• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    2025年1月7日定日MS6.8级地震砂土液化特征及成因机制

    李智超 吴中海 韩帅 高扬 黄婷 凡福新 田婷婷 陆诗铭

    李智超, 吴中海, 韩帅, 高扬, 黄婷, 凡福新, 田婷婷, 陆诗铭, 2025. 2025年1月7日定日MS6.8级地震砂土液化特征及成因机制. 地球科学, 50(5): 1830-1841. doi: 10.3799/dqkx.2025.071
    引用本文: 李智超, 吴中海, 韩帅, 高扬, 黄婷, 凡福新, 田婷婷, 陆诗铭, 2025. 2025年1月7日定日MS6.8级地震砂土液化特征及成因机制. 地球科学, 50(5): 1830-1841. doi: 10.3799/dqkx.2025.071
    Li Zhichao, Wu Zhonghai, Han Shuai, Gao Yang, Huang Ting, Fan Fuxin, Tian Tingting, Lu Shiming, 2025. Characteristics and Mechanisms of Sand Liquefaction in January 7, 2025 Dingri MS6.8 Earthquake. Earth Science, 50(5): 1830-1841. doi: 10.3799/dqkx.2025.071
    Citation: Li Zhichao, Wu Zhonghai, Han Shuai, Gao Yang, Huang Ting, Fan Fuxin, Tian Tingting, Lu Shiming, 2025. Characteristics and Mechanisms of Sand Liquefaction in January 7, 2025 Dingri MS6.8 Earthquake. Earth Science, 50(5): 1830-1841. doi: 10.3799/dqkx.2025.071

    2025年1月7日定日MS6.8级地震砂土液化特征及成因机制

    doi: 10.3799/dqkx.2025.071
    基金项目: 

    国家自然科学基金项目 42472287

    国家自然科学基金项目 42402229

    国家自然科学基金项目 42202259

    详细信息
      作者简介:

      李智超(1998-),男,博士研究生,研究领域为活动构造与地震灾害.ORCID:0009-0002-3613-5495. E-mail:2226720589@qq.com

      通讯作者:

      吴中海,E-mail: wuzhonghai8848@foxmail.com

    • 中图分类号: P316

    Characteristics and Mechanisms of Sand Liquefaction in January 7, 2025 Dingri MS6.8 Earthquake

    • 摘要:

      砂土液化是震后灾害的主要形式之一,因此震后进行详细的砂土液化分布规律和发育特征的地表调查,具有重要意义.为了揭示定日地震产生的砂土液化特征,在震后针对定日地区进行了详细的遥感解译、野外调查,获得以下结果:(1)2025年1月7日定日MS6.8级地震中,南部朋曲河谷、中部丁木措湖边、到北部空摸措东南侧均发育有砂土液化.这可能指示了本次地震形成了一个砂土液化层.在本次地震中朋曲河两岸和丁木措东岸砂土液化导致的地面破坏以横向扩展为主;而在朋曲河床、丁木措东岸冲积扇边缘、空摸措东南侧地面破坏以液化沙丘为主.(2)基于野外观察和构造应力场分析,认为本次地震中的砂土液化变形存在一个动态的发育过程.在构造应力和重力作用下,形成南北向张裂缝,由于振动使砂土液化,部分液化体随南北向张裂缝喷出.由于坡度较为平缓,产生了横向扩展.表层块体发生碰撞和挤压,在部分位置由于强烈的挤压碰撞,产生了东西向的张裂缝,液化体随之涌出,发育近东西向线状液化沙丘.

       

    • 图  1  震区大地构造位置(a)及藏南裂谷分布(b)

      图1b引自Gao et al.,2024. COR. 措那‒沃卡裂谷;YGR. 亚东‒谷露裂谷;DXR.定结‒申扎裂谷;GTR. 岗嘎‒当惹雍措裂谷;NCR. 聂拉木‒措勤裂谷;ZTR. 仲巴‒塔若措裂谷;JGR. 江曲藏布‒改则裂谷;BWR. 普兰‒文布当桑裂谷;GCR. 格仁措断裂;BCR. 崩措断裂;KF. 喀喇昆仑断裂;XF. 鲜水河断裂;JF. 嘉黎断裂;ATF. 阿尔金断裂;MFT. 主前锋逆冲断裂

      Fig.  1.  Tectonic location of the seismic area (a) and distribution of the southern Tibetan rifts (b)

      图  2  日喀则及邻区地震分布

      Fig.  2.  Seismicity distribution of Shigatse and its neighboring areas

      图  3  定日地震地表变形特征示意及对应野外照片

      地形线数据来自无人机测量,剖面位置见图 5b;a.丁木措东岸伸展变形区照片;b. 丁木措东岸断层陡坎喷水点;c. 丁木措湖边挤压变形区照片

      Fig.  3.  Schematic diagram of surface deformation characteristics and field photos of the Dingri earthquake

