• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    广东大宝山多金属矿床叠加成因:硫化物Re-Os和Rb-Sr年龄及原位微量元素证据

    王磊 王祥东 胡军 金鑫镖 张熊 谭娟娟

    王磊, 王祥东, 胡军, 金鑫镖, 张熊, 谭娟娟, 2025. 广东大宝山多金属矿床叠加成因:硫化物Re-Os和Rb-Sr年龄及原位微量元素证据. 地球科学, 50(7): 2548-2565. doi: 10.3799/dqkx.2025.104
    引用本文: 王磊, 王祥东, 胡军, 金鑫镖, 张熊, 谭娟娟, 2025. 广东大宝山多金属矿床叠加成因:硫化物Re-Os和Rb-Sr年龄及原位微量元素证据. 地球科学, 50(7): 2548-2565. doi: 10.3799/dqkx.2025.104
    Wang Lei, Wang Xiangdong, Hu Jun, Jin Xinbiao, Zhang Xiong, Tan Juanjuan, 2025. Superimposed Mineralization of Dabaoshan Polymetallic Deposit in Guangdong Province: Evidence from Sulfide Re-Os and Rb-Sr Dating and In-Situ Trace Element Analysis. Earth Science, 50(7): 2548-2565. doi: 10.3799/dqkx.2025.104
    Citation: Wang Lei, Wang Xiangdong, Hu Jun, Jin Xinbiao, Zhang Xiong, Tan Juanjuan, 2025. Superimposed Mineralization of Dabaoshan Polymetallic Deposit in Guangdong Province: Evidence from Sulfide Re-Os and Rb-Sr Dating and In-Situ Trace Element Analysis. Earth Science, 50(7): 2548-2565. doi: 10.3799/dqkx.2025.104

    广东大宝山多金属矿床叠加成因:硫化物Re-Os和Rb-Sr年龄及原位微量元素证据

    doi: 10.3799/dqkx.2025.104
    基金项目: 

    国家自然科学基金项目 41302068

    国家自然科学基金项目 U2244212

    详细信息
      作者简介:

      王磊(1981—), 男, 正高级工程师, 博士, 主要从事岩石学和矿床学研究. ORCID: 0000-0001-6889-6040. E-mail:wlei_a@mail.cgs.gov.cn

    • 中图分类号: P611;P597

    Superimposed Mineralization of Dabaoshan Polymetallic Deposit in Guangdong Province: Evidence from Sulfide Re-Os and Rb-Sr Dating and In-Situ Trace Element Analysis

    • 摘要:

      大宝山是钦杭成矿带内一个重要的大型多金属矿床,其是否存在海底喷流沉积成矿作用尚存在争议.对该矿床不同类型的硫化物进行了同位素定年和原位微量元素分析.获得的磁黄铁矿Re-Os和闪锌矿Rb-Sr等时线年龄分别为(366±33)Ma和(166.3±2.5)Ma.磁黄铁矿整体呈现Co低、Ni高、Se高、Te低的特点,Co/Ni比值几乎均小于1,指示其沉积成因的特征.闪锌矿相对富集Fe、Mn、Cd、Ga、In、Sn等元素,具有较低的Zn/Cd和Cd/Fe比值,较低的Co含量和较高的Sn含量,指示其喷流沉积成因.综合认为大宝山多金属矿床经历了中泥盆世喷流沉积成矿和中侏罗世岩浆热液叠加成矿.在400 ℃左右的成矿温度下,硫化物Re-Os同位素体系保持封闭,原位成分仍记录了早期沉积成因特征,这一发现在华南块状硫化物矿床成因研究中可供借鉴.

       

    • 图  1  华南大地构造图(a)、粤北区域地质简图(b)和大宝山多金属矿床地质图(c)

      a. 据Mao et al.(2013);底图来自自然资源部标准地图服务系统,底图审图号为GS(2016)2923号. b. 据葛朝华和韩发(1987). c. 据Wang et al.(2019)

      Fig.  1.  Simplified tectonic map of South China (a); regional geological map of North Guangdong Province (b); geological map of the Dabaoshan polymetallic deposit (c)

      图  2  大宝山多金属矿床纵剖面(II′)(据刘武生等,2019

      Fig.  2.  The vertical section (II′) of the Dabaoshan polymetallic deposit (after Liu et al., 2019)

      图  3  大宝山多金属矿床勘探线47线和8线

      Fig.  3.  Cross-sections of No.47 and No.8 exploration lines of the Dabaoshan polymetallic deposit

      图  4  大宝山多金属矿床典型矿石照片

      a、b.北采场磁黄铁矿石(29线721 m平台);c.北采场含铜磁黄铁矿石(29线721 m平台);d.北采场黄铁矿石(39线661 m平台);e.北采场磁黄铁矿铜矿石(45线721 m平台);f.南采场含铜铅锌矿石(8线733 m平台). 矿物缩写:Po.磁黄铁矿;Py.黄铁矿;Ccp.黄铜矿;Spl.闪锌矿;Gn.方铅矿

