Progress on Key Technologies for Logging Evaluation of Deep and Ultra⁃Deep Carbonate Reservoirs
-
摘要: 随着我国油气勘探不断向深层‒超深层领域拓展,测井面临着超高温高压、恶劣井筒环境和低信噪比等技术挑战.针对深层‒超深层碳酸盐岩储层测井评价难点,重点讨论了目前制约油气勘探开发的四项关键技术问题:岩性岩相识别、有效缝洞储层表征、流体性质判别和井旁隐蔽缝洞储层评价.针对上述难题,提出基于岩心刻度成像测井,明确不同岩相关键图像特征,形成在岩心约束下的测井岩相识别方法,同时深入分析有效缝洞储层典型响应特征,建立裂缝、溶蚀孔洞识别和定量表征方法;针对高阻背景地层,通过阵列感应测井资料重新处理,实现油基泥浆条件下储层流体性质的准确判别;通过远探测横波成像技术实现井旁3~50 m范围内隐蔽缝洞储层的识别,拓展测井径向探测深度,形成了以成像测井系列为主的深层‒超深层碳酸盐岩储层测井评价技术体系,由此反映中国深层‒超深层碳酸盐岩储层测井评价技术近年来的创新与发展.Abstract: As oil and gas exploration extends into deep and ultra-deep areas, well logging is faced with great technical challenges such as ultra-high temperature and high pressure, harsh wellbore environment and low signal-to-noise ratios. Addressing difficulties in logging evaluation of deep/ultra-deep carbonate reservoir, this paper focuses on four key technical problems that restrict the exploration and development of deep and ultra-deep carbonate fields in China: lithology and lithofacies identification, characterization of effective fracture-cave reservoirs, fluid property identification and evaluation of subsurface fracture-cave reservoirs. In order to solve these problems, based on the core-calibrated image logging, the key image features corresponding to different rocks are identified, and the logging lithofacies identification method under the core constraint is formed. Based on in-depth analysis of typical logging response characteristics of effective fracture-cavity reservoirs, a method for identifying and quantitatively characterizing fractures and solution holes is established. For the high-resistivity background formation, the accurate identification of reservoir fluid properties under oil-based mud conditions is realized by re-processing the array induction logging data. The acoustic reflection imaging technology was used to identify the hidden fracture-cave reservoirs within 3-50 m of the borehole, expanding the radial detection scope Consequently, a technical framework for logging evaluation of deep/ultra-deep carbonate reservoirs⁃centered on imaging logging technologies has been developed, which reflects the innovation and development of logging evaluation technology.
-
图 10 偶极横波远探测声波测井反射波分布提取方法(据李宁等,2024)
Fig. 10. Extraction method of reflection wave distribution in remote acoustic logging (according to Li et al., 2024)
图 11 塔里木盆地X7井远探测声波处理结果(据李宁等,2024)
Fig. 11. Acoustic processing results of remote detection in Well X7, Tarim Basin (according to Li et al., 2024)
-
Beard, D. L., Zhou, Q., Bigelowe, L., 1996. A New, Fully Digital, Full⁃Spectrum Induction Device for Determining Accurate Resistivity with Enhanced Diagnostics and Data Integrity Verification. SPWLA 37th Annual Logging Symposium Transaction. SPWLA, New Orleans. He, Z. L., Jin, X. H., Wo, Y. J., et al., 2016. Hydrocarbon Accumulation Characteristics and Exploration Domains of Ultra⁃Deep Marine Carbonates in China. China Petroleum Exploration, 21(1): 3-14 (in Chinese with English abstract). He, Z. L., Ma, Y. S., Zhu, D. Y., et al., 2021. Theoretical and Technological Progress and Research Direction of Deep and Ultra⁃Deep Carbonate