The Stress Triggering of the 2025 Dingri, Xizang, China MW6.8 Earthquake by the 2015 Nepal MW7.8 and MW7.2 Earthquakes
-
摘要:
本研究主要基于2015年尼泊尔7.8级和7.2级地震的破裂模型及分层粘弹性地壳速度模型,分析和讨论了这两次地震对2025年定日6.8级地震及其发震断层的应力触发,研究结果表明:(1)2015年尼泊尔7.8级地震在定日地震震源位置产生库仑应力变化为0.003 9 MPa,改变显著大于固体潮产生的应力调制作用,说明其对定日地震的发生起到了促进作用.2015年尼泊尔7.8级和7.2级两次7.0级以上地震在定日地震震源位置产生的库仑应力变化为0.010 4 MPa,已经超过地震应力触发的阈值0.01 MPa,这表明两次地震的联合作用显著地促进了此次定日地震的发生.(2)两次7级以上地震在定日地震发震时,在其发震断层面上库仑应力变化均为正,且平均库仑应力变化为8 837 Pa,尤其是定日地震震源处的库仑应力变化大于0.01 MPa的应力触发阈值,这表明两次地震有效提升了定日地震发震断层面上的应力水平,对定日地震震源位置有显著的触发作用.(3)综合考虑2015年两次7级以上地震,以及2015年和2020年两次定日5.9级地震,得到2015年定日地震对此次定日地震有抑制作用,2020年定日5.9级地震对此次定日地震有促进作用,这四次地震共同产生的库仑应力变化为0.01 MPa,对2025年定日地震起到触发的作用.本研究结果为了解尼泊尔地震对西藏定日地震所在断层的地震危险性分析提供了基础资料和数据,对印度板块和欧亚板块交界的地震活动性和青藏高原构造演化具有一定意义.
Abstract:The stress triggering of the 2015 Nepal MW7.8 and MW7.2 earthquakes on the 2025 Dingri MW6.8 earthquake and its seismogenic fault are analyzed and discussed in this study, based on the rupture models of the two Nepal earthquakes and a layered viscoelastic crustal velocity model. The results show follows: (1) The 2015 Nepal MW7.8 earthquake caused a Coulomb stress change of 0.003 9 MPa at the source location of the Dingri earthquake, which was significantly greater than the stress modulation caused by solid tides, indicating that it played a promoting role in the occurrence of the Dingri earthquake. The combined Coulomb stress changes from the 2015 Nepal MW7.8 and MW7.2 earthquakes at the source location of the Dingri earthquake amounted to 0.010 4 MPa, exceeding the seismic stress triggering threshold of 0.01 MPa, suggesting that the joint effect of the two earthquakes significantly promoted the occurrence of the Dingri earthquake. (2) During the Dingri earthquake, both the MW7+ earthquakes caused positive Coulomb stress changes on its seismogenic fault plane, with an average Coulomb stress change of 8 837 Pa. Especially at the source of the Dingri earthquake, the Coulomb stress change exceeded the stress triggering threshold of 0.01 MPa, indicating that the two earthquakes effectively increased the stress level on the seismogenic fault plane of the Dingri earthquake, having a significant triggering effect on the source location of the Dingri earthquake. (3) Considering the two MW7+ earthquakes in 2015, along with the two MS5.9 earthquakes in Dingri in 2015 and 2020, it was found that the 2015 Dingri earthquake had a suppressing effect on the Dingri earthquake, while the 2020 MS5.9 Dingri earthquake had a promoting effect. The combined Coulomb stress changes from these four earthquakes amounted to 0.01 MPa, which triggered the Dingri earthquake. The results of this study provide basic data and information for understanding the seismic hazard analysis of the fault where the Dingri earthquake occurred, with significance for the seismic activity at the boundary of the Indian Plate and the Eurasian Plate, as well as the tectonic evolution of the Tibetan Plateau.
