Progress in U⁃Pb Dating Methods of Columbite⁃Tantalite Minerals
-
摘要:
铌钽铁矿具有高封闭温度、高铀含量及低普通铅特征,是开展U-Pb定年的理想矿物,其同位素年代学能为稀有金属花岗岩及花岗伟晶岩成因机制研究提供关键约束.铌钽铁矿U-Pb定年方法主要包括同位素稀释‒热电离质谱法(ID-TIMS)、激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)及二次离子质谱法(SIMS).系统梳理了三种定年方法的基本原理、发展脉络、技术优势及现存问题,并重点总结了近年来该方法在稀有金属矿床成矿时代厘定、成矿过程解析等领域的应用进展.由于铌钽铁矿端元成分复杂多变,且常用的微区原位测年方法(LA-ICP-MS/SIMS)普遍存在基体效应的影响,实现多期次成矿事件中铌钽铁矿U-Pb年龄的高精度、高准确度测定仍是当前技术难点及未来研究重点.
Abstract:Columbite-tantalite, characterized by high closure temperature, high uranium content, and low common lead, is an ideal mineral for U-Pb dating. Its isotopic chronology provides critical constraints on the genetic mechanisms of rare-metal granites and pegmatites. The main U-Pb dating methods for columbite-tantalite include isotope dilution-thermal ionization mass spectrometry (ID-TIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). This paper systematically reviews the basic principles, development history, technical advantages, and existing challenges of these three dating techniques, with a focus on summarizing recent application advancements in constraining ore-forming epochs and deciphering metallogenic processes of rare-metal deposits. The study reveals that it remains the current technical bottleneck and future research priority to achieve high-precision and accurate U-Pb age determinations for columbite-tantalite across polyphase mineralization events due to the complex and variable end-member compositions of columbite-tantalite and the pervasive matrix effects inherent in commonly used in-situ dating methods (LA-ICP-MS/SIMS). Future studies should focus on developing mineral compositional reference materials and optimizing analytical protocols to overcome these limitations.
-
Key words:
- columbite-tantalite /
- U-Pb dating /
- matrix effect /
- reference materials /
- LA-ICP-MS /
- ID-TIMS /
- high precision /
- rare-metal /
- geochronology
-
图 1 铌钽铁矿JEQ-2 LA-MC-ICP-MS U-Pb定年结果
a.采用铌铁矿标样coltan139作为校正外标;b.采用钽铁矿标样CT1作为校正外标(数据来源于Yang et al.,2024)
Fig. 1. LA-MC-ICP-MS U-Pb dating results of columbite-tantalite JEQ-2
图 2 文献中已报道的铌钽铁矿标样成分判别图解(据Qing et al.,2024修改)
Fig. 2. Quadrilateral diagram of the reported columbite-tantalite reference materials (modified after Qing et al., 2024)
表 1 文献中报道的铌钽铁矿标样统计
Table 1. Statistics of the columbite-tantalite reference materials from references
标样
名称主要元素平均含量(%) 比值 微量元素含量(10‒6) 产地 ID-TIMS年龄(Ma) 参考文献 FeO MnO Nb2O5 Ta2O5 Mn# Ta# U Pb 普通Pb Coltan139 14.14 6.45 62.58 12.67 0.47 0.11 1 350±227 103±15 变化 马达加斯加 505.4±1.0a Melcher et al., 2015 506.6±2.4b Melcher et al., 2015 507.9±1.3c Yang et al., 2023 Buranga 10.63 0.83 64.40 11.59 0.48 0.10 80±15 12±4.1 变化 卢旺达 936±14a Dewaele et al., 2011 905.2±3.2a Legros et al., 2019 Rongi 14.14 6.45 65.68 10.96 0.32 0.09 81±23 16±13 变化 卢旺达 931.5±2.5a Melcher et al., 2015 OXF 10.79 10.16 69.71 8.12 0.49 0.07 479±332 20±14 低 美国 262.85±0.61d Qing et al., 2024 ZKW 5.88 12.67 50.80 29.95 0.69 0.27 205±168 6±5 变化 中国四川 203.0±1.6c Yang et al., 2023 DDB 7.86 11.40 58.51 20.74 0.60 0.18 515±130 16±3.3 变化 中国四川 202.0±1.0c Yang et al., 2023 SN3 17.35 2.53 65.45 10.38 0.13 0.09 585±249 36±17 低 中国山西 404.0±1.3c Xiang et al., 2023 HND 11.30 8.27 60.88 18.53 0.43 0.15 357±139 7±3 变化 中国湖北 136.2±0.9c