• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    王赟, 陈晓非, 底青云, 霍守东, 刘国峰, 李颖达, 彭淼, 胡祥云, 钱忠平, 李建国, 2025. 深部找矿:金属矿地震技术的机遇与挑战. 地球科学. doi: 10.3799/dqkx.2025.109
    引用本文: 王赟, 陈晓非, 底青云, 霍守东, 刘国峰, 李颖达, 彭淼, 胡祥云, 钱忠平, 李建国, 2025. 深部找矿:金属矿地震技术的机遇与挑战. 地球科学. doi: 10.3799/dqkx.2025.109
    Yun Wang, Xiaofei Chen, QinyunDi, Shoudong Huo, Guofeng Liu, Yingda Li, Miao Peng, Xiangyun Hu, Zhongping Qian, Jianguo Li, 2025. Deep Mineral Exploration: Opportunities and Challenges Faced by Reflection Seismic. Earth Science. doi: 10.3799/dqkx.2025.109
    Citation: Yun Wang, Xiaofei Chen, QinyunDi, Shoudong Huo, Guofeng Liu, Yingda Li, Miao Peng, Xiangyun Hu, Zhongping Qian, Jianguo Li, 2025. Deep Mineral Exploration: Opportunities and Challenges Faced by Reflection Seismic. Earth Science. doi: 10.3799/dqkx.2025.109

    深部找矿:金属矿地震技术的机遇与挑战

    doi: 10.3799/dqkx.2025.109
    基金项目: 

    “地球深部探测与矿产资源勘查”国家科技重大专项“地球物理探测颠覆性技术装备” (2024ZD1002700)

    详细信息
      作者简介:

      王赟(1969-),男,教授,博士,主要从事地震各向异性、旋转地震学、多波勘探研究,ORICD:0000-0002-7543-4677,Email:yunwang@mail.iggcas.ac.cn

      通讯作者:

      陈晓非(1958-),男,教授,博士,主要从事地震波传播和震源破裂动力学理论与数值模拟研究,ORICD:0000-0002-0950-8121,Email:chenxf@sustcch.cdu.cn

      底青云(1964-),女,研究员,博士,主要从事电磁法理论方法与装备技术研究,ORICD:0000-0001-8055-6225,Email:qydi@mail.iggcas.ac.cn

    • 中图分类号: P618

    Deep Mineral Exploration: Opportunities and Challenges Faced by Reflection Seismic

    • 摘要: 结合地质和钻孔资料,传统的重磁电、放射性物探技术可为寻找隐伏与深部金属矿提供量化的密度、磁性、电阻率与极化率、放射性等物性约束,反射地震能提供高精度、高分辨率层位与构造几何结构约束,重磁电震联合可大幅提高金属矿的勘查精度。但是,限于金属矿探测面临的复杂地表与地下构造等条件,传统反射地震技术采集成本高昂、纵波反射地震技术的多解性,已成为金属矿地震勘查技术面临的两个核心问题。在现代传感与通讯、计算机技术快速发展的带动下,针对如何降低金属矿地震探测成本和满足复杂地表与构造成像适应性的直接找矿需求,本文借鉴现代地震技术已在工程地质、化石能源等领域取得的最新研究成果,在重点剖析金属矿地震探测难点和挑战的基础上,给出了主被动源地震联合、人工智能地震采集、多分量地震散射成像、多场多波联合的技术方案。在此基础上,针对现有地震理论和方法的不足,讨论了需要重点攻关的研究方向。

       

