayas. Science in China (Series D),04:373-383(in Chinese). |
Zhao T.X., Su X.N., Zhu Q., et al., 2024, The Crustal Deformation Characteristics of Typical Tectonic Region in the Western Segment of the Jiali Fault Derived From GPS Observations. Science of Surveying and Mapping. 49(3): 27-35(in Chinese with English abstract). |
Zhao Y.F., Gong W.B., Jiang W., et al., 2021, Multi-Stage Characteristics and Tectonic Significance of the Jiali Fault in Guxiang-Tongmai Section, South Tibet. Geoscience, 35(1): 220-233(in Chinese with English abstract). |
Zhong N., Guo C.B., Huang X.L., et al., 2022, Late Quaternary Activity and Paleoseismic Records of the Middle South Section of the Jiali-Chayu Fault. Acta Geologica Sinica. 95(12): 3642-3659(in Chinese with English abstract). |
陈平光, 何骁慧, 徐树峰, 等, 2023. 喜马拉雅东构造结地震精定位及其区域应力场研究. 地球与行星物理论评(中英文),(6): 667-683. |
高扬, 吴中海, 左嘉梦, 等, 2024. 藏南聂拉木-措勤裂谷南段第四纪正断层作用的时空特征[J]. 地球科学, 49(7): 2552-2569. |
和钟铧, 杨德明, 王天武, 2006. 西藏嘉黎断裂带凯蒙蛇绿岩的年代学、地球化学特征及大地构造意义[J]. 岩石学报,(3): 653-660. |
李传友, 张培震, 张剑玺, 等, 2007. 西秦岭北缘断裂带黄香沟段晚第四纪活动表现与滑动速率[J]. 第四纪研究,(1): 54-63. |
李鸿儒, 白玲, 詹慧丽, 2021. 嘉黎断裂带活动性研究进展. 地球与行星物理论评, 52(2): 182-193. |
李长军, 王洋, 刘丽军, 等, 2024. 青藏高原东南缘岩石圈变形特征及其深部动力学过程[J]. 中国科学:地球科学: 1-26. |
刘云华,张迎峰,张国宏,等.2016年1月21日门源MS 6.4级地震InSAR同震形变及发震构造研究[J].地球物理学进展,2019,34(03):896-907. |
苗树清, 胡宗凯, 张玲, 等, 2021. 洪积扇顶部活动走滑断裂的断错地貌分析——以新疆塔城盆地东缘阿合别斗河冲洪积扇为例[J]. 地震地质, 43(3): 488-503. |
任金卫, 沈军, 曹忠权, 等, 2000. 西藏东南部嘉黎断裂新知[J]. 地震地质,(4): 344-350. |
宋键, 2010. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究. 北京:中国地震局地质研究所. 34-43. |
宋键, 唐方头, 邓志辉, 等, 2013. 青藏高原嘉黎断裂晚第四纪运动特征. 北京大学学报(自然科学版), 49(6): 973-980. doi: 10.13209/j.0479-8023.2013.129. |
唐方头, 宋键, 曹忠权, 等, 2010. 最新GPS数据揭示的东构造结周边主要断裂带的运动特征. 地球物理学报, 53(9): 2119-2128. |
汪思妤, 艾明, 吴传勇, 等, 2018. 高分辨率卫星影像提取DEM技术在活动构造定量研究中的应用——以库米什盆地南缘断裂陡坎为例. 地震地质, 40(5): 999-1017. |
王晓楠, 2018. 南迦巴瓦构造结周边地区主要断裂带现今运动特征. 北京:中国地震局地球物理研究所.15-66. |
吴中海, 龙长兴, 范桃园, 等, 2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制. 地质通报, 34(01): 1-31. |
向树元民, 马新民, 泽仁扎西, 等, 2007. 嘉黎断裂带两侧晚新生代差异隆升的磷灰石裂变径迹纪录. 地球科学(中国地质大学学报)(5): 615-621. |
许志琴, 李海兵, 唐哲民, 等, 2011. 大型走滑断裂对青藏高原地体构架的改造. 岩石学报, 27(11): 3157-3170. |
赵天祥, 苏小宁, 朱庆, 等, 2024. GPS观测的嘉黎断裂西段典型构造区域地壳变形特征. 测绘科学, 49(3): 27-35. |
赵远方, 公王斌, 江万, 等, 2021. 藏南嘉黎断裂古乡—通麦段多期活动特征及其构造意义. 现代地质, 35(1): 220-233. |
张进江,季建清,钟大赉,等.东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨.中国科学(D辑:地球科学),2003,(04):373-383. |
钟令和, 2014. 西藏地区喀喇昆仑-嘉黎断裂带东段活动性讨论. 国立台湾大学. 81-107. |
钟宁, 郭长宝, 黄小龙, 等, 2021. 嘉黎-察隅断裂带中南段晚第四纪活动性及其古地震记录. 地质学报, 95(12): 3642-3659. |