      图  4  定日地震喷砂冒水分布(震中位置来自USGS)

      Fig.  4.  Distribution map of sand gushing and water spouting during the Dingri earthquake (the epicenter location is from the U.S. Geological Survey)

      图  5  震后遥感影像(数据来自91卫图:https://www.91weitu.com/

      a.砂土液化分布;b.定木措东南岸砂土液化分布;c.朋曲北岸砂土液化分布;d.朋曲河震后液化影像

      Fig.  5.  Post-earthquake remote sensing images (data from 91 Weitu: https://www91weitu.com/)

      图  6  定日地震中液化沙丘特征

      a.嘎定线东侧与南北向液化沙丘;b.噶定线西侧河谷中发育东西向线状液化沙丘;c.丁木措湖东北岸东西向液化沙丘;d.嘎定线西侧河谷中东西向裂缝与南北向裂缝发育,伴随有砂火山;e.噶定线河谷中发育多层冰

      Fig.  6.  Characteristics of liquefaction sand dunes in the Dingri earthquake

      图  7  定日地震中砂土液化对基础设施的破坏

      a.长所线被液化沙丘覆盖;b.路面被错断;c.路面被东西向裂缝切穿,伴随液化沙丘;d.措果湖东侧坝体开裂

      Fig.  7.  Damage to infrastructure caused by sand liquefaction in the Dingri earthquake

      图  8  区域应力场示意性图解

      Fig.  8.  Schematic diagram of the regional stress field

      图  9  定日地震中液化沙丘发育模式

      a.震前初始状态横截面示意(据Youd,2003);b.震后变形横截面(据Youd,2003);c.震前丁木措东岸初始状态示意;d.震前丁木措东岸初始状态示意

      Fig.  9.  Developmental patterns of liquefaction-induced sand dunes during the Dingri earthquake