    • Alali, A, 2016. Merging active and passive seismic reflection data with interferometry by multidimensional deconvolution. SEG Technical Program Expanded Abstracts, 5182-5186.
      Deng, B., Li J. L., Liu, J. S., et al., 2022. The extended range phase shift method for broadband surface wave dispersion measurement from ambient noise and its application in ore deposit characterization. Geophysics, 87(3): JM29–JM40.
      Bellefleur, G., Müller, C., Snyder, D., et al., 2004. Downhole seismic imaging of a massive sulfide orebody with mode-converted waves, Halfmile Lake, New Brunswick, Canada. Geophysics, 69(2): 318-329.
      Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., et al., 2010. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Roy. Astr. Soc., 169: 1239–1260.
      Cheraghi, S., Graven, J. A, Bellefleur, G., 2015. Feasibility of Virtual Source Reflection Seismology Using Interferometry for Mineral Exploration: A Test Study in the Lalor Lake Volcanogenic Massive Sulphide Mining Area, Manitoba, Canada. Geophysical Prospecting, 63: 833-848.
      Claerbout, J., 1968. Synthesis of a layered medium from its acoustic transmission response. Geophysics, 33(2): 264–269.
      Deng, Z. W., Zhang, R., Gou, L., et al., 2022. Direct shear-wave seismic survey in Sanhu area, Qaidam Basin, West China. The Leading Edge, 41(1):47-53.
      Di, Q. Y., Tian, F., Suo, Y. H., et al., 2021a. Linkage of deep lithospheric structures to intraplate earthquakes: a perspective from multi-source and multi-scale geophysical data in the South China Block. Earth-Science Review, 214(1):103504.
      Di, Q. Y., Xue, G. Q., Lei, D., et al., 2021b. Summary of technology for a comprehensive geophysical exploration of gold mine in North China Craton. Science China Earth Sciences, 64(9): 1524–1536.
      Draganov, D., Campman, X., Thorbecke, J., et al., 2013.. Seismic exploration-scale velocities and structure from ambient seismic noise (>1Hz). J. Geophys. Res.: Solid Earth, 118, 4345-4360.
      Drananov, D., Wapenaar, K., Thorbecke, J., 2016. Seismic interferometry: reconstructing the earth's reflcetion response. Geophysics, 71(4):SI61-SI70.
      Du, L. Z., Qiu, J. H., Zhang, Q., et al., 2019. Development and application of a high-fidelity and high-resolution telemetry seismic data acquisition system. Chinese J. Geophys., 62(10):3964-3973. (in Chinese with English abstract)
      Du, P., Wu, J., Li, Y., et al., 2020. Imaging Karatungk Cu-Ni Mine in Xinjiang, Western China with a Passive Seismic Array. Minerals, 10, 601.
      Eaton, D. W., Milkereit, B., Salisbury, M., et al., 2003. Seismic methods for deep mineral exploration: Mature technologies adapted to new targets. The Leading Edge, 22(6):580-585.
      Fanavoll, S., Gabrielsen, P. T., Ellingsrud, S., 2014. CSEM as a tool for better exploration decisions: case studies from the Barents Sea, Norwegian continental shelf. Interpretation, 2(3):SH55-SH66.
      Yang, F., Zuo, R., Kreuzer,2024. Artificial intelligence for mineral exploration: Are- view and perspectives on future directions from data science. Earth-Sci.Rev., 104941.
      Fu, L, Guo, J. X., Li, J. L., et al., 2021. Imaging the ice sheet and uppermost crustal structures with a dense linear seismic array in the Larsemann Hills, Prydz Bay, East Antarctica. Seismol. Res. Lett., 93(1), 228–295.
      Gallardo, L. A., Fontes, S. L., Meju, M. A., et al., 2012. Robust geophysical integration through structure-coupled joint inversion and multispectral fusion of seismic reflection, magnetotelluric, magnetic, and gravity images: Example from Santos Basin, offshore Brazil. Geophysics, 77 (5): B237–B251.
