• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中国民用生物质和煤炭燃烧细颗粒物中二噁英的排放特征及排放清单

    吴剑 彭勇 孔少飞 胡尧 覃旭菁 吴铮 祁士华

    吴剑, 彭勇, 孔少飞, 胡尧, 覃旭菁, 吴铮, 祁士华, 2025. 中国民用生物质和煤炭燃烧细颗粒物中二噁英的排放特征及排放清单. 地球科学, 50(9): 3441-3453. doi: 10.3799/dqkx.2025.090
    引用本文: 吴剑, 彭勇, 孔少飞, 胡尧, 覃旭菁, 吴铮, 祁士华, 2025. 中国民用生物质和煤炭燃烧细颗粒物中二噁英的排放特征及排放清单. 地球科学, 50(9): 3441-3453. doi: 10.3799/dqkx.2025.090
    Wu Jian, Peng Yong, Kong Shaofei, Hu Yao, Qin Xujing, Wu Zheng, Qi Shihua, 2025. Emission Characteristics and Inventory of PCDD/Fs in Fine Particulate Matter from Domestic Biomass and Coal Combustion in China. Earth Science, 50(9): 3441-3453. doi: 10.3799/dqkx.2025.090
    Citation: Wu Jian, Peng Yong, Kong Shaofei, Hu Yao, Qin Xujing, Wu Zheng, Qi Shihua, 2025. Emission Characteristics and Inventory of PCDD/Fs in Fine Particulate Matter from Domestic Biomass and Coal Combustion in China. Earth Science, 50(9): 3441-3453. doi: 10.3799/dqkx.2025.090

    中国民用生物质和煤炭燃烧细颗粒物中二噁英的排放特征及排放清单

    doi: 10.3799/dqkx.2025.090
    基金项目: 

    国家自然科学基金青年资助项目 42205116

    科技部国家重点研发计划课题 2023YFC3709900

    博士后科学基金面上项目 2022M712947

    详细信息
      作者简介:

      吴剑(1991-),男,副教授,主要从事高时空分辨率排放清单的构建与应用.E-mail:kerim@cug.edu.cn

    • 中图分类号: P404

    Emission Characteristics and Inventory of PCDD/Fs in Fine Particulate Matter from Domestic Biomass and Coal Combustion in China

    • 摘要:

      基于稀释通道采样系统开展室内模拟燃烧实验,采用同位素稀释高分辨气相色谱‒高分辨质谱法,分析了民用生物质和煤炭燃烧细颗粒物(PM2.5)中二噁英(PCDD/Fs)的排放特征并计算得到其排放因子.结合中国燃料消耗和人口密度数据,基于“自下而上”的方法构建了中国民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放清单.研究结果表明:(1)民用生物质和煤炭燃烧PM2.5中PCDD/Fs的质量浓度在0.181~4.700 pg/m3之间,国际毒性当量(I-TEQ)浓度范围为0.081~2.300 pg I-TEQ/m3,其中,2,3,7,8-四氯二苯并对二噁英(2,3,7,8-T4CDD)(P < 0.01,R2=0.90)这一单体同系物的质量浓度与总I-TEQ浓度存在强相关性,可作为民用生物质和煤炭燃烧PM2.5中PCDD/Fs毒性的良好指标.(2)民用生物质和煤炭燃烧PM2.5中PCDD/Fs的质量浓度排放因子分别为(1.82±0.97)ng/kg和(4.09±2.76)ng/kg;I-TEQ浓度排放因子分别为(0.40±0.21)ng I-TEQ/kg和(0.53±0.24)ng I-TEQ/kg.(3)2021年,民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放量为90.0 g I-TEQ,从空间上看,PCDD/Fs的高排放区主要集中在东北和华东地区,排放高值大于8 μg I-TEQ/km2.与前人研究相比,垃圾焚烧(22.56 g I-TEQ)和工业燃烧(208 g I-TEQ)PM2.5中PCDD/Fs的排放量分别是民用生物质和煤炭燃烧排放量的0.2倍和1.5倍.这表明,民用生物质和煤炭燃烧是PM2.5中PCDD/Fs排放不容忽视的重要来源.(4)民用生物质和煤炭燃烧PM2.5中PCDD/Fs排放导致的个人吸入的平均健康风险分别为(9.5±7.2)×10-5和(3.1±1.7)×10-5,分别是从事各类工业生产活动的职业工人((2.88±2.45)×10-5)的3.3倍和1.1倍.

