• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    融合谱元法与人工神经网络的漾濞地震宽频带地震动模拟

    李春果 王宏伟 温瑞智 任叶飞 强生银

    李春果, 王宏伟, 温瑞智, 任叶飞, 强生银, 2026. 融合谱元法与人工神经网络的漾濞地震宽频带地震动模拟. 地球科学, 51(1): 30-42. doi: 10.3799/dqkx.2025.085
    引用本文: 李春果, 王宏伟, 温瑞智, 任叶飞, 强生银, 2026. 融合谱元法与人工神经网络的漾濞地震宽频带地震动模拟. 地球科学, 51(1): 30-42. doi: 10.3799/dqkx.2025.085
    Li Chunguo, Wang Hongwei, Wen Ruizhi, Ren Yefei, Qiang Shengyin, 2026. Simulation of Broadband Ground Motion in Yangbi Earthquake by Integrating Spectral Element Method and Artificial Neural Network. Earth Science, 51(1): 30-42. doi: 10.3799/dqkx.2025.085
    Citation: Li Chunguo, Wang Hongwei, Wen Ruizhi, Ren Yefei, Qiang Shengyin, 2026. Simulation of Broadband Ground Motion in Yangbi Earthquake by Integrating Spectral Element Method and Artificial Neural Network. Earth Science, 51(1): 30-42. doi: 10.3799/dqkx.2025.085

    融合谱元法与人工神经网络的漾濞地震宽频带地震动模拟

    doi: 10.3799/dqkx.2025.085
    基金项目: 

    国家自然科学基金地震联合基金项目 U2239252

    详细信息
      作者简介:

      李春果(1995-)女,博士,主要从事地震动数值模拟相关研究.ORCID:0000-0003-2066-1888. E-mail:lcggzl007@163.com

      通讯作者:

      温瑞智,ORCID: 0000-0001-6381-9425. E-mail: ruizhi@iem.ac.cn

    • 中图分类号: P315

    Simulation of Broadband Ground Motion in Yangbi Earthquake by Integrating Spectral Element Method and Artificial Neural Network

    • 摘要: 宽频带地震动模拟是工程地震中的关键科学问题,针对现有方法在低频物理建模与高频随机成分的结合中存在频谱不匹配和能量相位冲突的问题,提出一种基于谱元法(SEM)的模拟与基于人工神经网络(ANN)的宽频带地震动模拟方法.首先建立中国强震动记录Flatfile训练短周期反应谱的非线性映射关系,其次采用谱元法模拟低频地震动,并通过调幅因子缩放高频随机成分,最终根据能量校准获得宽频带地震动时程.以漾濞MS6.4地震为例,利用反演得到的有限断层模型和精细三维速度结构模型,模拟得到起伏地表观测点的低频地震动时程,使用以上方法合成对应的宽频带模拟时程.宽频带模拟加速度时程、峰值地震动与观测记录均具有较好的一致性,可应用于区域地震危险性评估.

       

    • 图  1  选取的CNF记录震中分布以及震级‒距离分布

      Fig.  1.  Epicenter locations of the selected strong motion flatfile of China and distribution between magnitude vs. rupture distance

      图  2  ANN神经元结构示意图

      Fig.  2.  Sketch of ANN neuronal structures

      图  3  东西向分量两个版本的ANN模型在归一化周期下的性能检验

      SAANN代表ANN模型预测得到的反应谱幅值,SAObs表示训练前数据库内的观测值.训练集、验证集和测试集使用不同灰度的颜色表示

      Fig.  3.  Two of ANN performance in predicting the EW component of the CNF, in which SAANN denotes the response spectral ordinates predicted by the ANN and SAObs is the observed ones

      图  4  宽频带、低频数值模拟和高频随机方法得到的加速度反应谱(a)和傅里叶幅值谱对比(b)

      Fig.  4.  Comparison of spectral (a) and Fourier amplitude of acceleration (b) from broad-band, low frequency simulation, and high-frequency stochastic methods

