• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    改进的两柱Cd色谱分离流程和高精度的Cd同位素分析

    钟桥辉 彭冰钰 何炽凤 郭家凯 初高彬 尹露 李杰

    钟桥辉, 彭冰钰, 何炽凤, 郭家凯, 初高彬, 尹露, 李杰, 2025. 改进的两柱Cd色谱分离流程和高精度的Cd同位素分析. 地球科学, 50(7): 2511-2524. doi: 10.3799/dqkx.2025.122
    引用本文: 钟桥辉, 彭冰钰, 何炽凤, 郭家凯, 初高彬, 尹露, 李杰, 2025. 改进的两柱Cd色谱分离流程和高精度的Cd同位素分析. 地球科学, 50(7): 2511-2524. doi: 10.3799/dqkx.2025.122
    Zhong Qiaohui, Peng Bingyu, He Chifeng, Guo Jiakai, Chu Gaobin, Yin Lu, Li Jie, 2025. Improved Two⁃Column Cd Chromatographic Separation Procedure and High⁃Precision Cd Isotope Analysis. Earth Science, 50(7): 2511-2524. doi: 10.3799/dqkx.2025.122
    Citation: Zhong Qiaohui, Peng Bingyu, He Chifeng, Guo Jiakai, Chu Gaobin, Yin Lu, Li Jie, 2025. Improved Two⁃Column Cd Chromatographic Separation Procedure and High⁃Precision Cd Isotope Analysis. Earth Science, 50(7): 2511-2524. doi: 10.3799/dqkx.2025.122

    改进的两柱Cd色谱分离流程和高精度的Cd同位素分析

    doi: 10.3799/dqkx.2025.122
    基金项目: 

    国家重点研发计划项目 2023YFF0803704

    广东省自然科学基金项目 2024A1515010037

    详细信息
      作者简介:

      钟桥辉(1993-),男,博士研究生,研究方向为金属稳定同位素分析方法研发. ORCID: 0000-0003-3825-8405. E-mail:1102058215@qq.com

      通讯作者:

      李杰, E-mail: jieli@gig.ac.cn

    • 中图分类号: P597.2

    Improved Two⁃Column Cd Chromatographic Separation Procedure and High⁃Precision Cd Isotope Analysis

    • 摘要:

      地质和环境样品中Cd同位素组成的准确、高精度分析对于研究海洋初级生产力、古环境变化、重金属Cd污染的溯源、硫化物矿床的成因和海洋Cd循环等领域具有重要意义.然而,环境和地质样品的低Cd含量和复杂基体给高精度Cd同位素分析带来挑战.针对地质和环境样品,开发了一种高效可靠的两柱Cd色谱分离流程和高精度的Cd同位素测定方法.在第一柱AG-MP-1M阴离子交换树脂中,主要基体元素(包括≥99%的Sn)被优先去除,随后Cd及少量残余的Sn用4 mL 1 M HNO3溶液快速洗脱.与传统第二柱分离Cd常用的TRU.Spec、UTEVA和BPHA萃取树脂不同,除了Mo、Sn、Zr等元素,TOPO树脂还能有效去除其他潜在残余基体元素(如Mg、Fe、Pb、Ti、V、Ag、Cu、Zn等),且避免了树脂来源有机质引入的问题.Cd同位素比值在Neptune Plus MC-CP-MS上测定,仪器的质量分馏采用Cd的双稀释剂法(111Cd-113Cd)校正.两个标准溶液(NIST SRM 3108和Spex Cd)长期测量值的外部精度优于0.05‰.采用优化的两柱Cd色谱分离流程处理地质和环境标准样品,其测定的Cd同位素值在误差范围内与文献报道值一致,证实了该方法准确可靠且高效实用.此外,首次报道了国内的地质标样GSR-2、GSR-3及土壤标样GSS-6a的Cd同位素组成,这些参考数据为不同实验室间Cd同位素分析能力的评估和数据质量控制提供了依据.综上,本研究为地质和环境样品的高精度Cd同位素分析建立了一种高效实用的可靠分析方法.