Xiang et al., 2023 RL2 10.40 6.91 34.81 47.18 0.40 0.45 486±343 10±7 变化 中国湖南 135.7±0.3c Xiang et al., 2023 NP2 10.50 6.54 42.70 38.10 0.38 0.51 257±67 15±3 高 中国福建 380.3±2.4a Legros et al., 2019 CC1716 15.40 6.11 70.50 6.50 0.28 0.10 268±427 26±6 变化 法国 326.3±0.6a Legros et al., 2019 A-1 2.87 14.30 27.70 54.60 0.83 0.70 215±309 12±9 低 中国新疆 198.3±1.4a Legros et al., 2019 ISSIA2 6.46 9.72 18.40 63.30 0.60 0.80 503±552 137±350 高 科特迪瓦 2 002±32a Legros et al., 2019 CT1 14.57 0.84 7.08 74.72 0.06 0.86 199±12 72±5 低 科特迪瓦 2 046.8±1.1a Legros et al., 2019 CT3 14.35 0.94 6.25 75.46 0.06 0.88 308±16 112±7 低 科特迪瓦 2 053.2±1.3a Legros et al., 2019 CT4 14.80 0.62 7.51 75.10 0.04 0.92 176±8 65±4 变化 科特迪瓦 2 044±1.6a Legros et al., 2019 注:(1)Mn♯=Mn/(Fe+Mn),Ta♯=Ta/(Nb+Ta).(2)ID-TIMS U-Pb年龄检测实验室所在机构,a为Bundesanstalt für Geowissenschaften und Rohstoffe(BGR),b为University of Toronto,c为German Research Centre for Geosciences(GFZ),d为中国地质调查局天津地质调查中心(Tianjin Center,China Geological Survey). -
Aldrich, L. T., Davis, G. L., Tilton, G. R., et al., 1956. Radioactive Ages of Minerals from the Brown Derby Mine and the Quartz Creek Granite near Gunnison, Colorado. Journal of Geophysical Research, 61(2): 215-232. https://doi.org/10.1029/JZ061i002p00215 Bai, H. Y., Wang, H., Yan, Q. H., et al., 2022. Columbite-Tantalite and Cassiterite Ages of Xuefengling Lithium Deposit in West Kunlun, Xinjiang and Their Geological Significancein. Acta Petrologica Sinica, 38(7): 2139-2152 (in Chinese with English abstract). Baumgartner, R., Romer, R. L., Moritz, R., et al., 2006. Columbite-Tantalite-Bearing Granitic Pegmatites from the Serido Belt, Northeastern Brazil: Genetic Constraints from U-Pb Dating and Pb Isotopes. The Canadian Mineralogist, 44(1): 69-86. https://doi.org/10.2113/gscanmin.44.1.69 Cerny, P., Ercit, T. S., 1985. Some Recent Advances in the Mineralogy and Geochemistry of Nb and Ta in Rare-Element Granitic Pegmatites. Bulletin de Mineralogie, 108(3): 499-532. https://doi.org/10.3406/bulmi.1985.7846 Che, X. D., Wang, R. C., Wu, F. Y., et al., 2019. Episodic Nb-Ta Mineralisation in South China: Constraints from In Situ LA-ICP-MS Columbite-Tantalite U-Pb Dating. Ore Geology Reviews, 105: 71-85. https://doi.org/10.1016/j.oregeorev.2018.11.023 Che, X. D., Wu, F. Y., Wang, R. C., et al., 2015. In Situ U-Pb Isotopic Dating of Columbite-Tantalite by LA- ICP-MS. Ore Geology Reviews, 65: 979-989. https://doi.org/10.1016/j.oregeorev.2014.07.008 Cui, Y. R., Yang, J., Tu, J. R., et al., 2024. Cassiterite U-Pb Dating with LA-MC-ICP-MS of the Laozhailing Cu-Sn Deposit, Yongzhou City, Hunan Province. Rock and Mineral Analysis, 43(6): 880-891 (in Chinese with English abstract). Deng, X. D., Li, J. W., Zhao, X. F., et al., 2013. U-Pb Isotope and Trace Element Analysis of Columbite-(Mn) and Zircon by Laser Ablation ICP-MS: Implications for Geochronology of Pegmatite and Associated Ore Deposits. Chemical Geology, 344: 1-11. https://doi.org/10.1016/j.chemgeo.2013.02.014 Dewaele, S., Henjes-Kunst, F., Melcher, F., et al., 2011. Late Neoproterozoic Overprinting of the Cassiterite and Columbite-Tantalite Bearing Pegmatites of the Gatumba Area, Rwanda (Central Africa). Journal of African Earth Sciences, 61(1): 10-26. https://doi.org/10.1016/j.jafrearsci.2011.04.004 