    • Ambraseys, N., Sarma, S., 1969. Liquefaction of Soils Induced by Earthquakes. Bulletin of the Seismological Society of America, 59(2): 651-664. https://doi.org/10.1785/bssa0590020651
      Dobry, R., 1989. Some Basic Aspects of Soil Liquefaction during Earthquakes. Annals of the New York Academy of Sciences, 558(1): 172-182. https://doi.org/10.1111/j.1749-6632.1989.tb22567.x
      Gao, Y., 2024. Temporal and Spatial Characteristics of Quaternary near North-South Normal Faulting in the Dingjie-Jilong Area, Southern Tibet (Dissertation). Peking University, Beijing, 23-40 (in Chinese with English abstract).
      Gao, Y., Li, M., Wu, Z. H., et al., 2024. Late Quaternary Normal Faulting along the Western Boundary Fault of Peiku Co Graben in Southern Nyalam-Coqen Rift: Implications for Extensional Deformation in Southern Tibet and Seismic Hazard. Journal of Structural Geology, 181: 105087. https://doi.org/10.1016/j.jsg.2024.105087
      Housner, G. W., 1958. The Mechanism of Sandblows. Bulletin of the Seismological Society of America, 48(2): 155-161. https://doi.org/10.1785/bssa0480020155
      Ishihara, K., 1993. Liquefaction and Flow Failure during Earthquakes. Géotechnique, 43(3): 351-451. https://doi.org/10.1680/geot.1993.43.3.351
      Iwasaki, T., 1986. Soil Liquefaction Studies in Japan: State-of-the-Art. Soil Dynamics and Earthquake Engineering, 5(1): 2-68. https://doi.org/10.1016/0267-7261(86)90024-2
      Jin, W. X., 2019. Risk Assessment of Debris Flow in Dacanggou Dingri County Tibet (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Li, J. Y., Wang, W., Wang, H. Y., et al., 2024. Experimental Study on the Influence of Earthquake Sequences on the Conditions of Sand Liquefaction Sites. Journal of Natural Disasters, 33(3): 217-225 (in Chinese with English abstract).
      Liu, C. Z., Liang, K., Wang, X. Y., 2024. Cause Analysis of Disaster Chain of Soil Flow in Dashagou Basin in Jishishan MS6.2 Magnitude Earthquake Area. Geological Review, 70(3): 960-974 (in Chinese with English abstract).
      Liu-Zeng, J., Wang, P., Zhang, Z. H., et al., 2017. Liquefaction in Western Sichuan Basin during the 2008 Mw 7.9 Wenchuan Earthquake, China. Tectonophysics, 694: 214-238. https://doi.org/10.1016/j.tecto.2016.11.001
      Molina-Gómez, F., Viana da Fonseca, A., Ferreira, C., et al., 2024. Insights into the Assessment and Interpretation of Earthquake-Induced Liquefaction in Sands under Different Degrees of Saturation. Earth-Science Reviews, 258: 104925. https://doi.org/10.1016/j.earscirev.2024.104925
      Seed, H. B., 1968. The Fourth Terzaghi Lecture: Landslides during Earthquakes Due to Liquefaction. Journal of the Soil Mechanics and Foundations Division, 94(5): 1053-1122. https://doi.org/10.1061/jsfeaq.0001182
      Tian, T. T., Wu, Z. H., 2023. Recent Prehistoric Major Earthquake Event of Dingmucuo Normal Fault in the Southern Segment of Shenzha-Dingjie Rift and Its Seismic Geological Significance. Geological Review, 69(S1): 53-55 (in Chinese with English abstract).
      Tie, Y. B., Gao, Y. J., Zhang, X. Z., et al., 2025. Study on the Development Laws and Mitigation of Geological Hazards in Dingri Ms 6.8 Earthquake Region, Xizang Autonomous Region. Sedimentary Geology and Tethyan Geology, 45(1): 212-224 (in Chinese with English abstract).
      Wu, Z. H., Ye, P. S., Wang, C. M., et al., 2015. The Relics, Ages and Significance of Prehistoric Large Earthquakes in the Angang Graben in South Tibet. Earth Science, 40(10): 1621-1642 (in Chinese with English abstract).
      Xu, Y. R., Dou, A. X., Li, Z. M., et al., 2024. Rapid Assessment of Coseismic Hazards Induced by Jishishan MS6.2 Earthquake on December 18, 2023 in Gansu Province, Northwest China. Earthquake, 44(1): 209-215 (in Chinese with English abstract).
      Yin, R. Y., Liu, Y. M., Li, Y. L., et al., 2005. The Relation between Earthquake Liquefaction and Landforms in Tangshan Region. Research of Soil and Water Conservation, 12(4): 110-112 (in Chinese with English abstract).
      Youd, T. L., 1973. Liquefaction, Flow, and Associated Ground Failure. U.S. Geological Survey Circular, Alaska.
      Youd, T. L., 2003. 70 Liquefaction Mechanisms and Induced Ground Failure. International Geophysics, 81(3): 1159-1173.
      Zhong, J. H., Ni, L. T., Sun, N. L., et al., 2023. An Unusual Widespread Liquefaction Caused by a Magnitude 5.1 Earthquake—Activation Effect of Salt Dissolution on Sand Gravel Liquefaction and Its Mechanism. Geological Review, 69(4): 1543-1563 (in Chinese with English abstract).
      高扬, 2024. 藏南定结‒吉隆地区第四纪近南北向正断层作用的时空特征(博士学位论文). 北京: 北京大学, 23-40.
      金文祥, 2019. 西藏定日县达仓沟泥石流危险性评价(硕士学位论文). 成都: 成都理工大学.
      李金宇, 王伟, 王浩宇, 等, 2024. 地震序列对砂土液化场地条件影响的试验研究. 自然灾害学报, 33(3): 217-225.
      刘传正, 梁宽, 王秀英, 2024. 积石山Ms6.2级地震区大沙沟泥土流灾害链成因分析. 地质论评, 70(3): 960-974.
      田婷婷, 吴中海, 2023. 西藏申扎‒定结裂谷南段丁木措正断层的最新史前大地震事件及其地震地质意义. 地质论评, 69(S1): 53-55.
      铁永波, 高云建, 张宪政, 等, 2025. 西藏定日县Ms6.8级地震区地质灾害发育规律与减灾对策研究. 沉积与特提斯地质, 45(1): 212-224.
      吴中海, 叶培盛, 王成敏, 等, 2015. 藏南安岗地堑的史前大地震遗迹、年龄及其地质意义. 地球科学, 40(10): 1621-1642. doi: 10.3799/dqkx.2015.147
      徐岳仁, 窦爱霞, 李智敏, 等, 2024.2023年12月18日甘肃积石山MS6.2地震触发次生灾害快速评估. 地震, 44(1): 209-215.
      尹荣一, 刘运明, 李有利, 等, 2005. 唐山地区地震液化与地貌之间的关系. 水土保持研究, 12(4): 110-112.
      钟建华, 倪良田, 孙宁亮, 等, 2023. M5.1地震引起的一个不寻常的砂砾层大范围液化: 盐溶的液化活化效应及其机理. 地质论评, 69(4): 1543-1563.
    • 加载中
    图(9)
    计量
    • 文章访问数:  63
    • HTML全文浏览量:  21
    • PDF下载量:  12
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-02-05
    • 刊出日期:  2025-05-25

    目录

      /

      返回文章
      返回