-
Key words:
- Nepal /
- Dingri, Xizang, China /
- earthquake /
- rupture model /
- Coulomb stress change /
- stress triggering /
- tectonics
-
图 9 2015年尼泊尔7.8级和7.2级地震产生的同震及震后库仑应力分布
尼泊尔7.8级地震的破裂模型取自Yagi and Okuwaki(2015),7.2级地震的破裂模型取自USGS,接收断层参数的走向、倾角和滑动角分别为:184.37°、47.67°和-78.10°
Fig. 9. Distribution of the coseismic and postseismic Coulomb stress changes caused by the 2015 Nepal MW7.8 and MW7.2 earthquakes
表 1 岩石圈分层速度模型
Table 1. Lithospheric layered velocity model
序号 深度(km) P波速度(km·s‒1) S波速度(km·s‒1) 密度(kg·m‒3) 粘滞系数(Pa·s) 1 0~34.49 6.00 3.52 2 720 0 2 34.49~51.14 6.30 3.68 2 780 $ 1\times {10}^{20} $ 3 51.14~69.18 6.60 3.82 2 850 $ 1\times {10}^{20} $ 4 > 69.18 8.36 4.63 3 420 1$ \times {10}^{20} $ -
Chen, Y. T., Lin, B. H., Lin, Z. Y., et al., 1975. The Focal Mechanism of the 1966 Hsingtai Earthquake as Inferred from the Ground Deformation Observations. Chinese Journal of Geophysics, 18(3): 164-182 (in Chinese with English abstract). Chinnery, M. A., 1963. The Stress Changes That Accompany Strike-Slip Faulting. The Bulletin of the Seismological Society of America, 53(5): 921-932. https://doi.org/10.1785/BSSA0530050921 Fang, J. L., Zhao, B., Yu, J. S., et al., 2022. Research on the Seismic Source Model and Static Stress Triggering of the 2015 Dingri MW5.7 Earthquake. Journal of Geodesy and Geodynamics, 42(9): 964-970 (in Chinese with English abstract). Freed, A. M., Lin, J., 2001. Delayed Triggering of the 1999 Hector Mine Earthquake by Viscoelastic Stress Transfer. Nature, 411(6834): 180-183. https://doi.org/10.1038/35075548 Gao, Y., Wu, Z. H., Zuo, J. M., et al., 2024. Spatial-Temporal Activity of Quaternary Faults at Southern End of Nyalam-Coqen Rift, Southern Tibet. Earth Science, 49(7): 2552-2569 (in Chinese with English abstract). Hardebeck, J. L., Nazareth, J. J., Hauksson, E., 1998. The Static Stress Change Triggering Model: Constraints from Two Southern California Aftershock Sequences. Journal of Geophysical Research: Solid Earth, 103(B10): 24427-24437. https://doi.org/10.1029/98JB00573 Harris, R. A., 1998. Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard. Journal of Geophysical Research: Solid Earth, 103(B10): 24347-24358. https://doi.org/10.1029/98JB01576 Jin, Z. T., Cui, H. W., Liu, J. L., et al., 2023. Impact of Two Strong Earthquakes in Turkey in 2023 on the Static Stress in the Surrounding Areas of the Epicenters. Journal of Institute of Disaster Prevention, 25(2): 1-12 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-8047.2023.02.001 Jin, Z. T., Wan, Y. G., Liu, Z. C., et al., 2019. The Static Stress Triggering Influences of the 2017 MS7.0 Jiuzhaigou Earthquake on Neighboring Areas. Chinese Journal of Geophysics, 62(4): 1282-1299 (in Chinese with English abstract). Jin, Z. T., Wan, Y. G., Wang, F. C., et al., 2024. Research on the Fault Geometry and Slip Characteristics of Lushan Earthquake Sequence in 2013 and 2022. Chinese Journal of Geophysics, 67(6): 2202-2219 (in Chinese with English abstract). Jónsson, S., Segall, P., Pedersen, R., et al., 2003. Post-Earthquake Ground Movements Correlated to Pore-Pressure Transients. Nature, 424(6945): 179-183. https://doi.org/10.1038/nature01776 King, G. C. P., Stein, R. S., Lin, J., 1994. Static Stress Changes and the Triggering of Earthquakes. Bulletin of the Seismological Society of America, 84(3): 935-953. https://doi.org/10.1785/BSSA0840030935 Laske, G., Masters, G., Ma, Z. T., et al., 2013. Update on CRUST1.0-A1-Degree Global Model of Earth's Crust. European Geosciences Union General Assembly 2013, Vienna. Li, Q., Li, C. T., Zhao, B., et al., 2024. Estimated Seismic Source Parameters for 2020 Dingri Mw 5.6 Earthquake in Xizang and Study on the Stress Triggering. 