       

    • 图  1  不同酸介质下,Cd、Zn、Sn和Mo在TOPO树脂的分配系数

      Fig.  1.  Distribution coefficients of Cd, Zn, Sn and Mo in TOPO resin under different acid media

      图  2  不同酸介质下Cd的化学分离曲线

      a. 0.5 mL TOPO树脂,GSR-3;b. 0.2 mL TOPO树脂,单元素的混合标准溶液

      Fig.  2.  Chemical separation curves of Cd under different acid media

      图  3  阴离子交换树脂的Cd化学分离曲线

      Fig.  3.  Chemical separation curve of Cd using anion exchange resin AG-MP-1M

      图  4  Cd色谱分离流程分离基体的效率

      基体元素与Cd的浓度比表示为[X]/[Cd],其中X表示基体元素

      Fig.  4.  The efficiency of the Cd chromatographic separation protocols in separating the matrix

      图  5  (a) NIST SRM 3108和(b)Spec-Cd的δ114/110CdNIST 3108值的长期重现性

      误差棒代表每次测量的两倍标准误差;浅色区域分别代表NIST SRM 3108和Spec-Cd的δ114/110CdNIST 3108值的两倍标准偏差

      Fig.  5.  The long-term reproducibility of δ114/110CdNIST 3108 values for (a) NIST SRM 3108 and (b) Spec-Cd

      图  6  参考物质的Cd同位素组成包括本研究和以前的数据

      橙色正方形代表本研究数据,其他符号代表文献数据.误差棒代表两倍标准偏差(2SD).浅红色的区域表示δ114/110CdBSE(-0.06‰±0.03‰;Pickard et al., 2022

      Fig.  6.  δ114/110Cd values of reference materials including the data from this study and previous studies

      表  1  干扰Cd同位素测试的多原子团和同质异位素元素(Wombacher et al., 2003)

      Table  1.   Isobars and molecular interfering ions for Cd isotopic measurements (Wombacher et al., 2003)

      质量数/丰度 多原子团 同质异位素
      106Cd(1.25%) 66Zn40Ar+, 90Zr16O+,
      108Cd(0.89%) 68Zn40Ar+, 92Zr16O+, 92Mo16O+ 108Pd
      110Cd(12.5%) 70Zn40Ar+, 70Ge40Ar+, 94Zr16O+, 94Mo16O+, 92Mo18O+,
      109Ag1H+, 93Nb17O+
      110Pd
      111Cd(12.8%) 71Ga40Ar+, 95Mo16O+, 97Mo14N+, 93Nb18O+
      112Cd(24.1%) 72Ge40Ar+, 96Zr16O+, 96Mo16O+, 96Ru16O+, 98Mo14N+, 76Se36Ar+ 112Sn
      113Cd(12.2%) 73Ge40Ar+, 97Mo16O+, 99Ru14N+, 77Se36Ar+ 113In
      114Cd(28.7%) 74Ge40Ar+, 98Mo16O+, 98Ru16O+, 100Ru14N+, 100Mo14N+, 77Se36Ar+, 74Se40Ar+ 114Sn
      116Cd(7.49%) 76Ge40Ar+, 100Mo16O+, 100Ru16O+, 76Se40Ar+, 80Se36Ar+ 116Sn
      下载: 导出CSV

      表  2  两柱的Cd色谱分离流程

      Table  2.   The two-column chromatographic separation procedure of Cd

      柱流程 试剂 体积(mL)
      第一柱: AG-MP-1M树脂(2 mL)
      平衡 2 M HCl 10
      上样 2 M HCl 2~3
      基体(Mg, Ca, Ni, Fe, Ga, Ge, Ag, Zr, etc.) 2 M HCl 6
      基体(Mo, In, Pb) 2 M HCl+3 M HF 16
      基体(Zn, Sn, In) 0.05 M HCl 16
      基体(Sn, In)
      残余基体
      0.015 M HCl
      1 M HNO3
      8
      2
      接收Cd 1 M HNO3 3
      第二柱: TOPO树脂(0.2 mL)
      平衡 1 M HCl 2
      上样
      残余基体
      1 M HCl
      1 M HCl+0.1 M HNO3
      0.5
      3
      接收Cd 1 M HCl+0.5 M HNO3 0.8
      下载: 导出CSV