Dickin, A. P., 1995. Radiogenic Isotope Geology. Cambridge University Press, Cambridge, 101-135. Dill, H. G., Gerdes, A., Weber, B., 2007. Cu-Fe-U Phosphate Mineralization of the Hagendorf-Pleystein Pegmatite Province, Germany: With Special Reference to Laser-Ablation Inductively-Coupled Plasma Mass Spectrometry (LA-ICP-MS) of Limonite-Cored Torbernite. Mineralogical Magazine, 71(4): 371-387. https://doi.org/10.1180/minmag.2007.071.4.371 Fei, G. C., Menuge, J. F., Li, Y. Q., et al., 2020. Petrogenesis of the Lijiagou Spodumene Pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: Evidence from Geochemistry, Zircon, Cassiterite and Coltan U-Pb Geochronology and Hf Isotopic Compositions. Lithos, 364-365: 105555. https://doi.org/10.1016/j.lithos.2020.105555 Feng, Y. G., Liang, T., Linnen, R., et al., 2020. LA-ICP-MS Dating of High-Uranium Columbite from No. 1 Pegmatite at Dakalasu, the Chinese Altay Orogen: Assessing Effect of Metamictization on Age Concordance. Lithos, 362-363: 105461. https://doi.org/10.1016/j.lithos.2020.105461 Feng, Y. G., Liang, T., Zhang, Z., et al., 2019. Columbite U-Pb Geochronology of Kalu'an Lithium Pegmatites in Northern Xinjiang, China: Implications for Genesis and Emplacement History of Rare-Element Pegmatites. Minerals, 9(8): 456. https://doi.org/10.3390/min9080456 Fu, J. G., Li, G. M., Guo, W. K., et al., 2023. Mineralogical Characteristics of Columbite Group Minerals and Its Implications for Magmatic-Hydrothermal Transition in the Gabo Lithium Deposit, Himalayan Metallogenic Belt. Earth Science Frontiers, 30(5): 134-150 (in Chinese with English abstract). Glynn, S. M., Master, S., Wiedenbeck, M., et al., 2017. The Proterozoic Choma-Kalomo Block, SE Zambia: Exotic Terrane or a Reworked Segment of the Zimbabwe Craton?Precambrian Research, 298: 421-438. https://doi.org/10.1016/j.precamres.2017.06.020 Hao, Y. Y., 2023. Raman Spectroscopic Characteristics of Columbite and the Implications for Columbite U-Pb Age Concordance (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). He, H. H., Arkin, T., Wang, D. H., et al., 2020. Mineralogical Characteristics and TIMS U-Pb Dating of Tantalite-(Mn) from the Bieyesamas Rare Metal Deposit, Xinjiang. Rock and Mineral Analysis, 39(4): 609-619 (in Chinese with English abstract). He, X. H., You, Y. Y., Ming, T. X., et al., 2024. Late Cretaceous-Eocene Granitic Pegmatite Rare-Metal Mineralization Events in the Western Yunnan Province: Constraints from U-Pb Dating of Columbite, Monazite, and Zircon. Acta Petrologica Sinica, 40(2): 510-538 (in Chinese with English abstract). Jiang, S. Y., Zhang, H. X., Liu, S. Q., et al., 2024. The U-Pb Isotope Dating and Tracing Using Different Accessory Minerals in Pegmatite: Problems and Application. Acta Geologica Sinica, 98(5): 1573-1599 (in Chinese with English abstract). Kaeter, D., Barros, R., Menuge, J. F., et al., 2018. The Magmatic-Hydrothermal Transition in Rare-Element Pegmatites from Southeast Ireland: LA-ICP-MS Chemical Mapping of Muscovite and Columbite-Tantalite. Geochimica et Cosmochimica Acta, 240: 98-130. https://doi.org/10.1016/j.gca.2018.08.024 Küster, D., Romer, R. L., Tolessa, D., et al., 2009. The Kenticha Rare-Element Pegmatite, Ethiopia: Internal Differentiation, U-Pb Age and Ta Mineralization. Mineralium Deposita, 44(7): 723-750. https://doi.org/10.1007/s00126-009-0240-8 Legros, H., Mercadier, J., Villeneuve, J., et al., 2019. U-Pb Isotopic Dating of Columbite-Tantalite Minerals: Development of Reference Materials and In Situ Applications by Ion Microprobe. Chemical Geology, 512: 69-84. https://doi.org/10.1016/j.chemgeo.2019.03.001 Li, G. Z., Tu, J. R., Cui, Y. R., et al., 2024. Maintenance and Breakdown Analysis of Neptune Mass Spectrometer Plasma Source. North China Geology, 47(4): 98-105 (in Chinese with English abstract). Li, H., Hong, T., Yang, Z. Q., et al., 2020. Comparative Studying on Zircon, Cassiterite and Coltan U-Pb Dating and 40Ar/39Ar Dating of Muscovite Rare-Metal Granitic Pegmatites: A Case Study of the Northern Tugeman Lithium-Beryllium Deposit in the Middle of Altyn Tagh. Acta Petrologica Sinica, 36(9): 2869-2892 (in Chinese with English abstract). Li, J. K., Li, P., Wang, D. H., et al., 2019. A Review of Niobium and Tantalum Metallogenic Regularity in China. Chinese Science Bulletin, 64(15): 1545-1566 (in Chinese). Li, L. G., Wang, L. X., Zhu, Y. X., et al., 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244 (in Chinese with English abstract). Li, X. J., 2023. Columbite-Group Minerals from the Pegmatite in the Lalong Pluton, Eastern Himalaya and the Two-Staged Nb-Ta Mineralization. Geological Journal of China Universities, 29(6): 847-861 (in Chinese with English abstract). Liu, J. H., Wang, Q., Xu, C. B., et al., 2022. Geochronology of the Chakabeishan Li-(Be) Rare-Element Pegmatite, Zongwulong Orogenic Belt, Northwest China: Constraints from Columbite-Tantalite U-Pb and Muscovite-Lepidolite 40Ar/39Ar Dating. Ore Geology Reviews, 146: 104930. https://doi.org/10.1016/j.oregeorev.2022.104930 Liu, Z. C., Wu, F. Y., Guo, C. L., et al., 2011. Laser In-Situ ICP-MS Determination of U-Pb Age in Xenotime. Chinese Science Bulletin, 56(33): 2772-2781 (in Chinese). Luo, T., Hu, Z. C., 2022. Recent Advances in U-Th-Pb Dating of Accessory Minerals by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Earth Science, 47(11): 4122-4144 (in Chinese with English abstract). Luo, T., Wang, H. L., Zhu, S. B., et al., 2025. Impacts of Common Lead on Apatite U-Pb Geochronology by LA-ICP-MS: Assessment and Correction Strategies. Rock and Mineral Analysis, 44(1): 51-62 (in Chinese with English abstract). Mao, Y. J., Shao, Y. J., Xiong, Y. Q., et al., 2021. Magmatic-Hydrothermal Metallogenic System in Nb-Ta-W-Sn-Pb-Zn Dengfuxian Orefield, Eastern Hunan: Constraint from U-Pb Geochronology of Columbite-Tantalite. Journal of Central South University (Science and Technology), 52(9): 2959-2972 (in Chinese with English abstract). Mattinson, J. M., 2005. Zircon U-Pb Chemical Abrasion ("CA-TIMS") Method: Combined Annealing and Multi-Step Partial Dissolution Analysis for Improved Precision and Accuracy of Zircon Ages. Chemical Geology, 220(1-2): 47-66. https://doi.org/10.1016/j.chemgeo.2005.03.011 Melcher, F., Graupner, T., Gäbler, H. E., et al., 2015. Tantalum-(Niobium-Tin) Mineralisation in African Pegmatites and Rare Metal Granites: Constraints from Ta-Nb Oxide Mineralogy, Geochemistry and U-Pb Geochronology. Ore