       

    • 图  1  民用生物质和煤炭PM2.5中基于质量浓度和I-TEQ浓度的PCDD/Fs占比

      图a为基于质量浓度的PCDD/Fs占比;图b为基于I-TEQ浓度的PCDD/Fs占比

      Fig.  1.  The proportion of PCDD/Fs in PM2.5 from domestic biomass and coal based on mass concentration and I-TEQ concentration

      图  2  单体同系物与I-TEQ浓度相关性

      图a为2,3,7,8-T4CDF;图b为2,3,7,8-T4CDD

      Fig.  2.  Correlation between congener homologues and I-TEQ concentration

      图  3  民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放因子

      图a为基于质量浓度的PCDD/Fs排放因子;图b为基于I-TEQ浓度的PCDD/Fs排放因子

      Fig.  3.  Emission factors of PCDD/Fs in PM2.5 from domestic biomass and coal fuel combustion

      图  4  不同省份民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放量

      Fig.  4.  Emission of PCDD/Fs in PM2.5 from domestic biomass and coal combustion in different provinces

      图  5  不同年份民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放量

      Fig.  5.  Emission of PCDD/Fs in PM2.5 from domestic biomass and coal combustion in different years

      图  6  2021年中国民用生物质和煤炭燃烧PM2.5中PCDD/Fs排放空间分布(1 km×1 km)

      Fig.  6.  The spatial distribution of PCDD/Fs emissions from domestic biomass and coal combustion in PM2.5 in China (1 km× 1 km) for 2021

      图  7  个人吸入PCDD/Fs的健康风险

      Fig.  7.  Health risks of personal inhalation exposure to PCDD/Fs

      表  1  民用生物质和煤炭的燃料特性

      Table  1.   Characteristics of domestic biomass and coal fuels

      C(%) H(%) N(%) S(%)
      木柴 41.21 6.00 0.56 0.03
      杉木 47.95 6.24 0.45 1.36
      竹子 41.07 6.04 0.43 0.05
      荔枝木 69.20 1.00 2.30 2.30
      煤炭1 90.90 4.30 1.20 0.90
      煤炭2 48.60 2.00 0.70 0.90
      煤炭3 89.30 4.90 1.60 0.90
      下载: 导出CSV

      表  2  民用生物质和煤炭燃烧PM2.5中的PCDD/Fs浓度

      Table  2.   The concentration of PCDD/Fs in PM2.5 from domestic biomass and coal combustion

      PCDD/Fs ΣPCDD ΣPCDF Total PCDD/Fs (pg/m3) Total PCDD/Fs (pg I-TEQ/m3) PCDFs/PCDDs
      木柴 MC 0.170 1.400 1.570 8.240
      IC 0.100 0.140 0.240 1.400
      杉木 MC 1.300 3.400 4.700 2.620
      IC 0.560 0.390 0.950 0.700
      竹子 MC 0.074 0.470 0.544 6.350
      IC 0.110 0.071 0.181 0.650
      荔枝木 MC 0 1.100 1.100 /
      IC 0.130 0.150 0.280 1.150
      平均值 MC 0.386 1.593 1.979
      IC 0.225 0.188 0.413
      标准误差 MC 0.531 1.096 1.613
      IC 0.194 0.121 0.312
      煤炭1 MC 1.100 1.200 2.300 1.090
      IC 0.120 0.120 0.240 1.000
      煤炭2 MC 0.076 0.410 0.490 5.390
      IC 0.034 0.048 0.082 1.410
      煤炭3 MC 0.074 0.330 0.410 4.460
      IC 0.041 0.039 0.081 0.950
      平均值 MC 0.417 0.647 1.070
      IC 0.065 0.069 0.134
      标准误差 MC 0.483 0.393 0.873
      IC 0.039 0.036 0.075
      注:MC和IC分别代表质量浓度和I-TEQ浓度;“/”表示分母为0,不予考虑.
      下载: 导出CSV

