• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    雷云开, 王帅, 黄学莲, 林景昱, 韩永杰, 程子豪, 祁士华, 2025. 粤西沿海高盐度中低温地热系统水化学特征及形成演化. 地球科学. doi: 10.3799/dqkx.2025.108
    引用本文: 雷云开, 王帅, 黄学莲, 林景昱, 韩永杰, 程子豪, 祁士华, 2025. 粤西沿海高盐度中低温地热系统水化学特征及形成演化. 地球科学. doi: 10.3799/dqkx.2025.108
    Lei Yun-kai, Wang Shuai, Huang Xue-lian, Lin Jing-yu, Han Yong-jie, Cheng Zi-hao, Qi Shi-hua, 2025. Hydrochemical Characteristics and Formation-Evolution Analysis of Medium-Low Temperature Geothermal Systems with High Salinity in Coastal Western Guangdong. Earth Science. doi: 10.3799/dqkx.2025.108
    Citation: Lei Yun-kai, Wang Shuai, Huang Xue-lian, Lin Jing-yu, Han Yong-jie, Cheng Zi-hao, Qi Shi-hua, 2025. Hydrochemical Characteristics and Formation-Evolution Analysis of Medium-Low Temperature Geothermal Systems with High Salinity in Coastal Western Guangdong. Earth Science. doi: 10.3799/dqkx.2025.108

    粤西沿海高盐度中低温地热系统水化学特征及形成演化

    doi: 10.3799/dqkx.2025.108
    详细信息
      作者简介:

      雷云开(2002),男,硕士研究生,主要从事地热流体研究.E-mail:LYKcug@163.com,ORCID:0009-0006-6007-5364

      通讯作者:

      祁士华(1963),男,教授,E-mail:shihuaqi@cug.edu.cn,ORCID:0000⁃0003⁃3620⁃7647.

    • 中图分类号: P314

    Hydrochemical Characteristics and Formation-Evolution Analysis of Medium-Low Temperature Geothermal Systems with High Salinity in Coastal Western Guangdong

    • 摘要: 沿海地区地热系统易受到海水入侵,会使得地热水的盐度升高,降低地热水的利用效率,提高利用成本。广东省作为我国重要的中低温地热资源分布区,其沿海地带地热系统的海水入侵情况及其影响作用等仍缺乏系统研究。本研究基于粤西地区35个地热水、1个地下冷水和1个海水的理化数据,综合水化学、同位素及多种图解分析,探讨其水化学特征、海水入侵情况及形成演化。研究结果表明沿海地区地热水受到明显海水入侵,具有高盐度的特点,最高混合比例达到41.88%,从内陆到沿海地区,地热水的水化学类型由重碳酸盐型转变为氯化物型。地热水主要补给来源是大气降水,在晚更新世~全新世时期,云开山脉与天露山脉地区的大气降水下渗与90~126℃的热储围岩接触而逐渐升温;而后海进运动使得地热水受到大规模古海水混入,热对流的“抽吸效应”还会加速海水运移,临海地区持续受到海水侵入,最终形成高盐度中低温地热水。

       