      表  3  MC⁃ICP⁃MS测试过程的典型仪器参数

      Table  3.   Typical instrumental setup during Neptune Plus MC-ICP-MS analysis

      仪器参数 Neptune Plus
      RF功率 1 056 W (每天优化)
      辅助气 0.88 L·min‒1(每天优化)
      样品气 1.04 L·min‒1(每天优化)
      冷却气 16.00 L·min‒1
      连接锥 H样品锥+X截取锥
      放大器 1011 Ω
      积分时间 4.19 s
      膜去溶 Aridus Ⅱ
      吹扫气 2.74 L·min‒1
      辅助气(氮气) 2.6 L·min‒1
      雾室温度 104 ℃
      脱溶温度 140 ℃
      Cd灵敏度 1 200~1 521 V·ppm‒1
      雾化器 MicoFlow PFA-100; 流速: 100 μL·min‒1





      L4
      L3 110Cd
      L2 111Cd
      L1 112Cd
      C 113Cd
      H1 114Cd
      H2
      H3 116Cd
      H4 117Sn
      下载: 导出CSV

      表  4  参考标样的Cd同位素组成

      Table  4.   Cd isotopic composition of reference materials

      样品/类型 Cd(10‒6) δ114/110CdNIST 3108 2SD n 数据来源
      GSR-2(GBW07104)/安山岩 0.056 0.088 0.046 2 本研究
      0.065 0.024 2 本研究
      0.079 0.017 2 本研究
      0.080 0.037 6 平均值(M=3)
      GSR-3(GBW07105)/玄武岩 0.070 0.106 0.029 2 本研究
      0.173 0.017 2 本研究
      0.165 0.025 2 本研究
      0.155 0.066 6 平均值(M=3)
      GSD-3a(GBW07303a)/沉积物 0.509 -0.091 0.033 2 本研究
      -0.054 0.032 2 本研究
      -0.111 0.052 2 本研究
      -0.085 0.061 6 平均值(M=3)
      -0.08 0.04 Peng et al. (2021)
      -0.095 0.055 Zhong et al. (2023b)
      GSD-5a(GBW07305a)/沉积物 1.52 0.039 0.015 2 本研究
      0.042 0.042 2 本研究
      0.076 0.065 3 本研究
      0.056 0.047 7 平均值(M=3)
      0.036 0.064 Tan et al. (2020)
      0.01 0.02 Peng et al. (2021)
      0.062 0.046 Zhong et al. (2023b)
      GSS-1a(GBW07401a)/土壤 2.98 -0.079 0.048 2 本研究
      -0.062 0.040 2 本研究
      -0.040 0.057 2 本研究
      -0.060 0.058 6 平均值(M=3)
      -0.078 0.050 Zhong et al. (2023b)
      GSS-6a(GBW07406a)/土壤 0.340 -0.284 0.064 3 本研究
      -0.316 0.036 3 本研究
      -0.311 0.017 2 本研究
      -0.303 0.052 8 平均值(M=3)
      注:本文和文献的Cd同位素数据都是以NIST SRM 3108标样为基准;n代表测量次数;M代表标样独立消解次数;2SD是两倍标准偏差.
      下载: 导出CSV
    • Abouchami, W. , Galer, S. J. G. , de Baar, H. J. W. , et al. , 2011. Modulation of the Southern Ocean Cadmium Isotope Signature by Ocean Circulation and Primary Productivity. Earth and Planetary Science Letters, 305(1-2): 83-91. https://doi.org/10.1016/j.epsl.2011.02.044
      Baskaran, M. , 2011. Handbook of Environmental Isotope Geochemistry. Springer, New York.
      Chang, H. , Zhu, J. M. , Wang, X. L. , et al. , 2023. High-Precision Measurement of Cd Isotopes in Ultra-Trace Cd Samples Using Double Spike-Standard Addition MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 38(4): 950-962. https://doi.org/10.1039/D3JA00047H
      Cloquet, C. , Rouxel, O. , Carignan, J. , et al. , 2005. Natural Cadmium Isotopic Variations in Eight Geological Reference Materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, Nod-P-1, Nod- A-1) and Anthropogenic Samples, Measured by MC-ICP-MS. Geostandards and Geoanalytical Research, 29(1): 95-106. https://doi.org/10.1111/j.1751-908X.2005.tb00658.x
      Cullen, J. T. , Maldonado, M. T. , 2012. Biogeochemistry of Cadmium and Its Release to the Environment. In: Sigel, A. , Sigel, H. , Sigel, R. K. O. , eds. , Cadmium: From Toxicity to Essentiality. Springer Netherlands, Dordrecht, 31-62.https://doi.org/10.1007/978-94-007-5179-8_2