Geology Reviews, 64: 667-719. https://doi.org/10.1016/j.oregeorev.2013.09.003 Melleton, J., Gloaguen, E., Frei, D., et al., 2012. How are the Emplacement of Rare-Element Pegmatites, Regional Metamorphism and Magmatism Interrelated in the Moldanubian Domain of the Variscan Bohemian Massif, Czech Republic? The Canadian Mineralogist, 50(6): 1751-1773. https://doi.org/10.3749/canmin.50.6.1751 Nie, X., Chen, L., Guo, X. Q., et al., 2023. Geochemical Analysis of Apatite and Columbite-Group Minerals of Berylcolumbite Pegmatites in Ningshan, Southern Qinling Orogen, China. Earth Science Frontiers, 30(5): 115-133 (in Chinese with English abstract). Qing, L. Y., Luo, T., Hu, Z. C., et al., 2024. OXF: A New Natural Reference Material for Use in LA-ICP-MS U-Pb Columbite-Tantalite Geochronology. Journal of Analytical Atomic Spectrometry, 39(8): 2066-2077. https://doi.org/10.1039/d4ja00195h Rayner, N., Stern, R. A., Carr, S. D., 2005. Grain-Scale Variations in Trace Element Composition of Fluid-Altered Zircon, Acasta Gneiss Complex, Northwestern Canada. Contributions to Mineralogy and Petrology, 148(6): 721-734. https://doi.org/10.1007/s00410-004-0633-8 Romer, R. L., Lehmann, B., 1995. U-Pb Columbite Age of Neoproterozoic Ta-Nb Mineralization in Burundi. Economic Geology, 90(8): 2303-2309. https://doi.org/10.2113/gsecongeo.90.8.2303 Romer, R. L., Smeds, S. A., 1994. Implications of U-Pb Ages of Columbite-Tantalites from Granitic Pegmatites for the Palaeoproterozoic Accretion of 1.90-1.85 Ga Magmatic Arcs to the Baltic Shield. Precambrian Research, 67(1-2): 141-158. https://doi.org/10.1016/0301-9268(94)90008-6 Romer, R. L., Smeds, S. A., 1996. U-Pb Columbite Ages of Pegmatites from Sveconorwegian Terranes in Southwestern Sweden. Precambrian Research, 76(1-2): 15-30. https://doi.org/10.1016/0301-9268(95)00023-2 Romer, R. L., Smeds, S. A., 1997. U-Pb Columbite Chronology of Post-Kinematic Palaeoproterozoic Pegmatites in Sweden. Precambrian Research, 82(1-2): 85-99. https://doi.org/10.1016/S0301-9268(96)00050-2 Romer, R. L., Wright, J. E., 1992. U-Pb Dating of Columbites: A Geochronologic Tool to Date Magmatism and Ore Deposits. Geochimica et Cosmochimica Acta, 56(5): 2137-2142. https://doi.org/10.1016/0016-7037(92)90337-I Ryznar, J., Pršek, J., Włodek, A., et al., 2023. Mineralogy and Chemistry of Columbite-Tantalite from Bugarura-Kuluti Area, Karagwe-Ankole Belt, Rwanda: Indicators of Pegmatite and Granite Evolution. Ore Geology Reviews, 159: 105574. https://doi.org/10.1016/j.oregeorev.2023.105574 Schaltegger, U., Ovtcharova, M., Gaynor, S. P., et al., 2021. Long-Term Repeatability and Interlaboratory Reproducibility of High-Precision ID-TIMS U-Pb Geochronology. Journal of Analytical Atomic Spectrometry, 36(7): 1466-1477. https://doi.org/10.1039/d1ja00116g Smith, S. R., Foster, G. L., Romer, R. L., et al., 2004. U-Pb Columbite-Tantalite Chronology of Rare-Element Pegmatites Using TIMS and Laser Ablation-Multi Collector-ICP-MS. Contributions to Mineralogy and Petrology, 147(5): 549-564. https://doi.org/10.1007/s00410-003-0538-y Sun, W. L., Zhao, Z. D., Mo, X. X., et al., 2023. Geochemistry and Geochronology of Columbite-Tantalite Group Minerals from the Chakabeishan Pegmatite-Type Li-Be Deposit, North