      Fig.  4.  Photographs of typical sulfide ore in the Dabaoshan polymetallic deposit

      图  5  大宝山多金属矿床典型矿石显微照片

      a. 星散状Po-1和脉状Po-2;b. 团块状Po-2和星散状重结晶Ccp-1;c. 呈三联晶结构的Po-3;d. 块状Po-3和星散状重结晶Ccp-1;e. Ccp-2和Spl-1交代块状Po-4;f. 方铅矿交代块状Spl-2. 矿物缩写:Po. 磁黄铁矿;Py. 黄铁矿;Ccp. 黄铜矿;Spl. 闪锌矿;Gn. 方铅矿

      Fig.  5.  Microphotographs of typical sulfide ore in the Dabaoshan polymetallic deposit

      图  6  不同类型磁黄铁矿微量元素含量变化趋势

      Fig.  6.  Trace element values changing tendency of different type pyrrhotites

      图  7  磁黄铁矿Re-Os同位素等时线图

      Fig.  7.  187Re/188Os vs. 187Os/188Os isochron plot of pyrrhotite

      图  8  闪锌矿Rb-Sr同位素等时线图

      Fig.  8.  87Rb/86Sr vs. 87Sr/86Sr isochron plot of sphalerite

      图  9  大宝山多金属矿床成矿年龄统计

      Fig.  9.  Age statistics of mineralization for the Dabaoshan polymetallic deposit

      图  10  磁黄铁矿微量元素特征

      Fig.  10.  The trace element characteristics of pyrrhotite

      图  11  磁黄铁矿的Co-Ni协变图

      Fig.  11.  Binary plot of Co vs. Ni for pyrrhotite

      图  12  闪锌矿(a) In-Ge、(b) In-Fe、(c) In-Cu、(d) In-Sn、(e) (In+Sn)-(Cu+Ag)和(f) Cd/Fe-In/Fe关系

      Fig.  12.  Binary plots of (a) In-Ge, (b) In-Fe, (c) In-Cu, (d) In-Sn, (e) (In+Sn)-(Cu+Ag), (f) Cd/Fe-In/Fe in sphalerite

      表  1  本次研究的样品采样位置、特征及测试内容

      Table  1.   The sample location, characteristics and analysis contents in this study

      样品编号 采样位置 矿物组合 测试内容
      DBS37-1, 2, 3 45线721 m平台 Ccp+Po+Spl 原位微量元素
      DBS27-14 39线661 m平台 Po±Ccp 原位微量元素,Re-Os
      DBS26-2a 31线709 m平台 Po+Ccp 原位微量元素
      DBS32-1a 29线721 m平台 Po±Ccp 原位微量元素
      DBS31-5, 8 29线721 m平台 Po±Ccp 原位微量元素
      DBS25-1a, 1b, 3a 23线721 m平台 Po±Ccp 原位微量元素,Re-Os
      DBS36-1b 17线745 m平台 Po±Ccp 原位微量元素
      DBS35-3 8线721 m平台 Po±Ccp 原位微量元素,Re-Os
      DBS35-1, 2 8线721 m平台 Spl+Gn+Po±Ccp±Py 原位微量元素,Rb-Sr
      DBS33-1, 4, 5, 7 8线733 m平台 Spl+Gn±Po±Ccp±Py 原位微量元素, Rb-Sr
      注:矿物缩写:Po.磁黄铁矿;Py.黄铁矿;Ccp.黄铜矿;Spl.闪锌矿;Gn.方铅矿.
      下载: 导出CSV

      表  2  硫化物LA-ICP-MS微量元素分析结果(10-6

      Table  2.   Summary of the LA-ICP-MS trace element results for sulfides(10-6)