      表  3  生物质和工业燃烧源PM2.5中基于I-TEQ浓度的PCDD/Fs排放因子(ng I-TEQ/kg)

      Table  3.   Emission factors (ng I-TEQ/kg) of PCDD/Fs in PM2.5 from biomass and industrial combustion sources based on I-TEQ concentration

      燃料类型 平均EF EF范围 参考文献
      民用生物质燃烧 玉米秸秆 0.24, 0.26 0.07~0.57 陈德翼等,2011Zhang et al., 2022
      水稻秸秆 1.04 12.6~14.5 陈德翼等,2011Chang et al., 2014
      薪柴 0.63 0.10~1.49 陈德翼等,2011
      甘蔗 0.49, 1.60 Black et al., 2012; Zhang et al., 2022
      露天生物质燃烧 甘蔗、谷类作物 52.6 0.01~150 Black et al., 2012; Zhang et al., 2022
      森林、草地 0.7 0.4~1.0 Black et al., 2012
      工业燃烧 工业煤炭 0.223 0.025~0.550 Lin et al., 2007; Cheng et al., 2015
      工业煤炭(经APCDs处理) 0.039 Li et al., 2015a
      燃煤电厂 0.620, 0.087 Chen, 2004; Lin et al., 2007
      垃圾焚烧 城市生活垃圾 8.8, 12.8 0.32~166.56 Zhang et al., 2019; Lei et al., 2021
      气化炉 50.04 Lei et al., 2017
      水泥窑共处理废物 0.028~0.084 Yang et al., 2019
      医疗垃圾 0.78~473.97 Gao et al., 2009
      城市生活垃圾 30 USEPA, 2025
      城市生活垃圾(经APCDs处理) 0.5 USEPA, 2025
      下载: 导出CSV
    • Akagi, S. K., Yokelson, R., Wiedinmyer, C., et al., 2011. Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models. Atmospheric Chemistry and Physics, 11(9): 4039-4072.
      Andreae, M. O., Merlet, P., 2001. Emission of Trace Gases and Aerosols from Biomass Burning. Global Biogeochemical Cycles, 15(4): 955-966. https://doi.org/10.1029/2000GB001382
      Black, R. R., Meyer, C. P., Touati, A., et al., 2012. Emission Factors for PCDD/PCDF and Dl-PCB from Open Burning of Biomass. Environment International, 38(1): 62-66. https://doi.org/10.1016/j.envint.2011.07.003
      Chang, S. S., Lee, W. J., Holsen, T. M., et al., 2014. Emissions of Polychlorinated-p-Dibenzo Dioxin, Dibenzofurans (PCDD/Fs) and Polybrominated Diphenyl Ethers (PBDEs) from Rice Straw Biomass Burning. Atmospheric Environment, 94: 573-581. https://doi.org/10.1016/j.atmosenv.2014.05.067
      Chen, C. M., 2004. The Emission Inventory of PCDD/PCDF in Taiwan. Chemosphere, 54(10): 1413-1420. https://doi.org/10.1016/j.chemosphere.2003.10.039
      Chen, D. Y., Peng, P. A., Hu, J. F., et al., 2011. The Emission Characteristics of Dioxins in Biomass Burning. Environmental Chemistry, 30(7): 1271-1279 (in Chinese with English abstract).
      Chen, L. L., Huang, T., Chen, K. J., et al., 2020. Gridded Atmospheric Emission Inventory of PCDD/Fs in China. Environmental Science, 41(2): 510-519 (in Chinese with English abstract).
      Chen, W. S., Shen, Y. H., Hsieh, T. Y., et al., 2011. Fate and Distribution of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in a Woodchip-Fuelled Boiler. Aerosol and Air Quality Research, 11(3): 282-289. https://doi.org/10.4209/aaqr.2010.11.0098
      Chen, Y. J., Sheng, G. Y., Bi, X. H., et al., 2005. Emission Factors for Carbonaceous Particles and Polycyclic Aromatic Hydrocarbons from Residential Coal Combustion in China. Environmental Science & Technology, 39(6): 1861-1867. https://doi.org/10.1021/es0493650
      Chen, Z. J., Tan, Y. Y., Xu, J., 2022. Economic and Environmental Impacts of the Coal-to-Gas Policy on Households: Evidence from China. Journal of Cleaner Production, 341: 130608. https://doi.org/10.1016/j.jclepro.2022.130608