Qaidam Tectonic Belt. Acta Petrologica Sinica, 39(11): 3417-3433 (in Chinese with English abstract). Tan, D. B., Li, D. Y., Xiao, Y. L., 2018. Geochemical Characteristics of Niobium and Tantalum: A Review of Twin Elements. Earth Science, 43(1): 317-332 (in Chinese with English abstract). Tang, Y., Zhao, J. Y., Zhang, H., et al., 2017. Precise Columbite-(Fe) and Zircon U-Pb Dating of the Nanping No. 31 Pegmatite Vein in Northeastern Cathaysia Block, SE China. Ore Geology Reviews, 83: 300-311. https://doi.org/10.1016/j.oregeorev.2016.10.040 Tu, J. R., Zhou, H. Y., Cui, Y. R., et al., 2024. A High-Precision ID-TIMS U-Pb Dating Method of Apatite. Rock and Mineral Analysis, 43(4): 533-545 (in Chinese with English abstract). Wang, D. H., 2019. Study on Critical Mineral Resources: Significance of Research, Determination of Types, Attributes of Resources, Progress of Prospecting, Problems of Utilization, and Direction of Exploitation. Acta Geologica Sinica, 93(6): 1189-1209 (in Chinese with English abstract). Wang, H., Gao, H., Wang, S. M., et al., 2022. Zircon and Columbite-Tantalite U-Pb Geochronology of Li-Be Rare Metal Pegmatite and Its Geological Significance in Muji Area, West Kunlun, China. Acta Petrologica Sinica, 38(7): 1937-1951 (in Chinese with English abstract). Wang, J. R., Lyu, Z. H., Lyu, X. B., et al., 2020. LA-ICP-MS U-Pb Age of Columbite from the Daping Granite Porphyry-Type Rare Metal Deposit in Fujian Province and Its Geological Significance. Bulletin of Mineralogy, Petrology and Geochemistry, 39(3): 637-645 (in Chinese with English abstract). Wang, Q., Hou, K. J., Zou, T. R., 2019. Isotopic Dating Method Suitable for Rare-Metal Deposits and Its Application. Acta Geologica Sinica, 93(6): 1523-1532 (in Chinese with English abstract). Wang, R. C., Che, X. D., Wu, B., et al., 2020. Critical Mineral Resources of Nb, Ta, Zr, and Hf in China. Chinese Science Bulletin, 65(33): 3763-3777 (in Chinese). Wang, W., Hou, K. J., Wang, D. H., et al., 2020. Columbite-Tantalite U-Pb Dating of Yanshanian Rare Metal Mineralization in Western Sichuan. Geology in China, 47(3): 890-891 (in Chinese with English abstract). Wu, B. W., Sun, S. L., Zhang, J., et al., 2024. In-Situ U-Pb Dating, Hf Isotope Analyses of Zircons, and Geochemical Characteristics in the Volcanic Rocks of the Tiaojishan Formation in the Jinyang Basin, Western Liaoning Province. North China Geology, 47(4): 37-46 (in Chinese with English abstract). Xiang, L., 2020. Neoproterozoic Tin-Niobium-Tantalum Metallogenesis in the Western Part of Jiangnan Orogen (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). Xiang, L., Wang, R. C., Romer, R. L., et al., 2020. Neoproterozoic Nb-Ta-W-Sn Bearing Tourmaline Leucogranite in the Western Part of Jiangnan Orogen: Implications for Episodic Mineralization in South China. Lithos, 360-361: 105450. https://doi.org/10.1016/j.lithos.2020.105450 Xiang, L., Wang, R. C., Romer, R. L., et al., 2023. Columbite SN3: A New Potential Reference Material for U-Pb Dating by LA-ICP-MS. Geostandards and Geoanalytical Research, 47(3): 609-628. https://doi.org/10.1111/ggr.12500 Xie, L., Wang, R. C., Che, X. D., et al., 2016. Tracking Magmatic and Hydrothermal Nb-Ta-W-Sn Fractionation Using