• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大别山南缘翁门杂岩中太古代TTG和钾质花岗岩成因:对扬子陆块早期演化的约束

    徐大良 彭练红 邓新 童喜润 徐扬 金鑫镖

    徐大良, 彭练红, 邓新, 童喜润, 徐扬, 金鑫镖, 2025. 大别山南缘翁门杂岩中太古代TTG和钾质花岗岩成因:对扬子陆块早期演化的约束. 地球科学, 50(7): 2628-2642. doi: 10.3799/dqkx.2025.121
    引用本文: 徐大良, 彭练红, 邓新, 童喜润, 徐扬, 金鑫镖, 2025. 大别山南缘翁门杂岩中太古代TTG和钾质花岗岩成因:对扬子陆块早期演化的约束. 地球科学, 50(7): 2628-2642. doi: 10.3799/dqkx.2025.121
    Xu Daliang, Peng Lianhong, Deng Xin, Tong Xirun, Xu Yang, Jin Xinbiao, 2025. Petrogenesis of Mesoarchean TTG and Potassic Granite Suit in Wengmen Complex, Southern Dabie Orogen: Implications for Early Crustal Evolution of Yangtze Block. Earth Science, 50(7): 2628-2642. doi: 10.3799/dqkx.2025.121
    Citation: Xu Daliang, Peng Lianhong, Deng Xin, Tong Xirun, Xu Yang, Jin Xinbiao, 2025. Petrogenesis of Mesoarchean TTG and Potassic Granite Suit in Wengmen Complex, Southern Dabie Orogen: Implications for Early Crustal Evolution of Yangtze Block. Earth Science, 50(7): 2628-2642. doi: 10.3799/dqkx.2025.121

    大别山南缘翁门杂岩中太古代TTG和钾质花岗岩成因:对扬子陆块早期演化的约束

    doi: 10.3799/dqkx.2025.121
    基金项目: 

    中国地质调查局地质调查项目 DD20242643

    中国地质调查局地质调查项目 DD20190050

    中国地质调查局花岗岩成岩成矿地质研究中心开放基金课题 PMGR202014

    详细信息
      作者简介:

      徐大良(1983-),男,正高级工程师,主要从事基础地质调查与研究. ORCID:0000-0002-0540-2426. E-mail:xdl2003geo@163.com

    • 中图分类号: P547;P597

    Petrogenesis of Mesoarchean TTG and Potassic Granite Suit in Wengmen Complex, Southern Dabie Orogen: Implications for Early Crustal Evolution of Yangtze Block

    • 摘要:

      太古宙晚期(3.0~2.5 Ga)是全球大陆地壳性质发生显著变化、地球动力学过程发生根本性转变的关键时期.大别山造山带太古宙岩石出露稀少,在大别山南缘新发现的翁门杂岩为进一步揭示扬子陆块古老陆壳形成演化过程提供了新的制约信息.对翁门TTG质片麻岩和钾质花岗岩脉进行了锆石U-Pb定年、锆石Hf同位素和全岩主微量元素分析,揭示了其岩石成因,探讨了扬子陆块太古宙陆壳演化过程.锆石U-Pb定年结果显示,TTG片麻岩和钾质花岗岩脉均形成于中太古代(2 927~2 917 Ma).TTG片麻岩可细分为低重稀土型和高重稀土型两类.与典型太古宙TTG相比,低重稀土型TTG具有中等的SiO2和Na2O含量,其Mg#、Ni、Cr含量和Sr/Y比值偏低,显示出低压TTG特征;而高重稀土型TTG则具有更加偏低的Mg#、Ni、Cr含量和非常低的Sr/Y比值,应属于过渡型TTG.钾质花岗岩脉则表现为高SiO2、富K2O和富铁的特征,呈现出左倾“V型”海鸥式稀土配分模式,为高分异花岗岩,其岩浆氧逸度和水含量与现代岛弧岩浆相似.锆石Hf同位素分析表明,TTG片麻岩的εHft)值为-3.7~+1.5,两阶段模式年龄为3.56~3.23 Ga;而钾质花岗岩脉的εHft)值为-4.3~+0.2,两阶段模式年龄为3.58~3.31 Ga.大别山南缘翁门杂岩中TTG和富钾花岗岩的同时出现,标志着扬子陆块北缘在中太古代时期板块构造的发育、古老大陆地壳的逐步成熟和初始克拉通化.