      图  5  宽频带、低频数值模拟和高频随机方法加速度、速度和位移时程的对比

      Fig.  5.  Comparison of time histories of acceleration, velocity, and displacement from broad-band, low-frequency simulation, and high-frequency stochastic methods

      图  6  漾濞地震模拟区域震中及区域内台站的位置分布和计算模型示意图

      IDP.印度板块;SYRB.四川‒云南菱形块体;SCB.四川盆地;YA.扬子块体;F1.澜沧江断层;F2.维西‒乔后‒巍山断层;F3.红河断层

      Fig.  6.  Epicenters and stations of the Yangbi earthquake series and the computational region

      图  7  有限断层的(a)滑动量、(c)τ和(e)Trup分布,以及断层的(b)矩函数MF,(d)矩率函数MRF和(f)MRFFAS

      虚线对应的值为τ的倒数

      Fig.  7.  Distribution of (a) slip, (c) randomized rise time (τ) and (e) rupture time (Trup) on the fault plane, and (b) the total Moment Function (MF) on the fault plane, (d) the corresponding Moment Rate Function (MRF) and (f) the Fourier amplitude spectrum of the MRF

      图  8  六个台站模拟的位移、速度、加速度时程和速度时程的FAS与观测记录的对比

      Fig.  8.  Comparison of simulated displacement, velocity, acceleration and Fourier amplitude spectra (FAS) of velocity and recordings at six stations

      图  9  模拟记录PGAPGVPGDSA3s随断层投影距的衰减

      Fig.  9.  Comparison of simulated and observed PGA, PGV, PGD and spectral acceleration SA at 3 s in natural log units plotted as a function of RJB for the GMH component and the UD component

      图  10  低频模拟地震烈度和宽频带地震烈度分布

      Fig.  10.  Distribution of intensity for low-frequency simulation and broadband simulation

      表  1  速度结构模型

      Table  1.   Velocity structure model

      层数 密度
      (t/m3)
      VP (m/s) QP VS(m/s) QS 厚度H (m) 谱自由度
      1 1.74×VP0.25 1 330+42×Z0.5 $ \frac{{V}_{\mathrm{P}}}{10} $ 700+42×Z0.5 $ \frac{{V}_{\mathrm{S}}}{10} $ 2 500 4
      2 2.67 4 850 485 2 800 280 1 500 4
      3* 2.74 6 100 610 3 550 355 21 000 4
      注:Z代表土层的深度,星号表示震源所在层.
      下载: 导出CSV