      Gou, L. M., Liu, X. W., Lei, P., et al., 2007. Review of seismic survey in mining exploration: Part 1 Theory and reflection seismic methods. Progress in Exploration Geophysics, 30(1):16-24. (in Chinese with English abstract)
      Huang H, Wang T F, Cheng J B, et al., 2023. P/S scparation of multi component seismograms using a decp learning method. Chinese J. Geophys., 66(3):1205-1219. (in Chinese with English abstract)
      Heincke, B., Jegen, M., Moorkamp, M., et al., 2047. An adaptive coupling strategy for joint inversions that use petrophysical information as constraints. J. Appl. Geophys., 136, 279–297.
      Hu, R. Z., Mao, J. W., Hua, R. M., et al., 2015. Intra-continental mineralization in south of China land mass. Beijing: China Science Publishing & Media Ltd. (in Chinese)
      Hu, R. Z., Wen, H. J., Ye, L., et al., 2020. Metallogeny of critical metals in the Southwestern Yangtze Block. Chinese Sci. Bull., 65(33):3700–3714. (in Chinese with English abstract)
      Hu, S. Q., Luo, S., Yao, H. J., 2020. The Frequency-Bessel Spectrograms of multicomponent cross-correlation functions from seismic ambient noise. Journal of Geophysical Research: Solid Earth, 125(8): e2020JB019630.
      Jones, T., Oliver, G., Murphy, B., et al., 2024. Real-time ambient seismic noise tomography of the Hillside IOCG deposit. Minerals, 14(3):254.
      Li, C., Yao, H. J., Deng, B., et al., 2023.. Shallow crust structure and its tectonic implications of granitic rare earth ore based on ambient noise techniques: A case study of Anxi Mining area, Ganzhou, Jiangxi Province. Chinese J. Geophys., 66(10):4132-4148. (in Chinese with English abstract)
      Li, X. F, 2002a. Theory of full elastic scattering of seismic waves for heterogeneous media of large extent Ⅰ - Theory of elastic waves of single scattering. Acta Mechanica Sinica, 34(4):559-568. (in Chinese)
      Li, X. F, 2002b. Theory of full elastic scattering of seismic waves for heterogeneous media of large extent Ⅱ - Theory of elastic waves of multiple scattering. Acta Mechanica Sinica, 34(5):743-755. (in Chinese)
      Li, Z. J., Wang, Y., Yang, Z. C., et al., 2019. Identification of fractured carbonate vuggy reservoirs in the S48 well area using 3D 3C seismic technique: A case history from the Tarim Basin. Geophysics, 84(1):B59-B74.
      Liang, G. H., Cai, X. P., Zhang, B. L., et al., 2001. The application of seismic exploration method in deep prediction of gold deposits. Geology and Prospecting, 6:29-33. (in Chinese with English abstract)
      Liu, G. F., Liu, Y., Meng, X. H., et al., 2021. Surface wave and body wave imaging of passive seismic exploration in shallow coverage area application of Inner Mongolia. Chinese J. Geophys., 64(3):937-948. (in Chinese with English abstract)
      Liu, G. F., and Meng, X. H, 2024. Near surface imaging with passive seismic reflection: A case study in Tibet, China. 6th Asia Pacific Meeting on Near Surface Geoscience & Engineering, Japan.
      Liu, J. X., and Wang, X. J., 2012. Simulation study of converted wave seismic prospecting techniques for metal ore bodies. Geophysical and Geochemical Exploration, 36(4):607-611. (in Chinese with English abstract)
      Liu, J. X., Zhou, J. Y., Xu, M. C., et al., 2017. The application of seismic exploration technology in the Kalatongke orefield. Geophysical and Geochemical Exploration, 41(3): 437-444. (in Chinese with English abstract)