    • [1] 505(83)90022-6
      [2] Chen, H., Zeng, T. R., Zhu, J. L., et al., 2022. Geochemical Characteristics and Genetic Analysis of Geothermal Fluid in Different Lithologic Areas in Shaoguan Area, Northern Guangdong Province. Mineralogy and Petrology, 42(2): 125-135 (in Chinese).
      [3] Feng, J. Y., 2023. Factors controlling the distribution of granite reservoirs of hydrothermal system type in South China: A case study of Huangshadong geothermal field in Yuezhong Depression, China. Energy Geoscience, 4(4): 100160.https://doi.org/10.1016/j.engeos.2023.100160
      [4] ): 41-50.https://doi.org/10.1016/0375-6505(77)90007-4
      [5] Fournier, R. O., Truesdell, A. H., 1973. An empirical Na-K-Ca geothermometer for natural waters. Geochimica et cosmochimica acta, 37(5): 1255-1275.https://doi.org/10.1016/0016-7037(73)90060-4
      [6] Gibbs, R. J., 1970. Mechanisms controlling world water chemistry. Science, 170(3962): 1088-1090.https://doi.org/10.1126/science.170.3962.1088
      [7] Giggenbach, W. F., 1988. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators. Geochimica et cosmochimica acta, 52(12): 2749-2765.https://doi.org/10.1016/0016-7037(88)90143-3
      [8] Giménez-Forcada, E., 2014. Space/time development of seawater intrusion: A study case in Vinaroz coastal plain (Eastern Spain) using HFE-Diagram, and spatial distribution of hydrochemical facies. Journal of Hydrology, 517: 617-627.https://doi.org/10.1016/j.jhydrol.2014.05.056
      [9] Jiang Y., Li J., Xing Y. F., et al., 2023. Evaluation of Geochemical Geothermom eters with Borehole Geothermal Measurements: A Case Study of the Xiong’an New Area. Earth Science, 48(3):958-972 (in Chinese with English abstract).
      [10] Jiang, W. J., Sheng, Y. Z., Wang, G. C., et al., 2022b. Cl, Br, B, Li, and noble gases isotopes to study the origin and evolution of deep groundwater in sedimentary basins: a review. Environmental Chemistry Letters, 20(2): 1497-1528.https://doi.org/10.1007/s10311-021-01371-z
      [11] Krishna, B. V., Achari, V. S., 2024. Groundwater for drinking and industrial purposes: A study of water stability and human health risk assessment from black sand mineral rich coastal region of Kerala, India. Journal of Environmental Management, 351: 119783.https://doi.org/10.1016/j.jenvman.2023.119783
      [12] Kuang, J., Qi, S. H., Hu, X. Y., 2021. New Insights into Crust and upper Mantle Structure in Guangdong Province, China and Its Geothermal Implications. Energies, 14(8): 2236.https://doi.org/10.3390/en14082236
      [13] Li, J. X., Xu, Y. D., Lin, W. J., 2024. The applicability of traditional chemical geothermometers. Earth Science Frontiers, 31(6): 145-157 (in Chinese with English abstract).
      [14] Li, J., Sagoe, G., Li, Y., 2020. Applicability and limitations of potassium-related classical geothermometers for crystalline basement reservoirs. Geothermics, 84: 101728.https://doi.org/10.1016/j.geothermics.2019.101728
      [15] Li, X., Ye, S. Y., 2016.Progress in Seawater Intrusion. Marine Geology & Quaternary Geology, 48(3): 958-972 (in Chinese with English abstract).
      [16] Li, Y. N., Bai, X. M., Huang, C. S., et al., 2024. Genesis of Geothermal Waters in Zhongshan City, China: Hydrochemical and H-O-C Isotopic Implications. Water, 16(13): 1765.https://doi.org/10.3390/w16131765
      [17] Li, Z. W., Zhang, X. Y., Zhang, M. Z., et al., 2020. Comparison of indicators for the assessmentof saltwater intrusion in coastal aquifers-taking aquifers in Pearl River Estuary as an example. Marine Environmental Science, 39(1): 16-24 (in Chinese with English abstract).
      [18] Luo, J., Li, Y. M., Tian, J. A., et al., 2022. Geochemistry of Geothermal Fluid with Implications on Circulation and Evolution in Fengshun - Tangkeng Geothermal Field, South China. Geothermics, 100: 102323. https://doi.org/10.1016/j.geothermics.2021.102323
      [19] Mao, X. M., Zhu, D. B., Ndikubwimana, I., et al., 2021. The mechanism of high-salinity thermal groundwater in Xinzhou geothermal field, South China: Insight from water chemistry and stable isotopes. Journal of Hydrology, 593: 125889.https://doi.org/10.1016/j.jhydrol.2020.125889
      [20] Möller, D., 1990. The Na/Cl ratio in rainwater and the seasalt chloride cycle. Tellus B, 42(3): 254-262.https://doi.org/10.1034/j.1600-0889.1990.t01-1-00004.x