      Cheng, Y. Y., Lu, M. F., Lin, J. J. M., 2015. Emission Factors for Dioxin for Coal Burning, Secondary Smelting and Alloying of Aluminum, and Cement Kiln Processes. Advanced Materials Research, 1102: 27-32. https://doi.org/10.4028/www.scientific.net/amr.1102.27
      Dindal, A., Thompson, E., Strozier, E., et al., 2011. Application of GC-HRMS and GC×GC-TOFMS to Aid in the Understanding of a Dioxin Assay's Performance for Soil and Sediment Samples. Environmental science & technology, 45(24): 10501-10508.
      Duan, F., Cong, S. Q., Shuang, W., et al., 2012. Co-combustion Characteristics of Municipal Sewage Sludge and Different Bituminous Coals. Chinese Journal of Environmental Engineering, 6(8): 2865-2869 (in Chinese with English abstract).
      Energy Statistics Division of the National Bureau of Statistics, 2015. China Energy Statistical Yearbook. China Statistics Press, Beijing, 130-304 (in Chinese).
      Fu, J. Y., 2014. China Kilometer Grid Population Distribution Dataset. http://www.geodoi.ac.cn/webcn/doi.aspx?Id=131 (in Chinese).
      Fu, Z. Q., Lin, S. M., Tian, H. Z., et al., 2022. A Comprehensive Emission Inventory of Hazardous Air Pollutants from Municipal Solid Waste Incineration in China. Science of the Total Environment, 826: 154212. https://doi.org/10.1016/j.scitotenv.2022.154212
      Gao, H. C., Ni, Y. W., Zhang, H. J., et al., 2009. Stack Gas Emissions of PCDD/Fs from Hospital Waste Incinerators in China. Chemosphere, 77(5): 634-639. https://doi.org/10.1016/j.chemosphere.2009.08.017
      Grandesso, E., Gullett, B., Touati, A., et al., 2011. Effect of Moisture, Charge Size, and Chlorine Concentration on PCDD/F Emissions from Simulated Open Burning of Forest Biomass. Environmental Science & Technology, 45(9): 3887-3894. https://doi.org/10.1021/es103686t
      Hites, R. A., 2011. Dioxins: An Overview and History. Environmental Science & Technology, 45(1): 16-20. https://doi.org/10.1021/es1013664
      Hu, J. C., Wu, J., Xu, C. Y., et al., 2021. Characterization and Health Risks of PCDD/Fs, PCBS, and PCNS in the Soil around a Typical Secondary Copper Smelter. Environmental Science, 42(3): 1141-1151 (in Chinese with English abstract).
      Hu, J. C., Zheng, M. H., Liu, W. B., et al., 2013. Occupational Exposure to Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans, Dioxin-Like Polychlorinated Biphenyls, and Polychlorinated Naphthalenes in Workplaces of Secondary Nonferrous Metallurgical Facilities in China. Environmental Science & Technology, 47(14): 7773-7779. https://doi.org/10.1021/es4016475
      Kong, S. F., Bai, Z. P., Lu, B., 2014. Comparative Analysis on Emission Factors of Carbonaceous Components in PM2.5 and PM10 from Domestic Fuels Combustion. China Environmental Science, 34(11): 2749-2756 (in Chinese with English abstract).
      Lammel, G., Heil, A., Stemmler, I., et al., 2013. On the Contribution of Biomass Burning to POPs (PAHs and PCDDS) in Air in Africa. Environmental Science & Technology, 47(20): 11616-11624. https://doi.org/10.1021/es401499q
      Lavric, E. D., Konnov, A. A., De Ruyck, J., 2004. Dioxin Levels in Wood Combustion—A Review. Biomass and Bioenergy, 26(2): 115-145. https://doi.org/10.1016/S0961-9534(03)00104-1