      Liu, R., 2014. Metal seismic imaging based on inverse scattering theory (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Luo, S., Yao, H. J., Li, Q. S., et al., 2019. High-resolution 3D crustal S-wave velocity structure of the Middle-Lower Yangtze River Metallogenic Belt and implications for its deep geodynamic setting. Science China Earth Sciences, 49(09):1394-1412.
      Luo, Y., Xia, J., Miller, R. D., et al., 2008. Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform, Pure appl. Geophys, 165(5), 903–922.
      Lv, G. H., Di, Z. X., Huo, S. D., et al., 2018. Seismic data acquisition based on compressive sensing. Geophysical Prospecting for Petroleum, 57(06):831-841.
      Lv, Q. T., Han, L. G., Yan, J. Y., et al., 2010. Seismic imaging of volcanic hydrothermal iron-sulfur deposits and its hosting structure in Luzong ore district. Acta Petrologica Sinica, 26(9): 2598-2612. (in Chinese with English abstract)
      Lv, Q. T., Hou, Z. Q., Shi, D. N., et al., 2004. Tentative seismic reflection study of Shizishan Orefield in Tongling and its significance in regional exploration. Mineral Deposits, 23 (3):390-398. (in Chinese with English abstract)
      Lv, Q. T., Zhang, X. P., Tang, J. T., et al., 2019. Review on advancement in technology and equipment of geophysical exploration for metallic deposits in China. Chinese J. Geophys., 62(10): 3629-3664. (in Chinese with English abstract)
      Malehmir, A., and Bellefleur, G., 2009. 3D seismic reflection imaging of volcanic-hosted massive sulfide deposits: Insights from reprocessing Halfimile Lake data, New Brunswick, Canada. Geophysics, 74(6):B209- B219.
      Malehmir, A., Durrheim,, R., Bellefleur G., et al., 2012. Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future. Geophysics, 2012, 77(5): WC173-WC190.
      Malehmir, A., Maries, G., Bäckström, E., et al., 2017. Developing cost-effective seismic mineral exploration methods using a land streamer and a drop hammer. Scientific Reports, 7(1):10325.
      Malehmir, A., Wang, S., Lamminen, J, Brodic, B., et al., 2015. Delineating structures controlling sandstone-hosted base-metal deposits using high-resolution multi-component seismic and radio-magnetotelluric methods: a case study from Northern Sweden. Geophys. Prosp., 63(4):774-797.
      Malinowski, M., White, D., 2011. Converted wave seismic imaging in the Flin Flon mining camp, Canada. J. Appl. Geophy., 75(4):719-730.
      Mao, B., Han, L. G., 2019. Full waveform inversion in the frequency domain of low-frequency seismic data based on similarity reconstruction for exploration of deep metallic ores. Chinese J. Geophys., 62(10): 4010-4019. (in Chinese with English abstract)
      Mao, J. W., Cheng, Y. B., Guo, C. L., et al., 2008. Gejiu Tin Polymetallic ore-field: Deposit model and discussion for several points concerned. Acta Geologica Sinica, 82(11):1455-1467. (in Chinese with English abstract)
      Mao, J. W., Zhou, T. F., Xie, G. Q., et al., 2020. Metallogeny in Middle-Lower Yangtze River Ore Belt: Advances and problems remained. Mineral Deposits, 39(4):547-558. (in Chinese with English abstract)
      Milkereit, B., Berrer, E. K., King, A. R., et al., 2000 . Development of 3D seismic exploration technology for deep nickel-copper deposits- -A case history from the Sudbury basin, Canada. Geophysics, 65(6):1890-1899.
      Milkereit, B., Eaten, D., Wu, J., et al., 1996. Seismic imaging of massive sulfide deposits; Part II, Reflection seismic profiling. Economic Geology, 91(5):829 - 834.
      Okan, E., Kepic, A., Williams, P., 2013. Feasibility of using seismic reflection surveys to discover iron oxide copper gold deposits in the Gawler Craton, South Australia, in 13th SAGA Biennial Conference & Exhibition. South Africa: SAGA.