      表  2  运动学震源模型参数

      Table  2.   Parameters of the kinematic seismic source model

      震源参数
      矩震级MW 6.1
      地震矩M0(N·m) 1.43×1018
      震中
      (纬度, 经度)
      (25.66°, 99.87°)
      震源深度(km) 11.2
      断层长度L(km) 36
      断层宽度W(km) 18
      走向角(°) 136
      倾角(°) 83
      上升时间τ(s) 0.38
      子断层尺寸(m) 125
      滑动角平均值(°) -192
      破裂速度VR (km/s) 2.2
      断层滑动分布(m) 朱音杰等(2022), 见图 7
      震源时间函数 指数函数,见图 7
      下载: 导出CSV
    • Afanasiev, M., Boehm, C., van Driel, M., et al., 2019. Modular and Flexible Spectral-Element Waveform Modelling in Two and Three Dimensions. Geophysical Journal International, 216(3): 1675-1692. https://doi.org/10.1093/gji/ggy469
      Ba, Z. N., Liu, Y., Zhao, J. X., et al., 2023. Near-Fault Broadband Ground-Motion Simulation of 2021 Yangbi M6.4 Earthquake: An Improved FK Method. Chinese Journal of Geotechnical Engineering, 45(4): 709-719 (in Chinese with English abstract).
      Beresnev, I. A., Atkinson, G. M., 1997. Modeling Finite-Fault Radiation from the wn Spectrum. Bulletin of the Seismological Society of America, 87(1): 67-84. https://doi.org/10.1785/bssa0870010067
      Boore, D. M., 2003. Simulation of Ground Motion Using the Stochastic Method. Pure and Applied Geophysics, 160(3): 635-676. https://doi.org/10.1007/PL00012553
      Bozorgnia, Y., Abrahamson, N. A., Al Atik, L., et al., 2014. NGA-West2 Research Project. Earthquake Spectra, 30(3): 973-987. https://doi.org/10.1193/072113eqs209m
      Chen, J. L., Hao, J. L., Wang, Z., et al., 2022a. The 21 May 2021 Mw 6.1 Yangbi Earthquake—A Unilateral Rupture Event with Conjugately Distributed Aftershocks. Seismological Research Letters, 93(3): 1382-1399. https://doi.org/10.1785/0220210241
      Chen, W. K., Wang, D., Zhang, C., et al., 2022b. Estimating Seismic Intensity Maps of the 2021 Mw 7.3 Madoi, Qinghai and Mw 6.1 Yangbi, Yunnan, China Earthquakes. Journal of Earth Science, 33(4): 839-846. https://doi.org/10.1007/s12583-021-1586-9
      Clayton, R., Engquist, B., 1977. Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations. Bulletin of the Seismological Society of America, 67(6): 1529-1540. https://doi.org/10.1785/bssa0670061529
      Crempien, J. G. F., Archuleta, R. J., 2015. UCSB Method for Simulation of Broadband Ground Motion from Kinematic Earthquake Sources. Seismological Research Letters, 86(1): 61-67. https://doi.org/10.1785/0220140103
      Fu, G. Y., Wang, Z. Y., Liu, J. S., et al., 2023. Lithospheric Equilibrium and Anisotropy around the 2021 Yangbi Ms 6.4 Earthquake in Yunnan, China. Journal of Earth Science, 34(4): 1165-1175. https://doi.org/10.1007/s12583-022-1607-3
      Gatti, F., Touhami, S., Lopez-Caballero, F., et al., 2018. Broad-Band 3-D Earthquake Simulation at Nuclear Site by an All-Embracing Source-to-Structure Approach. Soil Dynamics and Earthquake Engineering, 115: 263-280. https://doi.org/10.1016/j.soildyn.2018.08.028
      Graves, R. W., Pitarka, A., 2010. Broadband Ground- Motion Simulation Using a Hybrid Approach. Bulletin of the Seismological Society of America, 100(5A): 2095-2123. https://doi.org/10.1785/0120100057
      Graves, R., Pitarka, A., 2016. Kinematic Ground-Motion Simulations on Rough Faults Including Effects of 3D Stochastic Velocity Perturbations. Bulletin of the Seismological Society of America, 106(5): 2136-2153. https://doi.org/10.1785/0120160088
      Guo, W. X., Yao, X. X., Liu, Y., et al., 2025. Review of Research on Strong-Motion Record Flatfile. World Earthquake Engineering, 41(1): 14-25 (in Chinese with English abstract).