      Devos, G. , Moynier, F. , Creech, J. , et al. , 2024. Cadmium Isotope Composition of the Earth’s Mantle Inferred from Analysis of Oceanic Basalts and Komatiites. Chemical Geology, 650: 121996. https://doi.org/10.1016/j.chemgeo.2024.121996
      Garçon, M. , Sauzéat, L. , Carlson, R. W. , et al. , 2017. Nitrile, Latex, Neoprene and Vinyl Gloves: A Primary Source of Contamination for Trace Element and Zn Isotopic Analyses in Geological and Biological Samples. Geostandards and Geoanalytical Research, 41(3): 367-380. https://doi.org/10.1111/ggr.12161
      Gault-Ringold, M. , Stirling, C. H. , 2012. Anomalous Isotopic Shifts Associated with Organic Resin Residues during Cadmium Isotopic Analysis by Double Spike MC-ICPMS. Journal of Analytical Atomic Spectrometry, 27(3): 449-459. https://doi.org/10.1039/C2JA10360E
      Guinoiseau, D. , Galer, S. J. G. , Abouchami, W. , et al. , 2019. Importance of Cadmium Sulfides for Biogeochemical Cycling of Cd and Its Isotopes in Oxygen Deficient Zones—A Case Study of the Angola Basin. Global Biogeochemical Cycles, 33(12): 1746-1763. https://doi.org/10.1029/2019GB006323
      Guo, C. , Li, T. , Li, G. J. , et al. , 2022. Precise/Small Sample Size Determination of Stable Cd Isotope Ratios of Geological Samples with Double Spike MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 37(11): 2470-2479. https://doi.org/10.1039/D2JA00250G
      Hohl, S. V. , Galer, S. J. G. , Gamper, A. , et al. , 2017. Cadmium Isotope Variations in Neoproterozoic Carbonates-A Tracer of Biologic Production? Geochemical Perspectives Letters: 32-44.https://doi.org/10.7185/geochemlet.1704
      Horner, T. J. , Lee, R. B. Y. , Henderson, G. M. , et al. , 2013. Nonspecific Uptake and Homeostasis Drive the Oceanic Cadmium Cycle. Proceedings of the National Academy of Sciences of the United States of America, 110(7): 2500-2505. https://doi.org/10.1073/pnas.1213857110
      Horner, T. J. , Rickaby, R. E. M. , Henderson, G. M. , 2011. Isotopic Fractionation of Cadmium into Calcite. Earth and Planetary Science Letters, 312(1-2): 243-253. https://doi.org/10.1016/j.epsl.2011.10.004
      John, S. G. , Conway, T. M. , 2014. A Role for Scavenging in the Marine Biogeochemical Cycling of Zinc and Zinc Isotopes. Earth and Planetary Science Letters, 394: 159-167. https://doi.org/10.1016/j.epsl.2014.02.053
      Lane, T. W. , Saito, M. A. , George, G. N. , et al. , 2005. A Cadmium Enzyme from a Marine Diatom. Nature, 435(7038): 42. https://doi.org/10.1038/435042a
      Li, D. D. , Li, M. L. , Liu, W. R. , et al. , 2018. Cadmium Isotope Ratios of Standard Solutions and Geological Reference Materials Measured by MC-ICP-MS. Geostandards and Geoanalytical Research, 42(4): 593-605. https://doi.org/10.1111/ggr.12236
      Li, X. Y. , Zhou, J. W. , Hu, P. J. , et al. , 2024. Colloids Control the Mobilization of Released Zinc- and Cadmium-Species in Calcite-Rich Soils. Geochimica et Cosmochimica Acta, 387: 12-27. https://doi.org/10.1016/j.gca.2024.11.003
      Liao, R. , Ratié, G. , Shi, Z. M. , et al. , 2022. Cadmium Isotope Systematics for Source Apportionment in an Urban-Rural Region. Applied Geochemistry, 137: 105196. https://doi.org/10.1016/j.apgeochem.2021.105196