      硫化物 Fe Mn V Cr Co Ni Cu Zn Ga Ge As Se Ag Cd In Sn Sb Te W Au Tl Pb Bi
      Po-1
      n=33
      标准方差 30 810 185 36.4 19.7 1.21 50.6 2.72 5.74 2.56 2.80 3.17 17.3 0.620 1.14 0.15 5.52 0.50 0.14 87.6 0.06 0.34 5.24 72.2
      最小值 562 022 1.76 0.02 0.93 0.02 13.7 0.14 0.05 0.28 0.11 1.58 4.59 0.018 0.27 0.001 0.08 0.01 0.02 0.08 0.001 0.01 0.15 0.09
      最大值 675 177 736 205 101 5.15 179 10.1 20.7 10.2 14.6 12.9 76.4 2.248 4.00 0.57 24.5 1.87 0.53 405 0.19 1.37 23.8 410
      平均值 614 349 75.9 12.7 19.3 1.63 96.6 3.41 9.50 2.41 3.84 6.35 30.3 0.891 1.07 0.13 4.32 0.53 0.17 24.8 0.08 0.29 4.20 15.6
      Po-2
      n=17
      标准方差 32 037 2.65 14.0 5.88 0.57 48.3 180 4.25 0.80 1.59 3.82 26.4 0.532 1.44 0.02 1.35 0.16 0.08 33.5 0.03 0.12 8.44 1.19
      最小值 586 039 3.64 0.04 1.79 0.10 0.07 0.92 3.07 0.27 0.84 0.90 3.77 0.047 0.11 0.01 0.31 0.06 0.002 0.06 0.01 0.04 0.22 0.22
      最大值 684 496 13.3 46.6 25.2 2.00 197 479 15.5 2.54 5.26 19.1 84.0 1.938 3.94 0.06 4.66 0.58 0.27 75.2 0.10 0.34 35.1 5.06
      平均值 616 739 6.85 4.49 9.42 1.03 92.0 71.8 9.02 1.05 2.53 7.23 41.0 0.917 1.30 0.03 2.27 0.22 0.06 15.2 0.07 0.12 3.59 1.33
      Po-3
      n=41
      标准方差 25 636 68.5 0.51 6.66 0.58 33.2 4.59 4.67 2.87 2.17 213 16.1 0.678 0.75 0.06 1.64 0.72 0.06 2.19 0.03 0.05 2.00 4.73
      最小值 600 038 0.73 0.02 0.35 0.01 0.95 0.05 0.96 0.02 0.10 0.50 0.27 0.046 0.29 0.004 0.11 0.01 0.003 0.03 0.02 0.01 0.13 0.08
      最大值 704 488 433 2.30 33.7 2.92 118 17.2 27.7 13.6 7.64 1356 66.8 3.918 2.64 0.23 5.20 3.32 0.25 9.14 0.11 0.19 12.0 26.8
      平均值 642 141 17.1 0.42 7.42 0.49 44.3 5.30 6.54 1.20 3.49 39.8 20.7 0.755 1.16 0.07 2.14 0.51 0.06 0.79 0.05 0.06 1.76 2.40
      Po-4
      n=25
      标准方差 21 462 4.91 3.45 13.8 2.29 34.0 990 704 1.29 2.17 2.81 26.6 2.670 5.60 2.02 6.02 0.20 0.04 0.14 0.03 0.04 4.97 22.1
      最小值 583 043 0.34 0.01 0.46 0.16 6.35 1.17 4.33 0.11 0.68 1.21 4.29 0.144 0.38 0.01 0.83 0.01 0.004 0.04 0.01 0.02 0.01 0.59
      最大值 667 315 20.9 14.9 61.3 6.83 141 3 962 2 506 4.13 7.64 11.65 86.8 8.796 18.4 9.01 21.6 0.66 0.14 0.48 0.13 0.15 19.5 99.5
      平均值 633 112 5.67 1.15 9.30 3.28 40.1 320 378 1.53 3.55 6.55 36.9 2.919 3.99 0.91 4.85 0.25 0.05 0.15 0.05 0.06 3.73 15.2
      Spl-1
      n=12
      标准方差 1 523 232 0.06 1.47 0.41 8.27 678 4 380 1.26 0.72 0.52 4.50 5.72 305 47.3 11.3 0.21 0.05 0.01 0.09 0.04 2.53 3.00
      最小值 81 247 456 0.07 0.53 1.22 0.90 152 667 837 5.90 0.10 0.20 1.34 4.00 4 887 177 0.39 0.02 0.01 0.01 0.04 0.01 0.08 0.32
      最大值 86 160 1 120 0.24 4.60 2.66 25.8 2 059 682 315 9.76 1.81 1.65 15.7 20.8 5 751 321 40.8 0.63 0.14 0.05 0.34 0.16 6.93 8.29
      平均值 83 558 707 0.13 2.34 1.85 10.9 756 673 127 7.93 1.11 0.73 8.41 10.8 5 378 250 5.55 0.26 0.05 0.03 0.14 0.10 2.71 3.29
      Spl-2
      n=8
      标准方差 719 176 0.05 \ 0.14 12.2 131 2 530 10.0 1.16 1.12 3.15 2.34 76.8 5.60 6.18 2.05 0.43 0.02 0.07 0.07 1.39 0.014
      最小值 58 570 3 608 0.01 \ 0.15 1.63 220 676 035 82.4 0.16 0.04 0.53 0.99 5 139 147 6.46 0.02 0.02 0.03 0.05 0.03 0.26 0.002
      最大值 60 467 4 164 0.10 \ 0.43 32.1 603 684 074 113 3.32 2.75 8.20 8.67 5 409 163 23.4 4.65 1.02 0.06 0.24 0.23 4.37 0.034
      平均值 59 807 4 011 0.05 \ 0.31 16.3 285 680 192 101 1.42 0.91 5.24 3.42 5 281 155 12.4 1.68 0.33 0.04 0.11 0.16 1.18 0.015
      下载: 导出CSV

