[1] |
徐盼盼, 申艳军, 彭建兵, 等, 2024. 基于生态-经济-社会协同发展理念的秦岭北麓峪道类型化架构思考. 地球科学, 49(12): 4564-4575. |
[2] |
申艳军, 陈兴, 彭建兵, 等, 2024. 秦岭生态地质环境系统本底特征及研究体系初步构想. 地球科学, 49(06): 2103-2119. |
Xu, P.P., Shen, Y.J., Peng, J.B., et al., 2024. Typed Architecture of Valley Road in Northern Foothills of Qinling Mountains Based on Concept of Ecological-Economic-Social Collaborative Development. Earth Science, 49(12): 4564-4575. (in Chinese with English abstract) |
[3] |
彭建兵, 申艳军, 金钊, 等, 2023. 秦岭生态地质环境系统研究关键思考. 生态学报, 43(11): 4344-4358. |
[4] |
苏淑兰, 石明明, 陈奇, 等, 2024. 不同生态修复技术下退化高寒沼泽湿地土壤及植被化学计量特征. 草地学报, 32(04): 1142-1152. |
Shen, Y.J., Chen, X., Peng, J.B., et al., 2024. Background Characteristics of Ecological Geological Environment System in Qinling Mountains and Assumption of Its Theoretical System. Earth Science, 49(06): 2103-2119. (in Chinese with English abstract) |
[5] |
肖维新, 袁静, 严开祺, 等, 2022. 生物聚合物气凝胶的制备与应用研究进展. 材料导报, 36(20): 243-252. |
Peng, J.B., Shen, Y.J., Jin, Z., et al., 2023. Key thoughts on the study of eco-geological environment system in Qinling Mountains. Acta Ecologica Sinica, 43(11): 4344-4358. (in Chinese with English abstract) |
[6] |
童小东, 慈祥, 孙任运, 2025. 生物高分子聚合物生态固沙效果初探. 岩土工程学报, 47(1): 144-152. |
[7] |
欧阳淼, 张红日, 邓人睿, 等, 2025. 黄原胶生物聚合物改良膨胀土裂隙演化规律研究. 岩土工程学报, 47(1): 106-114. |
Su, S.L., Shi, M.M., Chen, Q., et al., 2024. The Stoichiometric Characteristics of Soil and Vegetation in Degraded Alpine Marsh Wetland under Different Ecological Restoration Techniques. Acta Agrectir Sinica, 32(04): 1142-1152. (in Chinese with English abstract) |
[8] |
董金梅, 王沛, 柴寿喜, 2011. 水泥改性聚乙烯醇固化轻质土的强度特性. 建筑材料学报, 14(04): 576-580. |
[9] |
Zhang, Q.Y., Chen W.W., Wang, S.J., 2023. Effects of Clay Mineral and Chloride Salt on The Strength of PVA-Treated Soil. Acta Geotechnica, 19(4): 1-18. https://doi.org/10.1007/s11440-023-01997-z |
Xiao, W.X., Yuan, J., Yan, K.Q., et al., 2022. Progress in the Preparation and Application of Biopolymer Aerogels. Materials Reports, 36(20): 243-252. (in Chinese with English abstract) |
[10] |
Liu, J., Che, W.Y., Lan, X.W., et al., 2023. Performance and Mechanism of A Novel Biopolymer Binder for Clayey Soil Stabilization: Mechanical Properties and Microstructure Characteristics. Transportation Geotechnics, Suppl C(42): 101044. https://doi.org/10.1016/j.trgeo.2023.101044 |
[11] |
Jamshidi, M., Mokhberi, M., Vakili, A.H., et al., 2023. Effect of Chitosan Bio-Polymer Stabilization on the Mechanical and Dynamic Characteristics of Marl Soils. Transportation Geotechnics, Suppl C(42): 101110. https://doi.org/10.1016/j.trgeo.2023.101110 |
[12] |
张建伟, 李家瑞, 钱思羽, 等, 2025. 基于纳米SiO2-CMC复合材料改良遗址土边坡抗雨蚀特性研究.复合材料学报, 44(0): 1-13. |
Tong, X.D., Ci, X., Sun, R.Y., 2025. Preliminary study on ecological sand fixation effects of biopolymers. Chinese Journal of Geotechnical Engineering, 47(1): 144-152. (in Chinese with English abstract) |
[13] |
Qin, C.C., Abdalkarim, S.Y., Zhou, Y., et al., 2022. Ultrahigh Water-Retention Cellulose Hydrogels as Soil Amendments for Early Seed Germination Under Harsh Conditions. Journal of Cleaner Production, 370: 133602. https://doi.org/10.1016/j.jclepro.2022.133602 |
Ouyang, M., Zhang, H.R., Deng, R.R., et al., 2025. Development of Cracks in Expansive Soil Improved by Xanthan Gum Biopolymer. Chinese Journal of Geotechnical Engineering, 47(1): 106-114. (in Chinese with English abstract) |
[14] |