      Ji, Z. W., Li, Z. C., Sun, J. Z., et al., 2023. Estimation of Broadband Ground Motion Characteristics Considering Source Parameter Uncertainty and Undetermined Site Condition in Densely Populated Areas of Pingwu. Frontiers in Earth Science, 10: 1081542. https://doi.org/10.3389/feart.2022.1081542
      Jiang, Q. F., Rong, M. S., Wei, W., et al., 2024. A Quantitative Seismic Topographic Effect Prediction Method Based upon BP Neural Network Algorithm and FEM Simulation. Journal of Earth Science, 35(4): 1355-1366. https://doi.org/10.1007/s12583-022-1795-x
      Liu, P., Archuleta, R. J., Hartzell, S. H., 2006. Prediction of Broadband Ground-Motion Time Histories: Hybrid Low/High-Frequency Method with Correlated Random Source Parameters. Bulletin of the Seismological Society of America, 96(6): 2118-2130. https://doi.org/10.1785/0120060036
      Mai, P. M., Beroza, G. C., 2003. A Hybrid Method for Calculating Near-Source, Broadband Seismograms: Application to Strong Motion Prediction. Physics of the Earth and Planetary Interiors, 137(1-4): 183-199. https://doi.org/10.1016/S0031-9201(03)00014-1
      Mazzieri, I., Stupazzini, M., Guidotti, R., et al., 2013. SPEED: SPectral Elements in Elastodynamics with Discontinuous Galerkin: A Non-Conforming Approach for 3D Multi-Scale Problems. International Journal for Numerical Methods in Engineering, 95(12): 991-1010. https://doi.org/10.1002/nme.4532
      Olsen, K. B., 2003. Estimation of Q for Long-Period (> 2 Sec) Waves in the Los Angeles Basin. Bulletin of the Seismological Society of America, 93(2): 627-638. https://doi.org/10.1785/0120020135
      Olson, M. H., Primps, S. B., 1984. Working at Home with Computers: Work and Nonwork Issues. Journal of Social Issues, 40(3): 97-112. https://doi.org/10.1111/j.1540-4560.1984.tb00194.x
      Paolucci, R., Mazzieri, I., Smerzini, C., 2015. Anatomy of Strong Ground Motion: Near-Source Records and Three-Dimensional Physics-Based Numerical Simulations of the Mw 6.0 2012 May 29 Po Plain Earthquake, Italy. Geophysical Journal International, 203(3): 2001-2020. https://doi.org/10.1093/gji/ggv405
      Paolucci, R., Gatti, F., Infantino, M., et al., 2018. Broadband Ground Motions from 3D Physics-Based Numerical Simulations Using Artificial Neural Networks. Bulletin of the Seismological Society of America, 108(3A): 1272-1286. https://doi.org/10.1785/0120170293
      Sabetta, F., Pugliese, A., Fiorentino, G., et al., 2021. Simulation of Non-Stationary Stochastic Ground Motions Based on Recent Italian Earthquakes. Bulletin of Earthquake Engineering, 19(9): 3287-3315. https://doi.org/10.1007/s10518-021-01077-1
      Sjögreen, B., Petersson, N. A., 2012. A Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation. Journal of Scientific Computing, 52(1): 17-48. https://doi.org/10.1007/s10915-011-9531-1
      Smerzini, C., Vanini, M., Paolucci, R., et al., 2023. Regional Physics-Based Simulation of Ground Motion within the Rhne Valley, France, during the MW 4.9 2019 Le Teil Earthquake. Bulletin of Earthquake Engineering, 21(4): 1747-1774. https://doi.org/10.1007/s10518-022-01591-w
      Somerville, P., Irikura, K., Graves, R., et al., 1999. Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion. Seismological Research Letters, 70(1): 59-80. https://doi.org/10.1785/gssrl.70.1.59