      表  3  磁黄铁矿Re-Os同位素结果

      Table  3.   Re-Os isotopic data of pyrrhotite

      样品编号 样重(g) ω(Re) (10‒9) ω(普Os) (10‒9) ω(187Os) (10‒9) 187Re/188Os 187Os/188Os
      测定值 2σ 测定值 2σ 测定值 2σ 测定值 2σ 测定值 2σ
      DBS25-1a 0.700 62 0.358 8 0.002 7 0.017 8 0.000 1 0.002 0 0.000 02 97.96 1.00 0.859 3 0.001 5
      DBS25-1b 0.700 06 0.381 0 0.002 8 0.049 5 0.000 4 0.002 9 0.000 02 37.17 0.38 0.456 5 0.000 9
      DBS25-3a 0.700 47 0.335 5 0.002 5 0.007 3 0.000 1 0.001 5 0.000 01 221.5 2.40 1.583 8 0.008 0
      DBS35-3 0.700 35 0.464 0 0.003 5 0.028 5 0.000 3 0.002 6 0.000 03 78.63 1.00 0.704 2 0.004 8
      DBS27-14 0.700 11 1.224 0 0.009 0 0.070 6 0.000 6 0.007 1 0.000 06 83.85 0.90 0.772 1 0.002 9
      下载: 导出CSV