Mineral Textures and Composition: A Case Study from the Late Cretaceous Jiepailing Ore District in the Nanling Range in South China. Ore Geology Reviews, 78: 300-321. https://doi.org/10.1016/j.oregeorev.2016.04.003 Xiong, X., Li, J. K., Wang, D. H., et al., 2021. Mineralogical Characteristics of Columbite-Tantalite Group Minerals in Zhawulong Granitic Pegmatite-Type Rare Metal Deposit of Western Sichuan and Their Geological Implications. Mineral Deposits, 40(4): 693-705 (in Chinese with English abstract). Yan, Q. H., Qiu, Z. W., Wang, H., et al., 2018. Age of the Dahongliutan Rare Metal Pegmatite Deposit, West Kunlun, Xinjiang (NW China): Constraints from LA-ICP-MS U-Pb Dating of Columbite-(Fe) and Cassiterite. Ore Geology Reviews, 100: 561-573. https://doi.org/10.1016/j.oregeorev.2016.11.010 Yang, H., Wang, W., Liu, J. H., 2017. Zircon U-Pb Dating and Its Geological Significance of Granitic Pegmatites from the Kuandian and Sanjiazi Area in Eastern Liaoning Province. Acta Petrologica Sinica, 33(9): 2675-2688 (in Chinese with English abstract). Yang, M., Yang, Y. H., Romer, R. L., et al., 2023. Characterization of Reference Materials for In Situ U-Pb Dating of Columbite Group Minerals by LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 38(9): 1816-1829. https://doi.org/10.1039/d3ja00162h Yang, S., Zhang, L. L., Wang, R., et al., 2024. Application of High-Resolution Laser Multi Collector ICP-MS U-Pb Dating to Columbite-Group Minerals with Compositional Zonation: Reassessment of Matrix Effects among Columbite-Group Minerals. Journal of Analytical Atomic Spectrometry, 39(10): 2421-2432. https://doi.org/10.1039/d4ja00201f Yao, Y. Z., Li, L. X., Fu, J. F., et al., 2023. Geochronological Constraints on Early Precambrian Granitic Pegmatite Type Nb-Ta Mineralization of the Lijiapuzi Deposit in North China Craton. Geological Bulletin of China, 42(6): 1047-1049 (in Chinese with English abstract). Yuan, F., Jiang, S. Y., Wang, C. L., et al., 2022. U-Pb Geochronology of Columbite-Group Mineral, Cassiterite, and Zircon and Hf Isotopes for Devonian Rare-Metal Pegmatite in the Nanyangshan Deposit, North Qinling Orogenic Belt, China. Ore Geology Reviews, 140: 104634. https://doi.org/10.1016/j.oregeorev.2021.104634 Zhai, M. G., Wu, F. Y., Hu, R. Z., et al., 2019. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, 33(2): 106-111 (in Chinese with English abstract). Zhao, L. H., Sun, D. Y., Hu, M. Y., et al., 2024. Simultaneous Determination of U-Pb Age and Trace Elements of Zircon by Laser Ablation Sector Field Inductively Coupled Plasma-Mass Spectrometry. Rock and Mineral Analysis, 43(1): 47-62 (in Chinese with English abstract). Zhao, Z., Yang, X. Y., Lu, S. M., et al., 2021. Genesis of Late Cretaceous Granite and Its Related Nb-Ta-W Mineralization in Shangbao, Nanling Range: Insights from Geochemistry of Whole-Rock and Nb-Ta Minerals. Ore Geology Reviews, 131: 103975. https://doi.org/10.1016/j.oregeorev.2020.103975 Zheng, Y. Y., Chen, X., Gao, S. B., et al., 2024. Discovery and Prospecting Significance of Zhaguopu Li-Nb-Ta Deposit in the Western Himalayan Metallogenic Belt. Earth Science, 49(4): 1555-1564 (in Chinese with English abstract). Zhou, Q. F., Qin, K. Z., Tang, D. M., et al., 2018. LA-ICP-MS U-Pb Zircon, Columbite-Tantalite and 40Ar-39Ar Muscovite Age Constraints for the Rare-Element Pegmatite Dykes in the Altai Orogenic Belt, NW China. Geological Magazine, 155(3): 707-728. https://doi.org/10.1017/S0016756816001096 Zhu, Z. Y., 2018. Mineralogy Study of Rare-Metal Granites in South China: Case Study of Huangshan and Songshugang Granite, Jiangxi Province (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). 