       

    • 图  1  大别山南缘翁门杂岩地质简图(据徐大良等, 2023a修改)

      Fig.  1.  Geological map of the Wengmen complex within the southern Dabie Orogen (modified after Xu et al., 2023a)

      图  2  翁门杂岩中太古代花岗质岩的野外和镜下特征

      a. 变基性岩脉侵入翁门杂岩花岗质片麻岩中;b. 花岗闪长质片麻岩;c. 钾质花岗岩呈脉状侵入英云闪长质片麻岩;d. 英云闪长质片麻岩,矿物多呈断续条带状定向排列,斜长石表面绢云母化明显;e. 花岗闪长质片麻岩;f. 钾质花岗岩(黑云母二长花岗岩).镜下照片均为正交偏光.矿物缩写:Pl. 斜长石;Kfs. 钾长石;Qtz. 石英;Bt. 黑云母;Ser. 绢云母;Mag. 磁铁矿

      Fig.  2.  Field and microscopic photos of the Mesoarchean meta-granitic rocks from the Wengmen complex

      图  3  翁门杂岩中太古代花岗质岩的岩石类型地球化学判别图

      底图据文献Middlemost,1994Frost et al.,2001Martin et al.,2005Frost and Frost,2008.崆岭杂岩数据引自Guo et al.,2015Qiu et al.,2018.图 4图 8数据来源同此图

      Fig.  3.  Geochemical discrimination diagrams for the Mesoarchean granites in the Wengmen complex

      图  4  翁门杂岩中太古代花岗质岩的球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough,1989

      Fig.  4.  Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized trace elements spider diagram (b) for Mesoarchean granites in the Wengmen complex (normalization values after Sun and McDonough, 1989)

      图  5  翁门杂岩变花岗质岩锆石CL、U-Pb年龄和稀土元素球粒陨石标准化曲线

      锆石CL旁所标数字为207Pb/206Pb表观年龄和εHft)值

      Fig.  5.  Cathodoluminescence (CL) images, U-Pb ages and chondrite-normalized REE patterns for zircons of the meta-granitic rocks from the Wengmen complex

      图  6  翁门杂岩中太古代花岗质岩锆石Hf同位素特征

      引用数据来源:大别山南缘中太古代花岗质岩(徐大良等,2023a),捕获/继承锆石(Xu et al.,2023徐大良等,2023b

      Fig.  6.  Characteristics of zircon Hf isotopic composition for the Mesoarchean granites in the Wengmen complex

      图  7  翁门杂岩中太古代花岗质岩锆石氧逸度‒水含量

      底图、太古宙花岗岩、显生宙岛弧数据来自Ge et al., 2023

      Fig.  7.  Zircon oxybarometer-hygrometer diagram for Mesoarchean granites in the Wengmen complex

      图  8  翁门杂岩中太古代花岗质岩的岩石成因判别图

      底图据Martin et al.,2005Schiano et al.,2010Moyen,2011Laurent et al.,2014

      Fig.  8.  Petrogenesis discrimination diagrams for the Mesoarchean granites in the Wengmen complex

      图  9  翁门杂岩中太古代高分异钾质花岗岩的地球化学判别图

      底图据Sylvester,1989;Wu et al.,2017

      Fig.  9.  Geochemical discrimination diagrams for Mesoarchean highly fractionated potassic granites in the Wengmen complex

      表  1  翁门杂岩中太古代花岗质岩锆石氧逸度和水含量

      Table  1.   Zircon oxybarometer-hygrometer for Mesoarchean granites in the Wengmen complex