Pan, X.F., Li, X., Wang, Z.K., et al., 2024. Nanolignin-Facilitated Robust Hydrogels. ACS Nano, 18(35): 24095-24104. https://doi.org/10.1021/acsnano.4c04078 |
[15] |
蒋力, 唐昭敏, 赵健清, 等, 2025. 原位可注射pH/温度双响应载药水凝胶的制备及抗肿瘤应用. 材料导报, 39(06): 246-252. |
[16] |
陈畅, 齐一琳, 薛雪, 2025. 基于壳聚糖的纳米药物在脑部疾病治疗中的应用. 科学通报, 1-14. |
Dong, J.M., Wang, Pei., Chai S.X., 2011. Strength Characteristics of Lightweight Soil Amended by Cement-Modified Poly( vinyl alcohol). Journal of Building Materials, 14(04): 576-580. (in Chinese with English abstract) |
[17] |
Xu, Q.Y., Hou, M.H., Wang, L.F., et al., 2023. Anti-Bacterial, Anti-Freezing Starch/Ionic Liquid/PVA Ion-Conductive Hydrogel with High Performance for Multi-Stimulation Sensitive Responsive Sensors. Chemical Engineering Journal, Suppl C(477): 147065. https://doi.org/10.1016/j.cej.2023.147065 |
[18] |
Sahu, N., Mahanty, B., Haldar, D., 2024. Challenges and Opportunities in Bioprocessing of Gellan Gum: A Review. International Journal of Biological Macromolecules, 276(2): 133912. https://doi.org/10.1016/j.ijbiomac.2024.133912 |
[19] |
Duan, S.D., Liu, Z.X., Wu, S.W., et al., 2022. Tuning Structural and Mechanical Anisotropy of PVA Hydrogels. Mechanics of Materials, Suppl C(172): 104411. https://doi.org/10.1016/j.mechmat.2022.104411 |
[20] |
Gemma, L., Marco, C., Simone, P., et al., 2020. Enriched Gellan Gum Hydrogel as Visco-Supplement. Carbohydrate Polymers, 0(227): 115347. https://doi.org/10.1016/j.carbpol.2019.115347 |
Zhang, J.W., Li J.R., Qian, S.Y., et al., 2025. Study on rain erosion resistance characteristics of soil slope improvement based on nano-SiO2-CMC composites. Acta Materiae Compositae Sinica, 44(0): 1-13. (in Chinese with English abstract) |
[21] |
Yue, Y., Wang, L., Zhang, X.B., et al., 2024. Towards Achieving Carbon Neutrality: The Role of Vegetation Restoration in Karst Regions of Southwest China. Journal of Earth Science, 3(35): 1044-1048. https://doi.org/10.1007/s12583-024-2010-z |
[22] |
Liu, J., Wang, Z., Hu, G.C., et al., 2023. Cracking and Erosion Behaviors of Sand-Clay Mixtures Stabilized with Microbial Biopolymer and Palm Fiber. The Science of the Total Environment, 0(905): 166991. https://doi.org/10.1016/j.scitotenv.2023.166991 |
[23] |
Pan, S.Y., Zhu, C.Y., Tao, L., 2024. Hydrogels Constructed by Multicomponent Reactions. Polymer Chemistry, 15(47): 4799-4809. https://doi.org/10.1039/d4py00885e |
[24] |
Bu, F., Liu, J., Mei, H., et al., 2023. Cracking Behavior of Sisal Fiber-Reinforced Clayey Soil Under Wetting-Drying Cycles. Soil and Tillage Research, Suppl C(227): 105596. https://doi.org/10.1016/j.still.2022.105596 |
[25] |
汤连生, 许瀚升, 刘其鑫, 等, 2022. 改良花岗岩残积土崩解特性试验研究. 中国公路学报, 35(10):75-87. |
Jiang, L., Tang, Z.M., Zhao, J.Q., et al., 2025. In Situ Injectable Drug-oaded pH/Temperature Responsive Hydrogel with Application to Tumor Therapy. Materials Reports, 39(06): 246-252. (in Chinese with English abstract) |
[26] |
9. https://doi.org/10.1007/s10064-024-04082-1 |
Chen, C., Qi, Y.L., Xue, X., 2025. Application of chitosan-based nano-drugs in the treatment of brain diseases. Chinese Science Bulletin, 1-14. (in Chinese with English abstract) |
Tang, L.S., Xu, H.S., Liu, Q.X., et al., 2022. Experimental Study on Disintegration Characteristics of Improved Granite Residual Soil. China Journal of Highway and Transport, 35(10):75-87. (in Chinese with English abstract) |