67(1): 172-188 (in Chinese with English abstract). Li, Y. J., Chen, L. W., Lu, Y. Z., et al., 2013. Numerical Simulation on Influences of Wenchuan Earthquake on the Stability of Faults in the Neighborhood. Earth Science, 38(2): 398-410 (in Chinese with English abstract). Liu, C., Dong, P. Y., Zhu, B. J., et al., 2018. Stress Shadow on the Southwest Portion of the Longmen Shan Fault Impacted the 2008 Wenchuan Earthquake Rupture. Journal of Geophysical Research: Solid Earth, 123(11): 9963-9981. https://doi.org/10.1029/2018JB015633 Okada, Y., 1992. Internal Deformation Due to Shear and Tensile Faults in a Half-Space. The Bulletin of the Seismological Society of America, 82(2): 1018-1040. https://doi.org/10.1785/BSSA0820021018 Rydelek, P. A., Sacks, I. S., 1990. Asthenospheric Viscosity and Stress Diffusion: A Mechanism to Explain Correlated Earthquakes and Surface Deformations in Ne Japan. Geophysical Journal International, 100(1): 39-58. https://doi.org/10.1111/j.1365-246X.1990.tb04566.x Shan, B., Zheng, Y., Liu, C. L., et al., 2017. Coseismic Coulomb Failure Stress Changes Caused by the 2017 M7.0 Jiuzhaigou Earthquake, and Its Relationship with the 2008 Wenchuan Earthquake. Scientia Sinica (Terrae), 47(11): 1329-1338 (in Chinese). doi: 10.1360/N072017-00268 Shen, Z. K., Wan, Y. G., Gan, W. J., et al., 2003. Viscoelastic Triggering among Large Earthquakes along the East Kunlun Fault System. Chinese Journal of Geophysics, 46(6): 786-795 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2003.06.010 Sheng, S. Z., Wan, Y. G., Jiang, C. S., et al., 2015. Preliminary Study on the Static Stress Triggering Effects on China Mainland with the 2015 Nepal MS8.1 Earthquake. Chinese Journal of Geophysics, 58(5): 1834-1842 (in Chinese with English abstract). Sheng, S. Z., Wang, Q. R., Li, Z. Y., et al., 2025. Investigation of the Seismogenic Structure of the 2025 Dingri MS6.8 Earthquake in Xizang Based on the Tectonic Stress Field Perspective. Seismology and Geology, 47(1): 49-63 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.004 Shi, Y. L., Cao, J. L., 2008. Effective Viscosity of China Continental Lithosphere. Earth Science Frontiers, 15(3): 82-95 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60064-0 Stein, R. S., 1999. The Role of Stress Transfer in Earthquake Occurrence. Nature, 402(6762): 605-609. https://doi.org/10.1038/45144 Wan, Y. G., 2016. Introduction to Seismology. Science Press, Beijing, 195-253 (in Chinese). Wan, Y. G., 2019. Determination of Center of Several Focal Mechanisms of the Same Earthquake. Chinese Journal of Geophysics, 62(12): 4718-4728 (in Chinese with English abstract). doi: 10.6038/cjg2019M0553 Wan, Y. G., Sheng, S. Z., Li, X., et al., 2015. Stress Influence of the 2015 Nepal Earthquake Sequence on Chinese Mainland. Chinese Journal of Geophysics, 58(11): 4277-4286 (in Chinese with English abstract). doi: 10.6038/cjg20151132 Wan, Y. G., Wu, Z. L., Zhou, G. W., 2003. Small Stress Change Triggering a Big Earthquake: A Test of the Critical Point Hypothesis for Earthquakes. Chinese Physics Letters, 20(9): 1452-1455. doi: 10.1088/0256-307X/20/9/312 Wan, Y. G., Wu, Z. L., Zhou, G. W., et al., 2000. "Stress Triggering" between Different Rupture Events in Several Complex Earthquakes. Acta Seismologica Sinica, 22(6): 568-576 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-3782.2000.06.002 Wang, R. J., Lorenzo-Martín, F., Roth, F., 2006. PSGRN/PSCMP—A New Code for Calculating Co- and