      样品名称 岩石类型 锆石饱和温度(℃) 水含量
      (%)
      fO2
      (ΔFMQ)
      数值 误差 数值 误差 数值 误差
      QC212-7 低HREE型TTG 796.42 27.29 2.21 0.65 -0.31 0.33
      QC212-16 高HREE型TTG 778.82 23.61 2.54 0.39 -0.15 0.2
      QC212-11 钾质花岗岩 819.67 12.67 5.64 0.24 1.16 0.11
      注:计算方法详见Ge et al., 2023.
      下载: 导出CSV
    • Chen, Y., Zhang, J., Gao, P., et al., 2022. Modern-Style Plate Tectonics Manifested by the Late Neoarchean TTG-Sanukitoid Suite from the Datong-Huai'an Complex, Trans-North China Orogen. Lithos, 430-431: 106843. https://doi.org/10.1016/j.lithos.2022.106843
      Dhuime, B., Hawkesworth, C. J., Cawood, P. A., et al., 2012. A Change in the Geodynamics of Continental Growth 3 Billion Years Ago. Science, 335(6074): 1334-1336. https://doi.org/10.1126/science.1216066
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Frost, B. R., Frost, C. D., 2008. A Geochemical Classification for Feldspathic Igneous Rocks. Journal of Petrology, 49(11): 1955-1969. https://doi.org/10.1093/petrology/egn054
      Garçon, M., 2021. Episodic Growth of Felsic Continents in the Past 3.7 Ga. Science Advances, 7(39): eabj1807. https://doi.org/10.1126/sciadv.abj1807
      Ge, R. F., Wilde, S. A., Zhu, W. B., et al., 2023. Earth's Early Continental Crust Formed from Wet and Oxidizing Arc Magmas. Nature, 623(7986): 334-339. https://doi.org/10.1038/s41586-023-06552-0
      Guo, J. L., Wu, Y. B., Gao, S., et al., 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China: Implications for Late Archean Tectonics. Precambrian Research, 270: 246-266. https://doi.org/10.1016/j.precamres.2015.09.007
      Halla, J., van Hunen, J., Heilimo, E., et al., 2009. Geochemical and Numerical Constraints on Neoarchean Plate Tectonics. Precambrian Research, 174(1-2): 155-162. https://doi.org/10.1016/j.precamres.2009.07.008
      Hou, X. G., Yu, Z. Q., Chen, S. F., et al., 2024. Trace Element Mobility in Subducted Marble and Associated Eclogite: Constraints from UHP Rocks in the Shuanghe Area, Central-East China. Journal of Earth Science, 35(1): 1-15. https://doi.org/10.1007/s12583-022-1692-3
      Irber, W., 1999. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508. https://doi.org/10.1016/S0016-7037(99)00027-7
      Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Moyen, J. F., 2011. The Composite Archaean Grey Gneisses: Petrological Significance, and Evidence for a Non-Unique Tectonic Setting for Archaean Crustal Growth. Lithos, 123(1-4): 21-36. https://doi.org/10.1016/j.lithos.2010.09.015
      Moyen, J. F., Martin, H., 2012. Forty Years of TTG Research. Lithos, 148: 312-336. https://doi.org/10.1016/j.lithos.2012.06.010
      Polat, A., Hofmann, A. W., 2003. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3-4): 197-218. https://doi.org/10.1016/S0301-9268(03)00095-0
      Qiu, X. F., Ling, W. L., Liu, X. M., et al., 2018. Evolution of the Archean Continental Crust in the Nucleus of the Yangtze Block: Evidence from Geochemistry of 3.0 Ga TTG Gneisses in the Kongling High-Grade Metamorphic Terrane, South China. Journal of Asian Earth Sciences, 154: 149-161. https://doi.org/10.1016/j.jseaes.2017.12.026
      Qiu, X. F., Peng, L. H., Kong, L. Y., et al., 2024. Discovery of Eoarchean Gneisses in Northern Dabie Belt. Earth Science, 49(11): 3960-3970 (in Chinese with English abstract).
      Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2
      Shi, Y. H., Wang, C. S., Kang, T., et al., 2012. Petrological Characteristics and Zircon U-Pb Age for Susong Metamorphic Complex Rocks in Anhui Province. Acta Petrologica Sinica, 28(10): 3389-3402 (in Chinese with English abstract).
      Smithies, R. H., Lu, Y. J., Kirkland, C. L, et al., 2021. Oxygen Isotopes Trace the Origins of Earth's Earliest Continental Crust. Nature, 592(7852): 70-75. https://doi.org/10.1038/s41586-021-03337-1