      表  4  闪锌矿Rb-Sr同位素结果

      Table  4.   Rb-Sr isotopic data of sphalerite

      样品编号 ω(Rb) (10‒6) ω(Sr) (10‒6) 87Rb/86Sr 87Sr/86Sr 1σ
      DBS33-1 0.248 8 0.312 4 2.297 0.714 77 0.000 04
      DBS33-4 0.659 7 0.105 2 18.16 0.750 75 0.000 06
      DBS33-5 0.652 7 0.192 9 9.373 0.731 85 0.000 07
      DBS33-7 0.300 6 0.027 0 32.39 0.785 37 0.000 02
      DBS35-1 0.068 8 0.055 1 3.603 0.717 66 0.000 05
      DBS35-2 0.782 6 0.058 9 38.66 0.799 09 0.000 04
      DBS35-1b 0.065 6 0.089 0 2.126 0.712 53 0.000 08
      DBS35-2b 0.600 4 0.043 9 39.77 0.803 92 0.000 10
      下载: 导出CSV
    • Brenan, J. M., Cherniak, D. J., Rose, L. A., 2000. Diffusion of Osmium in Pyrrhotite and Pyrite: Implications for Closure of the Re-Os Isotopic System. Earth and Planetary Science Letters, 180: 399-413. https://doi.org/10.1016/S0012-821X(00)00165-5
      Cai, J. H., Liu, J. Q., 1993. Research and Its Application on the Inclusions Characteristics in the Dabaoshan Polymetallic Deposit, Northern Guangdong. Journal of Mineralogy and Petrology, 13(1): 33-40 (in Chinese with English abstract). http://www.researchgate.net/publication/313672438_Research_and_its_application_on_the_inclusions_characteristics_in_the_Dabaoshan_polymetallic_deposit_Northern_Guangdong
      Chen, L., Wang, Z. Q., Zhao, Y. Y., et al., 2013. Re-Os Isotopic Dating of Pyrrhotite in the Linghou Cu Deposit, Jiande, Zhejiang Province and Its Geological Significance. Acta Geologica Sinica, 87(12): 1864-1873 (in Chinese with English abstract).
      Chu, X. K., Li, B., Shen, P., et al., 2022. Trace Elements in Sulfide Minerals from the Huangshaping Copper-Polymetallic Deposit, Hunan, China: Ore Genesis and Element Occurrence. Ore Geology Reviews, 144: 104867. https://doi.org/10.1016/j.oregeorev.2022.104867
      Du, A. D., Wu, S. Q., Sun, D. Z., et al., 2004. Preparation and Certification of Re-Os Dating Reference Materials: Molybdenites HLP and JDC. Geostandards and Geoanalytical Research, 28(1): 41-52. https://doi.org/10.1111/j.1751-908X.2004.tb01042.x
      Du, G. M., Mei, Y. P., Cai, H., et al., 2012. Geochronology Research and Its Significance for Mo-W Polymetallic Deposit of Dabao Mountain in Northern Guangdong Province. Geology and Mineral Resources of South China, 28(3): 226-231 (in Chinese with English abstract).
      Fu, X. M., Zhang, D. X., Dai, T. G., et al., 2018. Trace Element Record of Pyrite from Diverse Deposits-Examples from the Dabaoshan Polymetallic Deposit of Northern Guangdong, South China. Geotectonica et Metallogenia, 42(3): 505-519 (in Chinese with English abstract).
      Ge, C. H., Han, F., 1986. Submarine Volcanic Hydrothermal Sedimentary Origin of the Dabaoshan Iron and Polymetallic Sulfide Deposit. Mineral Deposits, 5(1): 1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ198601000.htm
      Ge, C. H., Han, F., 1987. Geological and Geochemical Characteristics of Exhalative-Sedimentary Mineralization of the Dabaoshan Deposit in Guangdong Province. Science and Technology of China Press, Beijing, 111 (in Chinese).
      Gu, L. X., Zaw, K., Hu, W. X., et al., 2007. Distinctive Features of Late Palaeozoic Massive Sulphide Deposits in South China. Ore Geology Reviews, 31(1-4): 107-138. https://doi.org/10.1016/j.oregeorev.2005.01.002
      Guo, W. M., Lu, J. J., Jiang, S. Y., et al., 2011. Re-Os Isotope Dating of Pyrite from the Footwall Mineralization Zone of the Xinqiao Deposit, Tongling, Anhui Province: Geochronological Evidence for Submarine Exhalative Sedimentation. Chinese Science Bulletin, 56: 3860-3865. https://doi.org/10.1007/s11434-011-4770-y
      Huang, X. W., Qi, L., Gao, J. F., et al., 2016. Some Thoughts on Sulfide Re-Os Isotope Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 432-440 (in Chinese with English abstract).
      Huang, X. W., Zhou, M. F., Qi, L., et al., 2013. Re-Os Isotopic Ages of Pyrite and Chemical Composition of Magnetite from the Cihai Magmatic-Hydrothermal Fe Deposit, NW China. Mineralium Deposita, 48(8): 925-946. https://doi.org/10.1007/s00126-013-0467-2