Reservoirs. Oil & Gas Geology, 42(3): 533-546 (in Chinese with English abstract). Li, C. L., Wu, H. L., Li, X., et al., 2022. A New Data Processing Method of Array Induction Logging for Inclined Electrical Anisotropic Formation. Acta Petrolei Sinica, 43(10): 1439-1449 (in Chinese with English abstract). Li, J. Z., Tao, X. W., Bai, B., et al., 2021. Geological Conditions, Reservoir Evolution and Favorable Exploration Directions of Marine Ultra⁃Deep Oil and Gas in China. Petroleum Exploration and Development, 48(1): 52-67 (in Chinese with English abstract). Li, N., Liu, P., Wu, H. L., et al., 2024. Development and Prospect of Acoustic Reflection Imaging Logging Processing and Interpretation Method. Petroleum Exploration and Development, 51(4): 731-742 (in Chinese with English abstract). Li, N., Xiao, C. W., Wu, L. H., et al., 2014. The Innovation and Development of Log Evaluation for Complex Carbonate Reservoir in China. Well Logging Technology, 38(1): 1-10 (in Chinese with English abstract). Lucia, F. J., 2011. Carbonate Reservoir Characterization. Petroleum Industry Press, Beijing. Ma, Y. S., Cai, X. Y., Zhao, P. R., 2011. The Research Status and Advances in Porosity Evolution and Diagenesis of Deep Carbonate Reservoir. Earth Science Frontiers, 18(4): 181-192 (in Chinese with English abstract). Ma, Y. S., Li, M. W., Cai, X. Y., et al., 2020. Mechanisms and Exploitation of Deep Marine Petroleum Accumulations in China: Advances, Technological Bottlenecks and Basic Scientific Problems. Oil & Gas Geology, 41(4): 655-672, 683 (in Chinese with English abstract). Pan, Z. Y., Xu, L., Zhang, L., et al., 2022. Characteristics of Exploration and Development for Global Deep Carbonate Gas Reservoirs. Journal of Shengli College China University of Petroleum, 36(3): 1-12 (in Chinese with English abstract). Pang, X. Q., Lin, H. X., Zheng, D. Y., et al., 2020. Basic Characteristics, Dynamic Mechanism and Development Direction of the Formation and Distribution of Deep and Ultra⁃Deep Carbonate Reservoirs in China. Journal of Geomechanics, 26(5): 673-695 (in Chinese with English abstract). Russell, B., Toksöz, M. N., 1991. Comparison of Poststack Seismic Inversion Methods. SEG Annual Meeting. SEG, Houston. Shen, A. J., Zhao, W. Z., Hu, A. P., et al., 2015. Major Factors Controlling the Development of Marine Carbonate Reservoirs. Petroleum Exploration and Development, 42(5): 545-554 (in Chinese with English abstract). Song, Z. Z., Ge, B. F., Wang, W. Z., et al., 2023. Quantitative Characterization of Ultra⁃Deep Paleo⁃Oil Reservoirs and Its Indication for Deep Gas Accumulation: A Case Study on the Dengying Formation, the North Slope of Central Sichuan Paleo⁃Uplift. Earth Science, 48(2): 517-532 (in Chinese with English abstract). Tang, X. M., 2004. Imaging Near⁃Borehole Structure Using Directional Acoustic⁃Wave Measurement. Geophysics, 69(6): 1378-1386. https://doi.org/10.1190/1.1836812 Tang, X. M., Wei, Z. T., 2012. Significant Progress of Acoustic Logging Technology: Remote Acoustic Reflection Imaging of a Dipole Acoustic System. Applied Acoustics, 31(1): 10-17 (in Chinese with English