      Lei, M., Hai, J., Cheng, J., et al., 2017. Emission Characteristics of Toxic Pollutants from an Updraft Fixed Bed Gasifier for Disposing Rural Domestic Solid Waste. Environmental Science and Pollution Research International, 24(24): 19807-19815. https://doi.org/10.1007/s11356-017-9615-z
      Lei, R. R., Xu, Z. C., Xing, Y., et al., 2021. Global Status of Dioxin Emission and China's Role in Reducing the Emission. Journal of Hazardous Materials, 418: 126265. https://doi.org/10.1016/j.jhazmat.2021.126265
      Li, H., Li, Y., Jin, Y., 2015a. Gaseous Emissions from the Co-Combustion of Wet Sludge and Coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(19): 2064-2072. https://doi.org/10.1080/15567036.2012.666622
      Li, M., Tang, B., Zheng, J., et al., 2020. PCDD/Fs in Paired Hair and Serum of Workers from a Municipal Solid Waste Incinerator Plant in South China: Concentrations, Correlations, and Source Identification. Environment International, 144: 106064. https://doi.org/10.1016/j.envint.2020.106064
      Li, Y. Q., Chen, T., Zhang, J., et al., 2015b. Mass Balance of Dioxins over a Cement Kiln in China. Waste Management, 36: 130-135. https://doi.org/10.1016/j.wasman.2014.11.027
      Lin, L. F., Lee, W. J., Li, H. W., et al., 2007. Characterization and Inventory of PCDD/F Emissions from Coal-Fired Power Plants and Other Sources in Taiwan. Chemosphere, 68(9): 1642-1649. https://doi.org/10.1016/j.chemosphere.2007.04.002
      Liu, F. J., Tang, J. Y., Liu, F. S., et al., 2023. Analysis of Influencing Factors of Aerosol Optical Depth in Beijing. Earth Science, 48(10): 3812-3819 (in Chinese with English abstract).
      Liu, H. B., Kong, S. F., Wang, W., et al., 2016. Emission Inventory of Heavy Metals in Fine Particles Emitted from Residential Coal Burning in China. Environmental Science, 37(8): 2823-2835 (in Chinese with English abstract).
      Lohmann, R., Jones, K. C., 1998. Dioxins and Furans in Air and Deposition: A Review of Levels, Behaviour and Processes. Science of the Total Environment, 219(1): 53-81. https://doi.org/10.1016/S0048-9697(98)00237-X
      Meng, W. J., Zhong, Q. R., Chen, Y. L., et al., 2019. Energy and Air Pollution Benefits of Household Fuel Policies in Northern China. Proceedings of the National Academy of Sciences of the United States of America, 116(34): 16773-16780. https://doi.org/10.1073/pnas.1904182116
      Ni, H. Y., Han, Y. M., Cao, J. J., et al., 2015. Emission Characteristics of Carbonaceous Particles and Trace Gases from Open Burning of Crop Residues in China. Atmospheric Environment, 123: 399-406. https://doi.org/10.1016/j.atmosenv.2015.05.007
      Pan, S. Y., Liou, Y. T., Chang, M. B., et al., 2021. Characteristics of PCDD/Fs in PM2.5 from Emission Stacks and the nearby Ambient Air in Taiwan. Scientific Reports, 11(1): 8093. https://doi.org/10.1038/s41598-021-87468-5
      Penner, J. E., Dickinson, R. E., 1992. Effects of Aerosol from Biomass Burning on the Global Radiation Budget. Science, 256(5062): 1432-1434. https://doi.org/10.1126/science.256.5062.1432
      Petit, P., Maître, A., Persoons, R., et al., 2019. Lung Cancer Risk Assessment for Workers Exposed to Polycyclic Aromatic Hydrocarbons in Various Industries. Environment International, 124: 109-120. https://doi.org/10.1016/j.envint.2018.12.058