      Hu, R. Z., Zhou, M. F., 2012. Multiple Mesozoic Mineralization Events in South China—An Introduction to the Thematic Issue. Mineralium Deposita, 47: 579-588. https://doi.org/10.1007/s00126-012-0431-6
      Jiang, S. Y., Zhao, K. D., Jiang, Y. H., et al., 2008. Characteristics and Genesis of Mesozoic A-Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi-Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509 (in Chinese with English abstract).
      Li, C. Y., Zhang, H., Wang, F. Y., et al., 2012. The Formation of the Dabaoshan Porphyry Molybdenum Deposit Induced by Slab Rollback. Lithos, 150: 101-110. https://doi.org/10.1016/j.lithos.2012.04.001
      Li, Y., Selby, D., Li, X. H., et al., 2018. Multisourced Metals Enriched by Magmatic-Hydrothermal Fluids in Stratabound Deposits of the Middle-Lower Yangtze River Metallogenic Belt, China. Geology, 46(5): 391-394. https://doi.org/10.1130/g39995.1
      Li, Y. J., Ji, H., Xiong, J. J., et al., 2024. Micro-Textures, In-Situ Trace Elemental and Sulfur Isotopic Analyses for Pyrite and Pyrrhotite from the Xiasai Ag-Pb-Zn-Sn Deposit, Central Yidun Terrane (SW China): Implication for Ore Formation. Ore Geology Reviews, 165: 105913. https://doi.org/10.1016/j.oregeorev.2024.105913
      Lin, D. Y., Wang, L., Wang, X. D., et al., 2024. Depositional Age and Provenance of Ore-Hosting Strata in the Dabaoshan Copper Polymetallic Deposit, Northern Guangdong Province: Implication on Ore Genesis. Geological Bulletin of China, 43(9): 1565-1594 (in Chinese with English abstract).
      Liu, G. Q., Yang, S. Y., Zhang, X. L., et al., 1985. A Preliminary Study on the Genesis of the Dabaoshan Polymetallic Deposit in Northern Guangdong. Acta Geologica Sinica, 59(1): 47-60 (in Chinese with English abstract).
      Liu, S., Wang, C. L., Huang, W. T., et al., 2012. LA-ICP-MS Zircon U-Pb Age and Dynamic Background of the Dabaoshan Porphyry Associated with Mo-W Mineralization in Northern Guangdong Province. Geotectonica et Metallogenia, 36(3): 440-449 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DGYK201203020&dbcode=CJFD&year=2012&dflag=pdfdown
      Liu, W. S., Zhao, R. Y., Zhang, X., et al., 2019. The EPMA and LA-ICP-MS In-Situ Geochemical Features of Pyrrhotite and Pyrite in Dabaoshan Cu-Polymetallic Deposit, North Guangdong Province, and Their Constraint on Genetic Mechanism. Acta Geoscientica Sinica, 40(2): 291-306 (in Chinese with English abstract).
      Liu, X. S., Zhou, S. Z., 1984. The Discovery of Sulfide Fossils in Strata-Bound Polymetalliferous Ore Deposit from Dabaoshan, Qujiang County, Guandong Province, with a Reference to Its Geological Significance. Journal of Nanjing University (Natural Sciences), 20(1): 139-143 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NJDZ198401017.htm
      Leng, C. B., 2017. Genesis of Hongshan Cu Polymetallic Large Deposit in the Zhongdian Area, NW Yunnan: Constraints from LAICPMS Trace Elements of Pyrite and Pyrrhotite. Earth Science Frontiers, 24(6): 162-175 (in Chinese with English abstract).
      Lyu, C., Gao, J. F., Qi, L., et al., 2023. Analytical Methods and Application of Sulfide Re-Os Isotope Dating of Mineral Deposits: Research Progress and Problems. Earth Science, 48(12): 4387-4403 (in Chinese with English abstract).
      Lyu, L. S., Mao, J. W., Li, H. B., et al., 2011. Pyrrhotite Re-Os and SHRIMP Zircon U-Pb Dating of the Hongqiling Ni-Cu Sulfide Deposits in Northeast China. Ore Geology Reviews, 43(1): 106-119. https://doi.org/10.1016/j.oregeorev.2011.02.003
      Lyu, X. Q., Mao, Q. G., Guo, N. X., et al., 2020. Re-Os Isotopic Dating of Pyrrhotite from Yueyawan Cu-Ni Sulfide Deposit in Kalatage Area of East Tianshan Mountain and Its Geological Significance. Earth Science, 45(9): 3475-3486 (in Chinese with English abstract).
      Mao, J. W., Cheng, Y. B., Chen, M. H., et al., 2013. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267-294. https://doi: 10.1007/s00126-012-0446-z