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Sylvester, P. J., 1989. Post-Collisional Alkaline Granites. The Journal of Geology, 97(3): 261-280. https://doi.org/10.1086/629302
      Wang, K., Zhao, T. Y., Zhang, S. H., 2023. Discovery of the Oldest (~2.87 Ga) Granitic Gneisses in the Qinling-Dabie Orogenic Belt: Direct Evidence for Mesoarchean Crust. China Geology, 6(3): 533-535. https://doi.org/10.31035/cg2022084
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201-1219. https://doi.org/10.1007/s11430-016-5139-1
      Xu, D. L., Peng, L. H., Deng, X., et al., 2023a. Identification of Mesoarchean to Paleoproterozoic Magmatic Tectono-Thermal Events from Wengmen Complex in Southern Dabie Orogen and Its Geological Significance. Earth Science, 48(11): 4072-4087 (in Chinese with English abstract).
      Xu, D. L., Deng, X., Peng, L. H., et al., 2023b. The Components of the Subducted Continental Basement within the Dabieshan Orogenic Belt as Evidenced by Xenocrystic/Inherited Zircons from Cretaceous Dykes. Earth Science Frontiers, 30(4): 299-316 (in Chinese with English abstract).
      Xu, D. L., Peng, L. H., Deng, X., et al., 2023. Zircon U-Pb Age Evidence of the Mesoarchean (2.9-3.2 Ga) Crustal Remnant in the Southern Dabie Orogen, South China. China Geology, 6(1): 174-176. https://doi.org/10.31035/cg2022056
      Xu, S. T., Liu, Y. C., Jiang, L. L., et al., 2002. Architecture and Kinematics of the Dabieshan Orogen. University of Science and Technology of China Press, Heifei, 53-68 (in Chinese).
      Zhai, M. G., Peng, P., 2020. Origin of Early Continents and Beginning of Plate Tectonics. Science Bulletin, 65(12): 970-973. https://doi.org/10.1016/j.scib.2020.03.022
      Zhai, M. G., Zhao, G. C., Guo, J. H., 2023. Focus on Form and Evolution of Precambrian Continents. Chinese Science Bulletin, 68(18): 2281-2283 (in Chinese).
      Zhao, G. C., Zhang, J., Yin, C. Q., et al, 2023. Pre-plate Tectonics and Origin of Continents. Chinese Science Bulletin, 68(18): 2312-2323 (in Chinese).
      Zhao, T. Y., Li, J., Liu, G. C., et al., 2020. Petrogenesis of Archean TTGs and Potassic Granites in the Southern Yangtze Block: Constraints on the Early Formation of the Yangtze Block. Precambrian Research, 347: 105848. https://doi.org/10.1016/j.precamres.2020.105848.
      Zheng, Y. F., 2024. Plate Tectonics in the Archean: Observations versus Interpretations. Scientia Sinica Terrae, 54(1): 1-30 (in Chinese).
      Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029
      Zheng, Y. F., Zhou, J. B., Wu, Y. B., et al., 2005. Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: A Passive-Margin Accretionary Wedge Deformed during Continent Subduction. International Geology Review, 47(8): 851-871. https://doi.org/10.2747/0020-6814.47.8.851
      邱啸飞, 彭练红, 孔令耀, 等, 2024. 北大别构造带始太古代片麻岩的发现. 地球科学, 49(11): 3960-3970. doi: 10.3799/dqkx.2023.040
      石永红, 王次松, 康涛, 等, 2012. 安徽省宿松变质杂岩岩石学特征和锆石U-Pb年龄研究. 岩石学报, 28(10): 3389-3402.
      徐大良, 彭练红, 邓新, 等, 2023a. 大别山南缘翁门杂岩中太古代古元古代岩浆构造热事件的识别及其地质意义. 地球科学, 48(11): 4072-4087. doi: 10.3799/dqkx.2023.042
      徐大良, 邓新, 彭练红, 等, 2023b. 大别山碰撞造山带俯冲盘陆壳基底组成: 白垩纪脉岩捕获/继承锆石的证据. 地学前缘, 30(4): 299-316.
      徐树桐, 刘贻灿, 江来利, 等, 2002. 大别山造山带的构造几何学和运动学. 合肥: 中国科学技术大学出版社, 53-68.
      翟明国, 赵国春, 郭敬辉, 2023. 关注前寒武纪大陆形成演化研究. 科学通报, 68(18): 2281-2283.
      赵国春, 张健, 尹常青, 等, 2023. 前板块构造与大陆起源. 科学通报, 68(18): 2312-2323.
      郑永飞, 2024. 太古宙地质与板块构造: 观察与解释. 中国科学: 地球科学, 54(1): 1-30.
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  43
    • HTML全文浏览量:  10
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-09-06
    • 网络出版日期:  2025-07-29
    • 刊出日期:  2025-07-25

    目录

      /

      返回文章
      返回