      Liu, M. S. , Zhang, Q. , Zhang, Y. N. , et al. , 2020. High-Precision Cd Isotope Measurements of Soil and Rock Reference Materials by MC-ICP-MS with Double Spike Correction. Geostandards and Geoanalytical Research, 44(1): 169-182. https://doi.org/10.1111/ggr.12291
      Murphy, K. , Rehkämper, M. , Kreissig, K. , et al. , 2016. Improvements in Cd Stable Isotope Analysis Achieved through Use of Liquid-Liquid Extraction to Remove Organic Residues from Cd Separates Obtained by Extraction Chromatography. Journal of Analytical Atomic Spectrometry, 31(1): 319-327. https://doi.org/10.1039/C5JA00115C
      Pallavicini, N. , Engström, E. , Baxter, D. C. , et al. , 2014. Cadmium Isotope Ratio Measurements in Environmental Matrices by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(9): 1570-1584. https://doi.org/10.1039/C4JA00125G
      Peng, H. , He, D. , Guo, R. , et al. , 2021. High Precision Cadmium Isotope Analysis of Geological Reference Materials by Double Spike MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 36(2): 390-398. https://doi.org/10.1039/D0JA00424C
      Pickard, H. , Palk, E. , Schönbächler, M. , et al. , 2022. The Cadmium and Zinc Isotope Compositions of the Silicate Earth-Implications for Terrestrial Volatile Accretion. Geochimica et Cosmochimica Acta, 338: 165-180. https://doi.org/10.1016/j.gca.2022.09.041
      Ratié, G. , Chrastný, V. , Guinoiseau, D. , et al. , 2021. Cadmium Isotope Fractionation during Complexation with Humic Acid. Environmental Science & Technology, 55(11): 7430-7444. https://doi.org/10.1021/acs.est.1c00646
      Ripperger, S. , Rehkämper, M. , 2007. Precise Determination of Cadmium Isotope Fractionation in Seawater by Double Spike MC-ICPMS. Geochimica et Cosmochimica Acta, 71(3): 631-642. https://doi.org/10.1016/j.gca.2006.10.005
      Schmitt, A. D. , Galer, S. J. G. , Abouchami, W. , 2009. Mass-Dependent Cadmium Isotopic Variations in Nature with Emphasis on the Marine Environment. Earth and Planetary Science Letters, 277(1-2): 262-272. https://doi.org/10.1016/j.epsl.2008.10.025
      Sieber, M. , Conway, T. M. , De Souza, G. F. , et al. , 2019. Physical and Biogeochemical Controls on the Distribution of Dissolved Cadmium and Its Isotopes in the Southwest Pacific Ocean. Chemical Geology, 511: 494-509. https://doi.org/10.1016/j.chemgeo.2018.07.021
      Tan, D. C. , Zhu, J. M. , Wang, X. L. , et al. , 2020. High-Sensitivity Determination of Cd Isotopes in Low-Cd Geological Samples by Double Spike MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(4): 713-727. https://doi.org/10.1039/C9JA00397E
      Wasylenki, L. E. , Swihart, J. W. , Romaniello, S. J. , 2014. Cadmium Isotope Fractionation during Adsorption to Mn Oxyhydroxide at Low and High Ionic Strength. Geochimica et Cosmochimica Acta, 140: 212-226. https://doi.org/10.1016/j.gca.2014.05.007
      Wen, H. J. , Zhang, Y. X. , Cloquet, C. , et al. , 2015. Tracing Sources of Pollution in Soils from the Jinding Pb-Zn Mining District in China Using Cadmium and Lead Isotopes. Applied Geochemistry, 52: 147-154. https://doi.org/10.1016/j.apgeochem.2014.11.025
      Wen, H. J. , Zhou, Z. B. , Zhu, C. W. , et al. , 2019. Critical Scientific Issues of Super-Enrichment of Dispersed Metals. Acta Petrologica Sinica, 35(11): 3271-3291 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.01