      Pan, L., Chen, X. F., Wang, J. N., et al. 2019. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes. Geophysical Journal International, 216(2): 1276-1303.
      Schuster G T, Zhou M. 2006. A theoretical overview of model-based and correlation-based redatuming methods. Geophysics, 71(4): SI103-SI110.
      Shao J., Wang, Y. B., Zheng, Y. K., et al., 2022. Near-surface characterization using urban traffic noise recorded by fiber-optic distributed acoustic sensing. Front. Earth Sci., 10:943424.
      Shapiro, N. M., Campillo, M., Stehly, L., et al., 2005. High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715):1615–1618.
      Shu, G. X., Shi, T. K., Huang, L., et al., 2020. Compressive seismic data acquisition in a desert area of Western China: a case study. The Leading Edge, 39(5):340-344.
      Shu, G. X., Lv, G. H., Lv, Y., et al., 2018.. Seismic data reconstruction based on compressive sensing, Geophysical Prospecting for Petroleum, 2018, 57(04):549-554. (in Chinese with English abstract)
      Sun, W. J., Fu, L. Y., Wan, X. J., 2007. Phase encoding-based seismic illumination analysis. Oil Geophysical Prospecting, 42(05):539-543. (in Chinese with English abstract)
      Snyder, D. B., Cary, P., Salisbury, M, 2009. 2D-3C high-resolution seismic data from the Abitibi Greenstone Belt, Canada. Tectonophysics, 472(1): 226-237.
      Tang, C., Fu, L. Y., Xiao, F. S., et al., 2022. Review of progress in seismic exploration in metallic deposits. Reviews of Geophysics and Planetary Physics, 53(2):187-203. (in Chinese with English abstract)
      Tang, G., 2010. Seismic data reconstruction and denoising based on compressive sensing and sparse representation ( Dissertation). Tsinghua University, Beijing. (in Chinese with English abstract)
      Tian C, Fei L, Zheng W, et al., 2020. Deep learning on image denoising: an overview. Neural Networks, 131: 251-275.
      Vesnaver, A., Lovisa, L., and Böhm, G. Joint 3D processing of active and passive seismic data. Geophys.Prosp., 2010, 58(5): 831-844.
      Wang, B. F., Zhang, N., Lu, W. K., et al., 2020. Intelligent missing shots' reconstruction using the spatial reciprocity of Green's function based on deep learning. IEEE Transactions on Geoscience and Remote Sensing, 58(3):1587-1597.
      Wang, K. Q., Wang, Z. G., Gao, J. H., et al., 2021. Seismic methods for exploration of metal mineral resources: review and prospect. Progress in Geophysics, 36(4):1607-1629. (in Chinese with English abstract)
      Wang, Y., Cheng, L. Z., Zhang, C. 2011. Scatter wave imaging and problems faced at mineral seismic exploration. Acta Mineralogica Sinica, 31(S1): 979. (in Chinese)
      Wang, Y., Sun, L. X., Li, D. Q., et al., 2021. Six-component observation for exploration seismology. Geophysical Prospecting for Petroleum, 60(1):13-24. (in Chinese with English abstract)
      Wang, Y., Yin, J. J., and Guo, B., 2009. The numerical simulation and imaging of seismic scattered wave applied to base metal exploration. Explor. Geophys., 40(4):320-324.
      Wapenaar, K., Draganov, D., Snieder, R., 2010. Tutorial on seismic interferometry: Part 1 – Basic principles and applications. Geophysics,75(5):75A195–75A209. DOI: 10.1190/1.3457445.
      Wapenaar, K., and Fokkema, J., 2006. Green's function representations for seismic interferometry. Geophysics, 71(4):SI33-SI46.
      Wu, Z. Y., Qian, R. Y., Ma, Z. N, et al., 2022. Experimental research on unmanned aerial vehicle remote control source of seismic exploration. Science Technology and Engineering, 22(29):12739-12745. (in Chinese with English abstract)