白洪阳, 王核, 闫庆贺, 等, 2022. 新疆西昆仑雪凤岭锂矿床铌钽铁矿、锡石年龄及其地质意义. 岩石学报, 38(7): 2139-2152. 崔玉荣, 杨君, 涂家润, 等, 2024. 湖南永州老寨岭铜锡矿床锡石LA-MC-ICP-MS U-Pb定年研究. 岩矿测试, 43(6): 880-891. 付建刚, 李光明, 郭伟康, 等, 2023. 喜马拉雅成矿带嘎波锂矿铌铁矿族矿物学特征及对岩浆‒热液过程的指示. 地学前缘, 30(5): 134-150. 郝媛媛, 2023. 铌钽铁矿拉曼光谱特征及其对U-Pb年龄谐和程度的指示(硕士学位论文). 西安: 长安大学. 何晗晗, 艾尔肯·吐尔孙, 王登红, 等, 2020. 新疆别也萨麻斯矿区钽锰矿的矿物学特征及其TIMS U-Pb定年. 岩矿测试, 39(4): 609-619. 何小虎, 游亚元, 明添学, 等, 2024. 滇西晚白垩世‒始新世花岗伟晶岩型稀有金属成矿事件: 来自铌钽铁矿、独居石、锆石U-Pb年代学的约束. 岩石学报, 40(2): 510-538. 蒋少涌, 张浩翔, 刘思祺, 等, 2024. 伟晶岩中不同副矿物U-Pb同位素定年和示踪的问题与应用. 地质学报, 98(5): 1573-1599. 李国占, 涂家润, 崔玉荣, 等, 2024. NEPTUNE型质谱仪等离子体源的维护与故障分析. 华北地质, 47(4): 98-105. 李杭, 洪涛, 杨智全, 等, 2020. 稀有金属花岗伟晶岩锆石、锡石与铌钽铁矿U-Pb和白云母40Ar/39Ar测年对比研究——以阿尔金中段吐格曼北锂铍矿床为例. 岩石学报, 36(9): 2869-2892. 李建康, 李鹏, 王登红, 等, 2019. 中国铌钽矿成矿规律. 科学通报, 64(15): 1545-1566. 李乐广, 王连训, 朱煜翔, 等, 2023. 华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程. 地球科学, 48(9): 3221-3244. doi: 10.3799/dqkx.2022.141 李雪姣, 2023. 喜马拉雅东部拉隆岩体伟晶岩中的铌铁矿族矿物特征及两期铌钽成矿作用. 高校地质学报, 29(6): 847-861. 刘志超, 吴福元, 郭春丽, 等, 2011. 磷钇矿U-Pb年龄激光原位ICP-MS测定. 科学通报, 56(33): 2772-2781. 罗涛, 胡兆初, 2022. 激光剥蚀电感耦合等离子体质谱副矿物U-Th-Pb定年新进展. 地球科学, 47(11): 4122-4144. doi: 10.3799/dqkx.2022.365 罗涛, 王瀚林, 朱松柏, 等, 2025. 普通铅对LA-ICP-MS磷灰石U-Pb定年结果的影响及校正方法. 岩矿测试, 44(1): 51-62. 毛禹杰, 邵拥军, 熊伊曲, 等, 2021. 湘东邓阜仙Nb-Ta-W-Sn-Pb-Zn岩浆热液成矿系统: 铌钽锰矿U-Pb年代学约束. 中南大学学报(自然科学版), 52(9): 2959-2972. 聂潇, 陈雷, 郭现轻, 等, 2023. 南秦岭中段宁陕地区绿柱石‒铌铁矿型伟晶岩中磷灰石和铌铁矿族矿物的矿物地球化学研究. 地学前缘, 30(5): 115-133. 孙文礼, 赵志丹, 莫宣学, 等, 2023. 柴北缘茶卡北山伟晶岩型锂铍矿床铌钽铁矿年代学与地球化学. 岩石学报, 39(11): 3417-3433. 谭东波, 李东永, 肖益林, 2018. "孪生元素"铌‒钽的地球化学特性和研究进展. 地球科学, 43(1): 317-332. doi: 10.3799/dqkx.2018.019 涂家润, 周红英, 崔玉荣, 等, 2024. 磷灰石ID-TIMS高精度U-Pb定年方法. 岩矿测试, 43(4): 533-545. 王登红, 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209. 王核, 高昊, 王赛蒙, 等, 2022. 新疆西昆仑木吉地区锂铍稀有金属伟晶岩锆石及铌钽铁矿U-Pb年代学、Hf同位素组成及其地质意义. 岩石学报, 38(7): 1937-1951. 王锦荣, 吕正航, 吕新彪, 等, 2020. 福建大坪花岗斑岩型稀有金属矿床铌铁矿LA-ICP-MS U-Pb定年及其地质意义. 矿物岩石地球化学通报, 39(3): 637-645. 王倩, 侯可军, 邹天人, 2019. 适合于稀有金属矿床的同位素定年方法及其应用. 地质学报, 93(6): 1523-1532. 王汝成, 车旭东, 邬斌, 等, 2020. 中国铌钽锆铪资源. 科学通报, 65(33): 3763-3777. 王伟, 侯可军, 王登红, 等, 2020. 川西燕山期稀有金属铌钽铁矿U-Pb年龄报道. 中国地质, 47(3): 890-891. 吴炳伟, 孙守亮, 张健, 等, 2024. 辽西金羊盆地髫髻山组火山岩锆石U-Pb年龄、Hf同位素组成及岩石地球化学特征. 华北地质, 47(4): 37-46. 向路, 2020. 江南造山带西缘新元古代锡铌钽成矿作用(博士学位论文). 南京: 南京大学. 熊欣, 李建康, 王登红, 等, 2021. 川西扎乌龙花岗伟晶岩型稀有金属矿床铌钽铁矿族矿物特征及其意义. 矿床地质, 40(4): 693-705. 杨红, 王伟, 刘建辉, 2017. 辽东宽甸和三家子地区花岗伟晶岩的锆石U-Pb年代学及其地质意义. 岩石学报, 33(9): 2675-2688. 姚玉增, 李立兴, 付建飞, 等, 2023. 华北克拉通辽宁李家堡子早前寒武纪花岗伟晶岩型铌钽成矿的年龄证据. 地质通报, 42(6): 1047-1049. 翟明国, 吴福元, 胡瑞忠, 等, 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106-111. 赵令浩, 孙冬阳, 胡明月, 等, 2024. 激光剥蚀‒扇形磁场电感耦合等离子体质谱法同时测定锆石U-Pb年龄和微量元素含量. 岩矿测试, 43(1): 47-62. 郑有业, 陈鑫, 高顺宝, 等, 2024. 喜马拉雅成矿带西段扎果普锂铌钽矿床的发现及其找矿意义. 地球科学, 49(4): 1555-1564. doi: 10.3799/dqkx.2024.035 诸泽颖, 2018. 华南稀有金属花岗岩矿物学研究: 以江西松树岗和黄山花岗岩为例(博士学位论文). 南京: 南京大学. -