abstract). Tang, X. M., Wei, Z. T., Su, Y. D., et al., 2013. A Review on the Progress and Application of Dipole Acoustic Reflection Imaging Technology. Well Logging Technology, 37(4): 333-340 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-1338.2013.04.001 Tian, H., Shen, A. J., Zhang, J. Y., et al., 2019. New Calculation Method of Cementation Exponent m for Crack⁃Vuggy Carbonate Reservoirs. Chinese Journal of Geophysics, 62(6): 2276-2285 (in Chinese with English abstract). Tian, H., Yan, W. L., Wu, H. L., et al., 2023. Logging Quantitative Identification Method for Lithofacies of Continental Shale Oil. Progress in Geophysics, 38(5): 2122-2134 (in Chinese with English abstract). Tian, H., Yang, M., 2015. The Logging Evaluation Methods for Fractured⁃Vuggy Carbonate Reservoirs. Geophysical and Geochemical Exploration, 39(3): 545-552 (in Chinese with English abstract). Tian, H., Zhang, J. Y., Li, C., et al., 2020. The Application of Image Logging in the Identification of Microbialite Facies in Dengying Formation, Sichuan Basin. Journal of Southwest Petroleum University (Science & Technology Edition), 42(5): 75-85 (in Chinese with English abstract). Wang, J. P., Zeng, L. B., Zhou, L., et al., 2023. Development Model of Natural Fractures in Ultra⁃Deep Sandstone Reservoirs with Low Porosity in Kelasu Tectonic Belt, Tarim Basin. Earth Science, 48(7): 2520-2534 (in Chinese with English abstract). Wang, S. R., Li, C. L., Liu, Y. M., et al., 2024. Analysis of Influence Factors and Method of Correction in High Resistivity Formation by a High Definition Induction Log. Petroleum Science Bulletin, 9(1): 50-61 (in Chinese with English abstract). Wu, H. L., Liu, P., Wang, K. W., et al., 2020. A Method for Recovery of Reflection Amplitude in Dipole Acoustic Reflection Imaging. Acta Petrolei Sinica, 41(4): 457-466 (in Chinese with English abstract). Wu, H. L., Liu, P., Wu, L. H., et al., 2021. Extraction Method of Reflected S⁃Wave near Borehole in Carbonate Fracture⁃Cavity Reservoirs. Acta Petrolei Sinica, 42(10): 1337-1345, 1394 (in Chinese with English abstract). Yang, H. J., Chen, Y. Q., Tian, J., et al., 2020. Great Discovery and Its Significance of Ultra⁃Deep Oil and Gas Exploration in Well Luntan⁃1 of the Tarim Basin. China Petroleum Exploration, 25(2): 62-72 (in Chinese with English abstract). Yin, Z. X., Wang, Y. X., Xie, B., et al., 2020. Applicability Analysis and Resistivity Correction Method of Oil⁃Base Mud Well Array Induction Logging in Carbonate Rock Formation. Annual Meeting of Chinese Geoscience Union. Chongqing, 3735-3738 (in Chinese). Zhang, S. H., Sima, L. Q., Yan, Q. B., et al., 2011. The Logging Effectiveness Evaluation of Complex Carbonate Reservoirs. Journal of Southwest Petroleum University (Science & Technology Edition), 33(2): 84-88 (in Chinese with English abstract). Zhao, D. F., Tan, X. C., Luo, W. J., et al., 2022. Karst Characteristics at Early Diagenetic Stage and Their Enlightenment for the Origin of Ancient Deep Carbonate Reservoirs: A Case Study of the Member 4 of Dengying Formation in Moxi 8 Well Area, Central Sichuan. Acta Petrolei Sinica, 43(9): 1236-1252 (in Chinese with English