      Xia, J. H.; Miller, R. D.; Park, C. B., et al. 2003. Inversion of high frequency surface wave-s with fundamental and higher modes. Journal of Applied Geophysics, 52(1): 45-57.
      Xu, M. C., Gao, J. H., Chai, M. T., et al., 2009. Seismic survey for mineral exploration. Beijing: Geological Publishing House, 1-263. (in Chinese)
      Xu, M. C., Chai, M. T., and Gao, J. H, 2015. Characteristics of seismic waves and physical properties of rocks and minerals in the Zhunsujihua Mine of inner Mongolia. Geology and exploration, 51(6):1168-1174. (in Chinese with English abstract)
      Xu, P. F., Li, S. H., Du, J. G., et al., 2013a. Microtremor survey method: A new geophysical method for dividing strata and detecting the buried fault structures. Acta Petrologica Sinica, 29(5):1841-1845. (in Chinese with English abstract)
      Xu, P. F., Li, S. H., Ling, S. Q.,et al., 2013b. Application of SPAC method to estimate the crustal S-wave velocity structure. Chinese J. Geophys., 56(11):3846-3854. (in Chinese with English abstract)
      Xu, Z., 2012. A study of imaging technique and application based on seismic interferometry method (Dissertation). Jilin University, Changchun. (in Chinese with English abstract)
      Yang D., Dong X., Huang J., et al., 2025. High-resolution full waveform seismic imaging:Progresses, challenges, and prospects. Science China Earth Sciences, 68(2): 315-342.
      Yao, H. J., Luo, S., Li, C., et al., 2023. Direct surface wave tomography for three dimensional structure based on surface wave traveltimes: Methodology review and applications. Reviews of Geophysics and Planetary Physics, 54(3):231-251. (in Chinese with English abstract)
      Zhang, Y., Wang Y., Wang, X. C., et al., 2023. Dispersion of Scholte wave under horizontally layered viscoelastic seabed. Journal of Geophysics International, 235:1712-1724.
      Yu G. P., Xu T., Liu J. T., et al., 2020. Late Mesozoic extensional structures and gold mineralization in Jiaodong Peninsula, eastern North China Craton: an inspiration from ambient noise tomography on data from a dense seismic array. Chinese Journal of Geophysics, 63(5): 1878-1893. (in Chinese with English abstract)
      Yu, S., Ma, J. 2021. Deep learning for geophysics: Current and future trends. Reviews of Geophysics, 59, e2021RG000742.
      Zhang, P., Han, L. G., Zhou, Y., et al., 2015. Passive-source multiaperspetral method based on low-frequency data reconstruction for active seismic sources. Appl. Geophys., 12(4):585-597.
      Zhang, P., Xing, Z. Z., and Hu, Y., 2019. Velocity construction using active and passive multi-component seismic data based on elastic full waveform inversion. Chinese J. Geophys., 62(10):3974-3987. (in Chinese with English abstract)
      Zhao, M., Pan, X., Xiao, S., et al., 2023.. Seismic data interpolation based on spectrally normalized generative adversarial network. IEEE Transactions on Geoscience and Remote Sensing, 61,1-11.
      Zheng, Y. K., Wang, Y. B., Zhang, J. E., et al., 2024. Reflection seismic imaging of subsurface geologic structures in the Bayan Obo mining area, China. Geophysics, 89(1):WB81-WB87.
      Zheng H., Zhang B., 2020. Intelligent seismic data interpolation via convolutional neural network. Progress in Geophysics, 35(2): 0721-0727. (in Chinese with English abstract)
      Zhou, S., Lv, Y., Lv, G. H., et al., 2017. Irregular seismic geometry design and data reconstruction based on compressive sensing. Geophysical Prospecting for Petroleum, 56(05):617-625. (in Chinese with English abstract)