      Mao, J. W., Zheng, W., Xie, G. Q., et al., 2021. Recognition of a Middle-Late Jurassic Arc-Related Porphyry Copper Belt along the Southeast China Coast: Geological Characteristics and Metallogenic Implications. Geology, 49(5): 592-596. https://doi.org/10.1130/g48615.1
      Mao, W., Li, X. F., Yang, F. C., 2013. Zircon LA-ICP-MS U-Pb Ages of Granites at Dabaoshan Polymetallic Deposit and Its Geological Significance, Guangdong, South China. Acta Petrologica Sinica, 29(12): 4104-4120 (in Chinese with English abstract).
      Nakai, S., Halliday, A. N., Kesler, S. E., et al., 1993. Rb-Sr Dating of Sphalerites from Mississippi Valley-Type (MVT) Ore Deposits. Geochimica et Cosmochimica Acta, 57(2): 417-427. https://doi.org/10.1016/0016-7037(93)90440-8
      Qu, H. Y., Chen, M. H., Yang, F. C., et al., 2014. Metallogenic Chronology of the Stratiform Cu Orebody in the Dabaoshan Cu Polymetallic Deposit, Northern Guangdong Province and Its Geological Significance. Acta Petrologica Sinica, 30(1): 152-162 (in Chinese with English abstract).
      Qu, H. Y., Mao, J. W., Zhou, S. M., et al., 2020. Metallogenesis of Stratiform Cu Mineralization in the Dabaoshan Polymetallic Deposit, Northern Guangdong Province, South China. Journal of Geochemical Exploration, 210: 106448. https://doi.org/10.1016/j.gexplo.2019.106448
      Shirey, S. B., Walker, R. J., 1995. Carius Tube Digestion for Low-Blank Rhenium-Osmium Analysis. Analytical Chemistry, 67: 2136-2141. https://doi.org/10.1021/ac00109a036
      Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      Smoliar, H. J., Walker, R. J., Morgan, J. W., 1996. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science, 271: 1099-1102. https://doi.org/10.1126/science.271.5252.109
      Song, S. M., Hu, K., Jiang, S. Y., et al., 2007. The He-Ar-Pb-S Isotope Tracing on Ore-Forming Fluid in Dabao Hill Polymetallic Deposit, North Guangdong. Contributions to Geology and Mineral Resources Research, 22(2): 87-92 (in Chinese with English abstract).
      Su, S. Q., Qin, K. Z., Li, G. M., et al., 2019. Geochronology and Geochemistry of Early Silurian Felsic Volcanic Rocks in the Dabaoshan Ore District, South China: Implications for the Petrogenesis and Geodynamic Setting. Geological Journal, 54(6): 3286-3303. https://doi.org/10.1002/gj.3328
      Wang, L., Hu, M. G., Yang, Z., et al., 2011. U-Pb and Re-Os Geochronology and Geodynamic Setting of the Dabaoshan Polymetallic Deposit, Northern Guangdong Province, South China. Ore Geology Reviews, 43(1): 40-49. https://doi.org/10.1016/j.oregeorev.2011.06.008
      Wang, L., Jin, X. B., Xu, D. M., et al., 2019. Geochronological, Geochemical, and Nd-Hf Isotopic Constraints on the Origin of Magmatism in the Dabaoshan Ore District of South China. Geological Journal, 54(3): 1518-1534. https://doi.org/10.1002/gj.3248
      Wu, J., Wang, G. Q., Liang, H. Y., et al., 2014. Indentification of Caledonian Volcanic Rock in the Dabaoshan Ore-Field in Northern Guangdong Province and Its Geological Implication. Acta Petrologica Sinica, 30(4): 1145-1154 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201404019.htm
      Xiang, J. H., Liang, X. Q., Shan, Y. H., et al., 2018. Two Phases of Mineralization in the Dabaoshan Polymetallic Deposit, Guangdong Province: Constraints from Re-Os Geochronology of Black Carbonaceous Mudstone and Molybdenite. Geotectonica et Metallogenia, 42(4): 732-745 (in Chinese with English abstract).
      Xu, K. Q., Wang, H. N., Zhou, J. P., et al., 1996. A Discussion on the Exhalative Sedimentary Massive Sulfide Deposits of South China. Geological Journal of China Universities, 2(3): 241-256 (in Chinese).
      Yang, Z. K., Yang, Y., Zhang, Z. K., et al., 2022. Geochemistry of Pyrrhotite in the Jiama Deposit, Tibet and Its Relationship with Gold Enrichment and Precipitation. Geology in China, 49(4): 1198-1213 (in Chinese with English abstract).
      Ye, L., Cook, N. J., Ciobanu, C. L., et al., 2011. Trace and Minor Elements in Sphalerite from Base Metal Deposits in South China: A LA-ICPMS Study. Ore Geology Reviews, 39(4): 188-217. https://doi.org/10.1016/j.oregeorev.2011.03.001