Post-Seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-Gravitational Dislocation Theory. Computers & Geosciences, 32(4): 527-541. https://doi.org/10.1016/j.cageo.2005.08.006 Wessel, P., Smith, W. H. F., 1998. New, Improved Version of Generic Mapping Tools Released. Eos, Transactions American Geophysical Union, 79(47): 579. https://doi.org/10.1029/98EO00426 Xiao, Y., Shan, B., Liu, C. L., et al., 2024. Stress Triggering and Seismic Hazard Assessment of the 2022 Lushan MS6.1 Earthquake. Earth Science, 49(8): 2979-2991 (in Chinese with English abstract). Yagi, Y., Okuwaki, R., 2015. Integrated Seismic Source Model of the 2015 Gorkha, Nepal, Earthquake. Geophysical Research Letters, 42(15): 6229-6235. https://doi.org/10.1002/2015GL064995 Yang, Q., Dang, Y. M., 2010. A Research about Effective Viscosity of Tibetan Plateau Lithosphere Viscoelastic Ductile Layer Using GPS Velocity Fields. Acta Geodaetica et Cartographica Sinica, 39(5): 497-502 (in Chinese with English abstract). Yang, T., Wang, S. G., Fang, L. H., et al., 2025. Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau. Earth Science, 50(5): 1721-1732 (in Chinese with English abstract). Zhang, X. T., Jiang, X. H., Xue, Y., et al., 2020. Summary of the Dingri MS5.9 Earthquake in Tibet on March 20, 2020. Seismological and Geomagnetic Observation and Research, 41(4): 193-203 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-3246.2020.04.024 Zhou, J. C., Sun, H. P., Xu, J. Q., et al., 2013. Tidal Strain and Tidal Stress in the Earth's Interior. Chinese Journal of Geophysics, 56(11): 3779-3787 (in Chinese with English abstract). doi: 10.6038/cjg20131119 陈运泰, 林邦慧, 林中洋, 等, 1975. 根据地面形变的观测研究1966年邢台地震的震源过程. 地球物理学报, 18(3): 164-182. 方金玲, 赵斌, 余建胜, 等, 2022. 2015年西藏定日MW5.7地震震源参数估计和静态应力触发研究. 大地测量与地球动力学, 42(9): 964-970. 高扬, 吴中海, 左嘉梦, 等, 2024. 藏南聂拉木‒措勤裂谷南段第四纪正断层作用的时空特征. 地球科学, 49(7): 2552-2569. 靳志同, 崔华伟, 刘佳璐, 等, 2023. 2023年土耳其两次强震对周围地区的静态应力影响. 防灾科技学院学报, 25(2): 1-12. doi: 10.3969/j.issn.1673-8047.2023.02.001 靳志同, 万永革, 刘兆才, 等, 2019. 2017年九寨沟MS7.0地震对周围地区的静态应力影响. 地球物理学报, 62(4): 1282-1299. 靳志同, 万永革, 王福昌, 等, 2024. 2013年和2022年芦山地震序列断层面花状构造及其滑动特性研究. 地球物理学报, 67(6): 2102-2119. 李琦, 李承涛, 赵斌, 等, 2024. 2020年西藏定日MW5.6地震震源参数估计和应力触发研究. 地球物理学报, 67(1): 172-188. 李玉江, 陈连旺, 陆远忠, 等, 2013. 汶川地震的发生对周围断层稳定性影响的数值模拟. 地球科学, 38(2): 398-410. doi: 10.3799/dqkx.2013.039 单斌, 郑勇, 刘成利, 等, 2017. 2017年M7.0级九寨沟地震同震库仑应力变化及其与2008年汶川地震的关系. 中国科学: 地球科学, 47(11): 1329-1338. 沈正康, 万永革, 甘卫军, 等, 2003. 东昆仑活动断裂带大地震之间的黏弹性应力触发研究. 地球物理学报, 46(6): 786-795. doi: 10.3321/j.issn:0001-5733.2003.06.010 盛书中, 万永革, 蒋长胜, 等, 2015. 2015年尼泊尔MS 8.1强震对中国大陆静态应力触发影响的初探. 地球物理学报, 58(5): 1834-1842. 盛书中, 王倩茹, 李振月, 等, 2025. 基于构造应力场研究2025年西藏定日6.8级地震的发震构造. 地震地质, 47(1): 49-63. doi: 10.3969/j.issn.0253-4967.2025.01.004 石耀霖, 曹建玲, 2008. 中国大陆岩石圈等效粘滞系数的计算和讨论. 地学前缘, 15(3): 82-95. doi: 10.3321/j.issn:1005-2321.2008.03.006 万永革, 2016. 地震学导论. 北京: 科学出版社, 195-253. 万永革, 2019. 同一地震多个震源机制中心解的确定. 地球物理学报, 62(12): 4718-4728. doi: 10.6038/cjg2019M0553 万永革, 盛书中, 李祥, 等, 2015. 2015年尼泊尔强震序列对中国大陆的应力影响. 地球物理学报, 58(11): 4277-4286. doi: 10.6038/cjg20151132 万永革, 吴忠良, 周公威, 等, 2000. 几次复杂地震中不同破裂事件之间的"应力触发"问题. 地震学报, 22(6): 568-576. doi: 10.3321/j.issn:0253-3782.2000.06.002 肖阳, 单斌, 刘成利, 等, 2024. 2022年芦山MS6.1地震应力触发及地震危险性分析. 地球科学, 49(8): 2979-2991. 杨强, 党亚民, 2010. 利用GPS速度场估算青藏高原地壳韧性层等效粘滞系数分布的研究. 测绘学报, 39(5): 497-502. 杨婷, 王世广, 房立华, 等, 2025. 2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造. 地球科学, 50(5): 1721-1732. 张小涛, 姜祥华, 薛艳, 等, 2020. 2020年3月20日西藏定日MS5.9地震总结. 地震地磁观测与研究, 41(4): 193-203. doi: 10.3969/j.issn.1003-3246.2020.04.024 周江存, 孙和平, 徐建桥, 等, 2013. 地球内部应变与应力固体潮. 地球物理学报, 56(11): 3779-3787. doi: 10.6038/cjg20131119 -