abstract). Zhao, L. Z., Wang, Z. C., Yang, Y., et al., 2020. Important Discovery in the Second Member of Dengying Formation in Well Pengtan1 and Its Significance, Sichuan Basin. China Petroleum Exploration, 25(3): 1-12 (in Chinese with English abstract). Zhao, X. Z., Chen, C. W., Song, S. Y., et al., 2023. Shale Oil Reservoir Structure Characteristics of the Second Member of Kongdian Formation in Cangdong Sag, Bohai Bay Basin. Earth Science, 48(1): 63-76 (in Chinese with English abstract). Zhu, G. Y., Sun, C. H., Zhao, B., et al., 2020. Formation, Evaluation Technology and Preservation Lower Limit of Ultra⁃Deep Ancient Fracture⁃Cavity Carbonate Reservoirs below 7 000 m. Natural Gas Geoscience, 31(5): 587-601 (in Chinese with English abstract). 何治亮, 金晓辉, 沃玉进, 等, 2016. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域. 中国石油勘探, 21(1): 3-14. doi: 10.3969/j.issn.1672-7703.2016.01.001 何治亮, 马永生, 朱东亚, 等, 2021. 深层‒超深层碳酸盐岩储层理论技术进展与攻关方向. 石油与天然气地质, 42(3): 533-546. 李潮流, 武宏亮, 李霞, 等, 2022. 倾斜电各向异性地层阵列感应测井数据处理新方法. 石油学报, 43(10): 1439-1449. 李建忠, 陶小晚, 白斌, 等, 2021. 中国海相超深层油气地质条件、成藏演化及有利勘探方向. 石油勘探与开发, 48(1): 52-67. 李宁, 刘鹏, 武宏亮, 等, 2024. 远探测声波测井处理解释方法发展与展望. 石油勘探与开发, 51(4): 731-742. 李宁, 肖承文, 伍丽红, 等, 2014. 复杂碳酸盐岩储层测井评价: 中国的创新与发展. 测井技术, 38(1): 1-10. doi: 10.3969/j.issn.1004-1338.2014.01.001 马永生, 蔡勋育, 赵培荣, 2011. 深层、超深层碳酸盐岩油气储层形成机理研究综述. 地学前缘, 18(4): 181-192. 马永生, 黎茂稳, 蔡勋育, 等, 2020. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质, 41(4): 655-672, 683. 潘政屹, 徐凌, 张黎, 等, 2022. 全球深层碳酸盐岩气藏勘探现状与开发特征. 中国石油大学胜利学院学报, 36(3): 1-12. 庞雄奇, 林会喜, 郑定业, 等, 2020. 中国深层和超深层碳酸盐岩油气藏形成分布的基本特征与动力机制及发展方向. 地质力学学报, 26(5): 673-695. 沈安江, 赵文智, 胡安平, 等, 2015. 海相碳酸盐岩储集层发育主控因素. 石油勘探与开发, 42(5): 545-554. 宋泽章, 葛冰飞, 王文之, 等, 2023. 超深层古油藏的定量表征及其对气藏形成的指示意义: 以川中古隆起北斜坡灯影组为例. 地球科学, 48(2): 517-532. doi: 10.3799/dqkx.2023.030 唐晓明, 魏周拓, 2012. 声波测井技术的重要进展: 偶极横波远探测测井. 应用声学, 31(1): 10-17. 唐晓明, 魏周拓, 苏远大, 等, 2013. 偶极横波远探测测井技术进展及其应用. 测井技术, 37(4): 333-340. 田瀚, 沈安江, 张建勇, 等, 2019. 一种缝洞型碳酸盐岩储层胶结指数m计算新方法. 地球物理学报, 62(6): 2276-2285. 田瀚, 闫伟林, 武宏亮, 等, 2023. 一种陆相页岩油岩相测井定量识别方法. 地球物理学进展, 38(5): 2122-2134. 田瀚, 杨敏, 2015. 碳酸盐岩缝洞型储层测井评价方法. 物探与化探, 39(3): 545-552. 田瀚, 张建勇, 李昌, 等, 2020. 成像测井在灯影组微生物岩岩相识别中的应用. 西南石油大学学报(自然科学版), 42(5): 75-85. 王俊鹏, 曾联波, 周露, 等, 2023. 塔里木盆地克拉苏构造带超深层储层裂缝发育模式及开发意义. 地球科学, 48(7): 2520-2534. doi: 10.3799/dqkx.2022.138 王嵩然, 李潮流, 刘英明, 等, 2024. 高阻地层HDIL阵列感应影响因素分析与校正方法. 石油科学通报, 9(1): 50-61. 武宏亮, 刘鹏, 王克文, 等, 2020. 偶极横波远探测测井中反射波振幅恢复方法. 石油学报, 41(4): 457-466. 武宏亮, 刘鹏, 伍丽红, 等, 2021. 碳酸盐岩储层井旁缝洞体反射横波提取方法. 石油学报, 42(10): 1337-1345, 1394. doi: 10.7623/syxb202110007 杨海军, 陈永权, 田军, 等, 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62-72. 尹中旭, 王跃祥, 谢冰, 等, 2020. 碳酸盐岩地层油基泥浆井阵列感应测井适用性分析及电阻率校正方法. 2020年中国地球科学联合学术年会. 重庆, 3735-3738. 张尚华, 司马立强, 颜其彬, 等, 2011. 复杂碳酸盐岩储层测井有效性评价. 西南石油大学学报(自然科学版), 33(2): 84-88. 赵东方, 谭秀成, 罗文军, 等, 2022. 早成岩期岩溶特征及其对古老深层碳酸盐岩储层的成因启示——以川中地区磨溪8井区灯影组四段为例. 石油学报, 43(9): 1236-1252. 赵路子, 汪泽成, 杨雨, 等, 2020. 四川盆地蓬探1井灯影组灯二段油气勘探重大发现及意义. 中国石油勘探, 25(3): 1-12. 赵贤正, 陈长伟, 宋舜尧, 等, 2023. 渤海湾盆地沧东凹陷孔二段页岩层系不同岩性储层结构特征. 地球科学, 48(1): 63-76. doi: 10.3799/dqkx.2022.212 朱光有, 孙崇浩, 赵斌, 等, 2020. 7 000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限. 天然气地球科学, 31(5): 587-601. -