      Qin, X. J., Kong, S. F., Wu, J., et al., 2025. Number Concentration Size Distribution and Emission Factors of Submicron Particles from Residential Coal Combustion. China Environmental Science, 45(2): 593-605 (in Chinese with English abstract).
      Quaß, U., Fermann, M. W., Bröker, G., 2000. Steps towards a European Dioxin Emission Inventory. Chemosphere, 40(9-11): 1125-1129. https://doi.org/10.1016/S0045-6535(99)00361-6
      Salian, K., Strezov, V., Evans, T. J., et al., 2019. Application of National Pollutant Inventories for Monitoring Trends on Dioxin Emissions from Stationary Industrial Sources in Australia, Canada and European Union. PLoS One, 14(10): e0224328. https://doi.org/10.1371/journal.pone.0224328
      Shih, T. S., Lee, W. J., Shih, M., et al., 2008. Exposure and Health-Risk Assessment of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans (PCDD/Fs) for Sinter Plant Workers. Environment International, 34(1): 102-107. https://doi.org/10.1016/j.envint.2007.07.010
      Song, S. J., Chen, K. J., Huang, T., et al., 2023. New Emission Inventory Reveals Termination of Global Dioxin Declining Trend. Journal of Hazardous Materials, 443: 130357. https://doi.org/10.1016/j.jhazmat.2022.130357
      Ssebugere, P., Sillanpää, M., Matovu, H., et al., 2019. Human and Environmental Exposure to PCDD/Fs and Dioxin-like PCBS in Africa: A Review. Chemosphere, 223: 483-493. https://doi.org/10.1016/j.chemosphere.2019.02.065
      United States Environmental Protection Agency (USEPA), 2025. PCDD/Fs Emission Factor Database. https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors-stationary-sources
      Wang, K., Tian, H. Z., Hua, S. B., et al., 2016. A Comprehensive Emission Inventory of Multiple Air Pollutants from Iron and Steel Industry in China: Temporal Trends and Spatial Variation Characteristics. Science of the Total Environment, 559: 7-14. https://doi.org/10.1016/j.scitotenv.2016.03.125
      Ward, D. E., Hardy, C. C., 1991. Smoke Emissions from Wildland Fires. Environment International, 17(2-3): 117-134. https://doi.org/10.1016/0160-4120(91)90095-8
      Wei, J. X., Li, H., Liu, J. G., et al., 2022. National and Provincial Dioxin Emissions from Municipal Solid Waste Incineration in China. Science of the Total Environment, 851: 158128. https://doi.org/10.1016/j.scitotenv.2022.158128
      Wikström, E., Ryan, S., Touati, A., et al., 2003. Importance of Chlorine Speciation on de Novo Formation of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans. Environmental Science & Technology, 37(6): 1108-1113. https://doi.org/10.1021/es026262d
      Wu, D., Qi, J., Li, Q., et al., 2021a. Extreme Exposure Levels of PCDD/Fs Inhaled from Biomass Burning Activity for Cooking in Typical Rural Households. Environmental Science & Technology, 55(11): 7299-7306. https://doi.org/10.1021/acs.est.1c00469
      Wu, J., Kong, S. F., Wu, F. Q., et al., 2018. Estimating the Open Biomass Burning Emissions in Central and Eastern China from 2003 to 2015 Based on Satellite Observation. Atmospheric Chemistry & Physics, 18(16): 11623-11646. https://doi.org/10.5194/acp-18-11623-2018
      Wu, J., Kong, S. F., Yan, Y. Y., et al., 2022. The Toxicity Emissions and Spatialized Health Risks of Heavy Metals in PM2.5 from Biomass Fuels Burning. Atmospheric Environment, 284: 119178. https://doi.org/10.1016/j.atmosenv.2022.119178