      Wiggenhauser, M. , Bigalke, M. , Imseng, M. , et al. , 2016. Cadmium Isotope Fractionation in Soil-Wheat Systems. Environmental Science & Technology, 50(17): 9223-9231. https://doi.org/10.1021/acs.est.6b01568
      Wombacher, F. , Rehkämper, M. , Mezger, K. , et al. , 2003. Stable Isotope Compositions of Cadmium in Geological Materials and Meteorites Determined by Multiple-Collector ICPMS. Geochimica et Cosmochimica Acta, 67(23): 4639-4654. https://doi.org/10.1016/S0016-7037(03)00389-2
      Younes, A. , Alliot, C. , Ali, J. S. , et al. , 2020. Production of Polonium from Bismuth and Purification Using TBP Resin and Sr Resin. Journal of Radioanalytical and Nuclear Chemistry, 324(2): 823-828. https://doi.org/10.1007/s10967-020-07109-5
      Zhang, L. , Li, J. , Xu, Y. G. , et al. , 2018. The Influence of the Double Spike Proportion Effect on Stable Isotope (Zn, Mo, Cd, and Sn) Measurements by Multicollector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS). Journal of Analytical Atomic Spectrometry, 33(4): 555-562. https://doi.org/10.1039/C8JA00016F
      Zhang, Y. X. , Wen, H. J. , Fan, H. F. , et al. , 2023. Cadmium Isotopic Evidence for Reduced Deep-Water Marine Primary Productivity during the End-Permian Mass Extinction. Earth and Planetary Science Letters, 621: 118371. https://doi.org/10.1016/j.epsl.2023.118371
      Zhang, Y. X. , Wen, H. J. , Zhu, C. W. , et al. , 2016. Cd Isotope Fractionation during Simulated and Natural Weathering. Environmental Pollution, 216: 9-17. https://doi.org/10.1016/j.envpol.2016.04.060
      Zhang, Z. Y. , Li, T. , Li, B. C. , et al. , 2024. An Efficient Cd Two-Stage Column System for High-Precision Determination of Cd Isotopic Compositions by Double Spike MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 39(4): 1142-1151. https://doi.org/10.1039/D3JA00468F
      Zhong, Q. H. , Li, J. , Yin, L. , et al. , 2023a. A Two-Stage Cd Purification Method with Anion Exchange Resin and BPHA Extraction Resin for High Precision Determination of Cd Isotopic Compositions by Double Spike MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 38(4): 939-949. https://doi.org/10.1039/D2JA00411A
      Zhong, Q. H. , Yin, L. , Li, J. , et al. , 2023b. A Single-Stage Anion Exchange Separation Method for Cd Isotopic Analysis in Geological and Environmental Samples by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 38(11): 2291-2301. https://doi.org/10.1039/D3JA00234A
      Zhong, Q. H. , Zhou, Y. C. , Tsang, D. C. W. , et al. , 2020. Cadmium Isotopes as Tracers in Environmental Studies: A Review. Science of the Total Environment, 736: 139585. https://doi.org/10.1016/j.scitotenv.2020.139585
      Zhu, C. W. , Wen, H. J. , Zhang, Y. X. , et al. , 2018. Cd Isotope Fractionation during Sulfide Mineral Weathering in the Fule Zn-Pb-Cd Deposit, Yunnan Province, Southwest China. Science of the Total Environment, 616-617: 64-72. https://doi.org/10.1016/j.scitotenv.2017.10.293
      温汉捷, 周正兵, 朱传威, 等, 2019. 稀散金属超常富集的主要科学问题. 岩石学报, 35(11): 3271-3291. doi: 10.18654/1000-0569/2019.11.01
    • 加载中
    图(6) / 表(4)
    计量
    • 文章访问数:  32
    • HTML全文浏览量:  13
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-05
    • 网络出版日期:  2025-07-29
    • 刊出日期:  2025-07-25

    目录

      /

      返回文章
      返回