      Spudich, P., Xu, L. S., 2003. 85.14-Software for Calculating Earthquake Ground Motions from Finite Faults in Vertically Varying Media. In: Lee, W. H K., Kanamori, H., Jennings, P. C., et al., eds., International Geophysics, International Handbook of Earthquake and Engineering Seismology. Elsevier, Amsterdam, 1633-1634. https://doi.org/10.1016/s0074-6142(03)80293-0
      Tarbali, K., Bradley, B. A., 2015. Ground Motion Selection for Scenario Ruptures Using the Generalised Conditional Intensity Measure (GCIM) Method. Earthquake Engineering & Structural Dynamics, 44(10): 1601-1621. https://doi.org/10.1002/eqe.2546
      Wang, H. W., Li, H. R., Ren, Y. F., et al., 2025. A Comprehensive Earthquake Source Database for China's Strong-Motion Flatfile (2007-2020). Earthquake Research Advances, 5(2): 100346. https://doi.org/10.1016/j.eqrea.2024.100346
      Wang, X. C., Wang, J. T., Zhang, C. H., 2023. Deterministic Full-Scenario Analysis for Maximum Credible Earthquake Hazards. Nature Communications, 14: 6600. https://doi.org/10.1038/s41467-023-42410-3
      Wang, Y. M., Xu, L. H., Yang, H. Y., et al., 2023. Deep Deformation Mechanism and Active Tectonic along the Weixi-Qiaohou Fault Zone. Chinese Journal of Geophysics, 66(3): 1070-1085 (in Chinese with English abstract).
      Whittaker, A., Atkinson, G., Baker, J., et al., 2011. Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analyses, Grant/Contract Reports (NISTGCR). National Institute of Standards and Technology, Gaithersburg. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=915482
      Wu, J. P., Ming, Y. H., Wang, C. Y., 2004. Source Mechanism of Small-to-Moderate Earthquakes and Tectonic Stress Field in Yunnan Province. Acta Seismologica Sinica, 26(5): 457-465 (in Chinese with English abstract).
      Yao, X. X., Ren, Y. F., Kishida, T., et al., 2025. A Post Processing Method of Strong Motion Record Filtering Satisfying the Compatibility. Engineering Mechanics, 42(1): 152-163 (in Chinese with English abstract).
      Zhao, B., Gao, Y., Ma, Y. L., 2022. Relocations, Focal Mechanisms and Stress Inversion of the May 21th 2021 Yangbi MS6.4 Earthquake Sequence in Yunnan, China. Chinese Journal of Geophysics, 65(3): 1006-1020 (in Chinese with English abstract).
      Zhu, J. B., Liu, H. Y., Luan, S. C., et al., 2025. Prediction of On-Site Peak Ground Motion Based on Machine Learning and Transfer Learning. Earth Science, 50(5): 1842-1860 (in Chinese with English abstract).
      Zhu, Y. J., Luo, Y., Zhao, L., et al., 2022. Rupture Process of Yunnan Yangbi MS6.4 Earthquake Constrained by Regional Broadband Seismograms. Chinese Journal of Geophysics, 65(3): 1021-1031 (in Chinese with English abstract).
      巴振宁, 刘悦, 赵靖轩, 等, 2023. 2021年漾濞6.4级近断层宽频地震动模拟: 一种改进的FK方法. 岩土工程学报, 45(4): 709-719.
      郭文轩, 姚鑫鑫, 刘也, 等, 2025. 强震动记录Flatfile研究综述. 世界地震工程, 41(1): 14-25.
      王一咪, 徐龙辉, 杨海燕, 等, 2023. 维西‒乔后断裂带的深部变形机制与构造活动特征. 地球物理学报, 66(3): 1070-1085.
      吴建平, 明跃红, 王椿镛, 2004. 云南地区中小地震震源机制及构造应力场研究. 地震学报, 26(5): 457-465.
      姚鑫鑫, 任叶飞, 岸田忠大, 等, 2025. 满足数据同一性的强震动记录去噪滤波后处理输出方法. 工程力学, 42(1): 152-163.
      赵博, 高原, 马延路, 2022. 2021年5月21日云南漾濞MS6.4地震序列重新定位、震源机制及应力场反演. 地球物理学报, 65(3): 1006-1020.
      朱景宝, 刘赫奕, 栾世成, 等, 2025. 基于机器学习和迁移学习的现地地震动峰值预测. 地球科学, 50(5): 1842-1860. doi: 10.3799/dqkx.2024.071
      朱音杰, 罗艳, 赵里, 等, 2022. 利用区域宽频地震数据反演2021年5月云南漾濞MS6.4地震震源破裂过程. 地球物理学报, 65(3): 1021-1031.
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  205
    • HTML全文浏览量:  28
    • PDF下载量:  8
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-03-06
    • 刊出日期:  2026-01-25

    目录

      /

      返回文章
      返回