      Wu, J., Kong, S. F., Zeng, X., et al., 2021b. First High-Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non-Biomass Burning Sources in China. Environmental Science & Technology, 55(3): 1497-1507. https://doi.org/10.1021/acs.est.0c06675
      Yang, L. L., Zheng, M. H., Zhao, Y. Y., et al., 2019. Unintentional Persistent Organic Pollutants in Cement Kilns Co-Processing Solid Wastes. Ecotoxicology and Environmental Safety, 182: 109373. https://doi.org/10.1016/j.ecoenv.2019.109373
      Zhang, C. L., Bai, L., Yao, Q., et al., 2022. Emission Characteristics of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans from Industrial Combustion of Biomass Fuels. Environmental Pollution, 292: 118265. https://doi.org/10.1016/j.envpol.2021.118265
      Zhang, G., Huang, X. X., Liao, W. B., et al., 2019. Measurement of Dioxin Emissions from a Small-Scale Waste Incinerator in the Absence of Air Pollution Controls. International Journal of Environmental Research and Public Health, 16(7): 1267. https://doi.org/10.3390/ijerph16071267
      Zhang, M. M., Buekens, A., Li, X. D., 2017. Dioxins from Biomass Combustion: An Overview. Waste and Biomass Valorization, 8(1): 1-20. https://doi.org/10.1007/s12649-016-9744-5
      Zhang, Y. X., Schauer, J. J., Zhang, Y. H., et al., 2008. Characteristics of Particulate Carbon Emissions from Real-World Chinese Coal Combustion. Environmental Science & Technology, 42(14): 5068-5073. https://doi.org/10.1021/es7022576
      Zhao, Y., Nielsen, C. P., Lei, Y., et al., 2011. Quantifying the Uncertainties of a Bottom-Up Emission Inventory of Anthropogenic Atmospheric Pollutants in China. Atmospheric Chemistry & Physics, 11(5): 2295-2308. https://doi.org/10.5194/acp-11-2295-201110.5194/acpd-10-29075-2010
      Zhou, Q., Yang, J. X., Liu, M. M., et al., 2018. Toxicological Risk by Inhalation Exposure of Air Pollution Emitted from China's Municipal Solid Waste Incineration. Environmental Science & Technology, 52(20): 11490-11499. https://doi.org/10.1021/acs.est.8b03352
      Zou, C., Han, J. L., Fu, H. Q., 2012. Emissions of PCDD/Fs from Steel and Secondary Nonferrous Productions. Procedia Environmental Sciences, 16: 279-288. https://doi.org/10.1016/j.proenv.2012.10.039
      陈德翼, 彭平安, 胡建芳, 等, 2011. 生物质燃烧的二噁英排放特性. 环境化学, 30(7): 1271-1279.
      陈露露, 黄韬, 陈凯杰, 等, 2020. 我国PCDD/Fs网格化大气排放清单. 环境科学, 41(2): 510-519.
      段锋, 从胜全, 双伟, 等, 2012. 市政污泥与不同烟煤混合燃烧特性. 环境工程学报, 6(8): 2865-2869.
      国家统计局能源统计司, 2015. 中国能源统计年鉴. 北京: 中国统计出版社, 130-304.
      付晶莹, 2014. 中国公里网格人口分布数据集. http://www.geodoi.ac.cn/webcn/doi.aspx?Id=131.
      胡吉成, 邬静, 许晨阳, 等, 2021. 典型再生铜冶炼厂周边土壤中PCDD/Fs、PCBs和PCNs的污染特征及健康风险评估. 环境科学, 42(3): 1141-1151.
      孔少飞, 白志鹏, 陆炳, 2014. 民用燃料燃烧排放PM2.5和PM10中碳组分排放因子对比. 中国环境科学, 34(11): 2749-2756.
      刘福江, 唐家玉, 刘福寿, 等, 2023. 北京市气溶胶光学厚度影响因子分析. 地球科学, 48(10): 3812-3819. doi: 10.3799/dqkx.2021.223
      刘海彪, 孔少飞, 王伟, 等, 2016. 中国民用煤燃烧排放细颗粒物中重金属的清单. 环境科学, 37(8): 2823-2835.
      覃旭菁, 孔少飞, 吴剑, 等, 2025. 民用煤燃烧排放亚微米颗粒物数浓度粒径分布和排放因子. 中国环境科学, 45(2): 593-605.
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  76
    • HTML全文浏览量:  4
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-04-04
    • 刊出日期:  2025-09-25

    目录

      /

      返回文章
      返回