      Ying, L. J., Wang, D. H., Li, C., et al., 2017. Re-Os Dating of Sulfides in the North Stratiform Ore Body in Dabaoshan, Guangdong Province and Its Indication. Earth Science Frontiers, 24(5): 31-38 (in Chinese with English abstract).
      Yuan, J. H., Zhan, X. C., Hu, M. Y., et al., 2015. Characterization of Matrix Effects in Microanalysis of Sulfide Minerals by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Based on an Element Pair Method. Spectroscopy and Spectral Analysis, 35(2): 512-518 (in Chinese with English abstract).
      Zhang, D. X., Liu, J. B., Wang, Z. L., et al., 2024. In Situ LA-ICP-MS Trace Elements in Sphalerite from the Fankou Pb-Zn Deposit, South China: Implications for Ore Genesis. Ore Geology Reviews, 164: 105812. https://doi.org/10.1016/j.oregeorev.2023.105812
      Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017
      Zhou, T. F., Zhang, L. J., Yuan, F., et al., 2010. LA-ICP-MS In Situ Trace Element Analysis of Pyrite from the Xinqiao Cu-Au-S Deposit in Tongling, Anhui, and Its Constraints on the Ore Genesis. Earth Science Frontiers, 17(2): 306-319 (in Chinese with English abstract).
      Zu, B., Xue, C. J., Zhao, Y., et al., 2015. Late Cretaceous Metallogeny in the Zhongdian Area: Constraints from Re-Os Dating of Molybdenite and Pyrrhotite from the Hongshan Cu Deposit, Yunnan, China. Ore Geology Reviews, 64: 1-12. https://doi.org/10.1016/j.oregeorev.2014.06.009
      Zuo, L. Y., Pei, R. F., Wang, H. F., 2019. Re-Os Age Report of Pyrrhotite in the Dhi Samir Amprophyre-Type Copper-Nickel Sulfide Deposit in Yemen. China Geology, 2(2): 239-240. https://doi.org/10.31035/cg2018107
      蔡锦辉, 刘家齐, 1993. 粤北大宝山多金属矿床矿物包裹体特征研究及应用. 矿物岩石, 13(1): 33-40.
      陈雷, 王宗起, 赵元艺, 等, 2013. 浙江建德岭后铜矿磁黄铁矿Re-Os年代学特征及成矿意义. 地质学报, 87(12): 1864-1873.
      杜国民, 梅玉萍, 蔡红, 等, 2012. 粤北大宝山钼钨多金属矿床年代学研究及其意义. 华南地质与矿产, 28(3): 226-231.
      傅晓明, 张德贤, 戴塔根, 等, 2018. 不同成因类型矿化中黄铁矿微量元素地球化学记录——以广东大宝山多金属矿床为例. 大地构造与成矿学, 42(3): 505-519.
      葛朝华, 韩发, 1986. 大宝山铁‒多金属矿床的海相火山热液沉积成因特征. 矿床地质, 5(1): 1-12.
      葛朝华, 韩发, 1987. 广东大宝山矿床喷气‒沉积成因地质地球化学特征. 北京: 中国科学技术出版社, 111.
      黄小文, 漆亮, 高剑峰, 等, 2016. 关于硫化物Re-Os同位素定年的一些思考. 矿物岩石地球化学通报, 35(3): 432-440.
      蒋少涌, 赵葵东, 姜耀辉, 等, 2008. 十杭带湘南‒桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496-509.
      蔺东永, 王磊, 王祥东, 等, 2024. 粤北大宝山铜多金属矿区赋矿地层时代及对矿床成因的指示. 地质通报, 43(9): 1565-1594.
      刘姤群, 杨世义, 张秀兰, 等, 1985. 粤北大宝山多金属矿床成因的初步探讨. 地质学报, 59(1): 47-60.
      刘莎, 王春龙, 黄文婷, 等, 2012. 粤北大宝山斑岩钼钨矿床赋矿岩体锆石LA-ICP-MS U-Pb年龄与矿床形成动力学背景分析. 大地构造与成矿学, 36(3): 440-449.
      刘孝善, 周顺之, 1984. 广东大宝山层控多金属矿床中首次发现硫化物化石及其地质意义. 南京大学学报(自然科学版), 20(1): 139-143.
      刘武生, 赵如意, 张熊, 等, 2019. 粤北大宝山铜多金属矿区黄铁矿与磁黄铁矿EPMA和LA-ICP-MS原位微区组分特征及其对矿床成因机制约束. 地球学报, 40(2): 291-306.
      冷成彪, 2017. 滇西北红山铜多金属矿床的成因类型: 黄铁矿和磁黄铁矿LA-ICPMS微量元素制约. 地学前缘, 24(6): 162-175.
      吕串, 高剑峰, 漆亮, 等, 2023. 硫化物Re-Os同位素定年分析方法及其在矿床年代学中的应用: 研究现状及存在问题. 地球科学, 48(12): 4387-4403. doi: 10.3799/dqkx.2023.061
      吕晓强, 毛启贵, 郭娜欣, 等, 2020. 东天山卡拉塔格地区月牙湾铜镍硫化物矿床磁黄铁矿Re-Os同位素测定及其地质意义. 地球科学, 45(9): 3475-3486.
      毛伟, 李晓峰, 杨富初, 2013. 广东大宝山多金属矿床花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义. 岩石学报, 29(12): 4104-4120.
      瞿泓滢, 陈懋弘, 杨富初, 等, 2014. 粤北大宝山铜多金属矿床中层状铜矿体的成矿时代及其成因意义. 岩石学报, 30(1): 152-162.
      宋世明, 胡凯, 蒋少涌, 等, 2007. 粤北大宝山多金属矿床成矿流体的He-Ar-Pb-S同位素示踪. 地质找矿论丛, 22(2): 87-92.
      伍静, 王广强, 梁华英, 等, 2014. 粤北大宝山矿区加里东期火山岩的厘定及其地质意义. 岩石学报, 30(4): 1145-1154.
      向建华, 梁新权, 单业华, 等, 2018. 广东大宝山多金属矿床两期成矿: 来自黑色炭质泥岩和辉钼矿Re-Os同位素定年的证据. 大地构造与成矿学, 42(4): 732-745.
      徐克勤, 王鹤年, 周建平, 等, 1996. 论华南喷流‒沉积块状硫化物矿床. 高校地质学报, 2(3): 241-256.
      杨征坤, 杨阳, 张忠坤, 等, 2022. 西藏甲玛矿床磁黄铁矿微量元素特征及其与金富集沉淀的耦合机制. 中国地质, 49(4): 1198-1213.
      应立娟, 王登红, 李超, 等, 2017. 广东大宝山北部层状矿体硫化物Re-Os测年及指示. 地学前缘, 24(5): 31-38.
      袁继海, 詹秀春, 胡明月, 等, 2015. 基于元素对研究激光剥蚀‒电感耦合等离子体质谱分析硫化物矿物的基体效应. 光谱学与光谱分析, 35(2): 512-518.
      周涛发, 张乐骏, 袁峰, 等, 2010. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约. 地学前缘, 17(2): 306-319.
    • 加载中
    图(12) / 表(4)
    计量
    • 文章访问数:  84
    • HTML全文浏览量:  11
    • PDF下载量:  12
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-04-09
    • 刊出日期:  2025-07-25

    目录

      /

      返回文章
      返回