      [21] Nath, B., Jean, J. S., Lee, M. K., et al., 2008. Geochemistry of high arsenic groundwater inChia-Nan plain, Southwestern Taiwan: possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology, 99(1-4): 85-96.https://doi.org/10.1016/j.jconhyd.2008.04.005
      [22] Ndikubwimana, I., Mao, X. M., Zhu, D. B., et al., 2020. Geothermal evolution of deep parent fluid in Western Guangdong, China: evidence from water chemistry, stable isotopes and geothermometry. Hydrogeology Journal, 28(8): 2947-2961.https://doi.org/10.1007/s10040-020-02222-x
      [23] Nitschke, F., Held, S., Neumann, T., Kohl, T., 2018. Geochemical characterization of the Villarrica geothermal system, Southern Chile, part II: site-specific re-evaluation of SiO2 and Na-K solute geothermometers. Geothermics, 74: 217-225.https://doi.org/10.1016/j.geothermics.2018.03.006
      [24] Pang, Z. H., Hu, S. B., Wang, J. Y., 2012. A Roadmap to Geothermal Energy Development in China. Science & Technology Review, 30(32): 18-24 (in Chinese with English abstract).
      [25] Reed, M., Spycher, N., 1984. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochimica et cosmochimica acta, 48(7): 1479-1492.https://doi.org/10.1016/0016-7037(84)90404-6
      [26] Truesdell, A. H., Fournier, R. O., 1977. Procedure for estimating the temperature of a hot-water component in a mixed water by using a plot of dissolved silica versus enthalpy. Journal of Research of the US geological Survey, 5(1): 49-52.
      [27] Vengosh, A., Rosenthal, E., 1994. Saline groundwater in Israel: its bearing on the water crisis in the country. Journal of Hydrology, 156(1-4): 389-430.https://doi.org/10.1016/0022-1694(94)90087-6
      [28] Wang S. J., Zhang M., Huang X. L., et al., 2024. Geothermometry Calculation and Geothermal Fluid Evolution of Karst Geothermal Reservoir in Longmen County, Guangdong Province. Earth Science, 49(3): 992-1004. (in Chinese with English abstract).
      [29] Wang, S., Kuang, J., Huang, X. L., et al., 2022. Upwelling of Mantle‐derived Material in Southeast China: Evidence from Noble Gas Isotopes. Acta Geologica Sinica - English Edition, 96(1): 100-110.https://doi.org/10.1111/1755-6724.14686
      [30] Wang, X., 2018. Formation conditions and Hydrogeochemical Characteristicsof the geothermal water in Typical Coastal Geothermal field with Deep faults, Guangdong Province(Dissertation). China University of Geosciences, Wuhan: 27-68 (in Chinese with English abstract)
      [31] Wang, Y. B., Liu, S. W., Chen, C. Q., et al., 2024. Compilation of terrestrial heat flow data in continental China (5th edition). Chinese J. Geophys., 67(11): 4233-4265 (in Chinese with English abstract).
      [32] Wang, Y. C., Gu, H. Y., Li, D., et al., 2021. Hydrochemical characteristics and genesis analysis of geothermal fluid in the Zhaxikang geothermal field in Cuona County, southern Tibet. Environmental Earth Sciences, 80(11): 415.https://doi.org/10.1007/s12665-021-09577-8
      [33] Wang, Y. J., Fan, W. M., Zhang, G. W., Zhang, Y. H., 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Research, 23(4): 1273-1305.https://doi.org/10.1016/j.gr.2012.02.019
      [34] Wei, Z. A., Huang, S. P., Xu, J. W., et al., 2024. Geochemical evolution of geothermal waters in the Pearl River Delta region, South China: Insights from water chemistry and isotope geochemistry. Journal of Hydrology-Regional Studies, 51: 101670.https://doi.org/10.1016/j.ejrh.2024.101670
      [35] Wei, Z. A., Shao, H. B., Tang, L., et al., 2021. Hydrogeochemistry and geothermometry of geothermal waters from the Pearl River Delta region, South China. Geothermics, 96: 102164.https://doi.org/10.1016/j.geothermics.2021.102164
      [36] Xiong, B., Xu, H., Tang, S. L., et al., 2024. Genetic mechanisms of hot dry rock geothermal resources in central Inner Mongolia. Coal Geology & Exploration.,52(1):36-45 (in Chinese with English abstract).
      [37] Xu, F. Y. M., Lu, G. P., 2017. Hydrochemical Characteristics of Xinzhou Geothermal Field, Coastal Guangdong and the Hydrodynamic Characteristics of Seawater Intrusion in the Field. Safety and Environmental Engineering, 24(1): 1-10 (in Chinese with English abstract).