      Zhou, X. P., Xiang, B., Zou, C. C., et al., 2014. Integrated geophysical logging study on the borehole NLSD-2 of the polymetallic ore in the Nanling District. Anta Geologica Sinica, 88(04):686-694. (in Chinese with English abstract)
      中文参考文献
      底青云, 薛国强, 雷达, 等, 2021. 华北克拉通金矿综合地球物理探测研究进展——以辽东地区为例.中国科学: 地球科学, 51(09): 1524-1535.
      杜立志, 邱建慧, 张琪, 等, 2019. 高保真高分辨率遥测地震勘探采集系统研制及应用.地球物理学报, 62(10): 3964-3973.
      勾丽敏, 刘学伟, 雷鹏, 等, 2007.金属矿地震勘探技术方法研究综述—金属矿地震勘探技术及其现状. 勘探地球物理进展, 30(1): 16-24.
      胡瑞忠, 温汉捷, 叶霖, 等, 2020. 扬子地块西南部关键金属元素成矿作用. 科学通报, 65: 3700–3714.
      胡瑞忠, 毛景文, 华仁民, 等, 2015. 华南陆块陆内成矿作用. 北京: 科学出版社.
      黄河, 王腾飞, 程玖兵, 等, 2023. 地面多分量地震数据 P/S 波分离的深度学习方法. 地球物理学报, 66(3), 1205-1219.
      李成, 姚华建, 邓宝, 等, 2023. 基于背景噪声方法的花岗岩型稀土矿地壳浅部结构特征及构造意义: 以江西赣州安西矿区为例. 地球物理学报, 66(10): 4132-4148.
      李小凡, 2002a. 大延伸非均匀介质中地震波全弹性散射理论Ⅰ—弹性波单次散射理论. 力学学报, (04): 559-568.
      李小凡, 2002b. 大延伸非均匀介质中地震波全弹性散射理论Ⅱ—弹性波多次散射理论. 力学学报, 05: 743-755.
      梁光河, 蔡新平, 张宝林, 等, 2001. 浅层地震勘探方法在金矿深部预测中的应用. 地质与勘探, 37( 6): 29-33.
      刘国峰, 刘语, 孟小红, 等, 2021. 被动源面波和体波成像在内蒙古浅覆盖区勘探应用. 地球物理学报, 64(03): 937-948.
      刘建勋, 王小江, 2012. 金属矿转换波地震勘查技术模拟. 物探与化探, 36(4):607-611.
      刘建勋, 周建勇, 徐明才, 等, 2017. 地震勘查技术在喀拉通克矿区的应用. 物探与化探, 41( 3): 437-444.
      刘瑞, 2014. 基于逆散射理论的金属矿地震成像研究(博士学位论文). 长春: 吉林大学.
      罗松, 姚华建, 李秋生, 等, 2019. 长江中下游成矿带高分辨地壳三维横波速度结构及其形成的深部动力学背景. 中国科学: 地球科学, 49(09): 1394-1412.
      吕公河, 邸志欣, 霍守东, 等, 2018. 基于压缩感知的地震数据采集实践.石油物探,57(06): 831-841.
      吕庆田, 韩立国, 严加永, 等, 2010. 庐枞矿集区火山气液型铁、硫矿床及控矿构造的反射地震成像. 岩石学报, 26(9): 2598-2612.
      吕庆田, 侯增谦, 史大年, 等, 2004. 铜陵狮子山金属矿地震反射结果及对区域找矿的意义. 矿床地质, 23(3): 390-398.
      吕庆田, 张晓培, 汤井田, 等, 2019. 金属矿地球物理勘探技术与设备:回顾与进展.地球物理学报, 62(10): 3629-3664.
      毛博, 韩立国, 2019. 基于相似性重构低频数据的金属矿频域全波形反演.地球物理学报, 62(10): 4010-4019.
      毛景文, 程彦博, 郭春丽, 等, 2008. 云南个旧锡矿田:矿床模型及若干问题讨论.地质学报 (11): 1455-1467.
      毛景文, 周涛发, 谢桂青, 等, 2020. 长江中下游地区成矿作用研究新进展和存在问题的思考.矿床地质, 39(4): 547-558.
      舒国旭, 吕公河, 吕尧, 等, 2018. 基于压缩感知的地震数据重建.石油物探, 57(04): 549-554.
      孙伟家, 符力耘, 碗学检, 2007. 基于相位编码的地震照明度分析.石油地球物理勘探 (05): 539-543+610+484.
      汤聪, 符力耘, 肖富森, 等, 2022. 金属矿地震勘探进展与展望. 地球与行星物理论评, 53(2):187-203.
      唐刚, 2011. 基于压缩感知和稀疏表示的地震数据重建与去噪(博士学位论文). 北京: 清华大学.
      王柯淇, 王治国, 高静怀, 等, 2021. 金属矿产资源探测的地震方法:综述与展望. 地球物理学进展, 36 (4): 1607-1629.
      王赟, 成联正, 张川, 2011. 金属矿地震探测中存在的问题及散射成像技术. 矿物学报, S:979
      王赟, 孙丽霞, 李栋青, 等, 2021. 勘探地震中的六分量观测. 石油物探, 60(1): 13-24.
      吴志勇, 钱荣毅, 马振宁, 等, 2022. 地震探测无人机遥控震源实验研究.科学技术与工程, 22(29): 12739-12745.
      徐明才, 柴铭涛, 高景华, 2015. 内蒙古准苏吉花矿区岩矿石物性与地震波组特征研究.地质与勘探, 51(6): 1168-1174.
      徐明才, 高景华, 2009. 金属矿地震勘探. 北京: 地质出版社: 1-263.
      徐佩芬, 李世豪, 杜建国, 等, 2013a. 微动探测:地层分层和隐伏断裂构造探测的新方法.岩石学报, 29(05): 1841-1845.
      徐佩芬, 李世豪, 凌甦群, 等, 2013b. 利用SPAC法估算地壳S波速度结构.地球物理学报, 56(11): 3846-3854.
      许卓, 2012, 基于地震干涉法的波场成像技术及应用研究(博士学位论文). 长春:吉林大学.
      姚华建, 罗松, 李成, 等, 2023. 基于面波走时的三维结构面波直接成像:方法综述与应用.地球与行星物理论评(中英文), 54(03): 231-251.
      杨顶辉, 董兴朋, 黄建东, 等, 2025. 高分辨率全波形地震成像研究——进展、挑战与展望. 中国科学:地球科学, 55(02): 319-347.
      俞贵平, 徐涛, 刘俊彤, 等, 2020. 胶东地区晚中生代伸展构造与金成矿: 短周期密集台阵背景噪声成像的启示. 地球物理学报, 63(5): 1878-1893.
      张盼, 邢贞贞, 胡勇, 2019. 基于弹性波全波形反演的主被动源多分量混采地震数据速度建模. 地球物理学报, 62(10): 3974-3987.
      周松, 吕尧, 吕公河, 等, 2017. 基于压缩感知的非规则地震勘探观测系统设计与数据重建.石油物探, 56(05): 617-625.
      周新鹏, 项彪, 邹长春, 等, 2014. 南岭地区多金属矿NLSD-2孔综合地球物理测井研究.地质学报, 88(04): 686-694.
      郑浩, 张兵, 2020. 基于卷积神经网络的智能化地震数据插值技术. 地球物理学进展, 35(2): 721-727.
    • 加载中
    计量
    • 文章访问数:  32
    • HTML全文浏览量:  0
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-03-28
    • 网络出版日期:  2025-07-01

    目录

      /

      返回文章
      返回