      [38] Yang, C., Qu, W. G., Ren W. H., et al., 2024. Hydrochemical characteristics and formation mechanism of geothermal water in Yinchuan Basin. Science Technology and Engineering, 24(30): 12874-12884 (in Chinese with English abstract).
      [39] Yuan, J. F., 2013. Hydrogeochemistry of the Geothermal Systems in Coastal Areas of Guangdong Province,South China(Dissertation). China University of Geosciences, Wuhan: 65 (in Chinese with English abstract).
      [40] Yuan, J. F., Xu, F., Zheng, T. L., 2022. The genesis of saline geothermal groundwater in the coastal area of Guangdong Province: Insight from hydrochemical and isotopic analysis.Journal of Hydrology, 605: 127345.https://doi.org/10.1016/j.jhydrol.2021.127345
      [41] Zhang, H. N., Zhao, H. M., 1990. Preliminary Study on Late Pleistocene-Holocene Sea-Level Changes along the South China Coast. Haiyang Xuebao, 12(5): 620-630 (in Chinese).
      [42] Zhang, L., Chen, S., Zhang, C., 2019. Geothermal power generation in China: Status and prospects. Energy Science & Engineering, 7(5): 1428-1450.https://doi.org/10.1002/ese3.365
      [43] Zhang, R. Q., Liang, X., Jin, M. G., et al., 2018. Fundamentals of Hydrogeology (7th edition). Geology Press, Beijing, 205 (in Chinese).
      [44] Zhao, B. Y., Wang, S., Chen F., et al., 2024. Hydrogeochemical Characteristics and Genesis of Medium-High Temperature Geothermal System in Northeast Margin of Pamir Plateau. Earth Science, 49(10): 3736-3748 (in Chinese with English abstract).
      [45] Zhao, C. R., Yang J. Long., Xiao, G. Q., et al., 2012. Hydrogeochemical Reactions and Hydrogeological Model for Sea Water Intrusion Processes in the Daweijia Water Source Area, Dalian City. Geology Survey and Research, 35(2): 154-160 (in Chinese with English abstract).
      [46] Zhao, X. G., Wan, G., 2014. Current situation and prospect of China׳s geothermal resources. Renewable and Sustainable Energy Reviews, 32: 651-661.https://doi.org/10.1016/j.rser.2014.01.057
      [47] Zhou, Z. M., Ma, C. Q., Qi, S. H., et al., 2020. Late Mesozoic high-heat-producing (HHP) and high-temperature geothermal reservoir granitoids: The most significant geothermal mechanism in South China. Lithos, 366-367: 105568.https://doi.org/10.1016/j.lithos.2020.105568
      [48] Zhu, D. B., Mao, X. M., He, Y. Y., et al., 2020. Research on 14C Age Correction for Mixed Groundwater in Lateral Flow of Discharge Zones. Geological Review, 66(S1): 51-53 (in Chinese).
      [49] Zhu, J. L., Hu, K. Y., Lu, X. L., et al., 2015. A review of geothermal energy resources, development, and applications in China: Current status and prospects. Energy, 93: 466-483.https://doi.org/10.1016/j.energy.2015.08.098
      [50] 陈珲, 曾土荣, 朱金林, 等, 2022. 粤北韶关地区不同岩性区地热流体地球化学特征及成因分析. 矿物岩石, 42(2): 125-135.
      [51] 姜颖, 李捷, 邢一飞, 等, 2023. 基于钻孔测温的地球化学温度计适宜性评价:以雄安新区为例.地球科学, 48(3): 958-972.
      [52] 李洁祥, 许亚东, 蔺文静, 2024. 传统水化学地热温度计的适用性分析. 地学前缘, 31(6): 145-157.
      [53] 李雪, 叶思源, 2016. 海水入侵调查方法研究进展. 海洋地质与第四纪地质, 36(6): 211-217.
      [54] 李志威, 张晓影, 张明珠, 等. 2020. 海水入侵指标对比分析与评价——以珠江口地下水含水层为例. 海洋环境科学, 39(1): 16-24.
      [55] 庞忠和, 胡圣标, 汪集旸, 2012. 中国地热能发展路线图. 科技导报, 30(32): 18-24.
      [56] 王思佳, 张敏, 黄学莲, 等, 2024. 广东省龙门岩溶热储温度计算及流体演化特征. 地球科学, 49(3): 992-1004.
      [57] 汪啸, 2018. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征(博士学位论文).武汉: 中国地质大学(武汉), 27-68.
      [58] 王一波, 刘绍文, 陈超强, 等, 2024. 中国陆域大地热流数据汇编(第五版). 地球物理学报, 67(11): 4233-4265.
      [59] 熊波, 许浩, 唐淑玲, 等, 2024. 内蒙古中部干热岩地热资源成因机制研究. 煤田地质与勘探, 52(1): 36-45.
      [60] 徐钫一鸣, 卢国平, 2017. 广东海岸带型新洲地热田水化学及海水入侵水动力特征. 安全与环境工程, 24(1): 1-10.
      [61] 杨超, 屈文岗, 任文豪, 等, 2024. 银川盆地地热水水化学特征及形成机理. 科学技术与工程, 24(30): 12874-12884.
      [62] 袁建飞, 2013. 广东沿海地热系统水文地球化学研究(博士学位论文).武汉: 中国地质大学(武汉), 65.
      [63] 张虎男, 赵红梅, 1990. 华南沿海晚更新世晚期—全新世海平面变化的初步探讨. 海洋学报(中文版), 12(5): 620-630.
      [64] 张人权, 梁杏, 靳孟贵, 等, 2018. 水文地质学基础 第7版.北京: 地质出版社, 205.
      [65] 赵钵渊, 王帅, 陈锋, 等, 2024. 帕米尔高原东北缘中高温地热流体水文地球化学特征及成因机制. 地球科学, 49(10): 3736-3748.
      [66] 赵长荣, 杨吉龙, 肖国强, 等, 2012. 大连大魏家水源地海水入侵过程中水文地球化学作用分析及定量模拟. 地质调查与研究, 35(2): 154-160.
      [67] 朱东波, 毛绪美, 何耀烨, 等, 2020. 排泄区地下水横向径流混合14C年龄校正研究. 地质论评, 66(S1): 51-53.
    • 加载中
    计量
    • 文章访问数:  36
    • HTML全文浏览量:  0
    • PDF下载量:  3
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-03-25
    • 网络出版日期:  2025-06-23

    目录

      /

      返回文章
      返回