• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    奥陶纪-志留纪转折期火山活动与异常高有机质沉积:以中国华南地区为例

    孔维亮 邱振 张家强 张琴 刘雯 曲天泉 高万里 蔡光银 江冲

    孔维亮, 邱振, 张家强, 张琴, 刘雯, 曲天泉, 高万里, 蔡光银, 江冲, 2025. 奥陶纪-志留纪转折期火山活动与异常高有机质沉积:以中国华南地区为例. 地球科学, 50(12): 4583-4603. doi: 10.3799/dqkx.2025.125
    引用本文: 孔维亮, 邱振, 张家强, 张琴, 刘雯, 曲天泉, 高万里, 蔡光银, 江冲, 2025. 奥陶纪-志留纪转折期火山活动与异常高有机质沉积:以中国华南地区为例. 地球科学, 50(12): 4583-4603. doi: 10.3799/dqkx.2025.125
    Kong Weiliang, Qiu Zhen, Zhang Jiaqiang, Zhang Qin, Liu Wen, Qu Tianquan, Gao Wanli, Cai Guangyin, Jiang Chong, 2025. Volcanic Activity and Extraordinarily High Organic Matter Deposition across Ordovician-Silurian Transition: A Case Study from South China. Earth Science, 50(12): 4583-4603. doi: 10.3799/dqkx.2025.125
    Citation: Kong Weiliang, Qiu Zhen, Zhang Jiaqiang, Zhang Qin, Liu Wen, Qu Tianquan, Gao Wanli, Cai Guangyin, Jiang Chong, 2025. Volcanic Activity and Extraordinarily High Organic Matter Deposition across Ordovician-Silurian Transition: A Case Study from South China. Earth Science, 50(12): 4583-4603. doi: 10.3799/dqkx.2025.125

    奥陶纪-志留纪转折期火山活动与异常高有机质沉积:以中国华南地区为例

    doi: 10.3799/dqkx.2025.125
    基金项目: 

    国家自然科学基金项目 42222209

    中国石油天然气集团公司项目 2024DJ8701

    中国石油天然气集团公司项目 2023ZZ0801

    详细信息
      作者简介:

      孔维亮(1991-),男,博士,工程师,非常规油气沉积学与勘探评价. ORCID:0000-0002-1763-593X. E-mail:wlkong@foxmail.com

      通讯作者:

      邱振(1984-),男,博士,高级工程师,非常规油气沉积学与勘探评价. ORCID: 0000­0003­1886­1821. E-mail: qiuzhen316@163.com

    • 中图分类号: P618.13

    Volcanic Activity and Extraordinarily High Organic Matter Deposition across Ordovician-Silurian Transition: A Case Study from South China

    • 摘要: 大规模火山活动被认为是全球环境气候变化及生物多样性波动的重要驱动机制之一.它不仅能够促进海洋水体表层生产力提高,也可增强其底部水体硫化缺氧程度,从而有利于有机质沉积富集.奥陶纪-志留纪转折期全球火山活动频繁,伴随着广泛的黑色页岩沉积,并集中发育着异常高有机质层段(TOC≥3.0%).基于来自中国华南地区五峰组-龙马溪组20余个典型钻井和露头剖面的800余件样品的数据(包括TOC、主微量元素与汞含量及汞同位素等),总结了奥陶纪-志留纪转折期显性火山灰的赋存状态和识别特征,归纳了主微量元素与汞含量及汞同位素对隐性火山灰的示踪作用,系统探讨了该时期火山活动对海洋环境演化和异常高有机质沉积的潜在影响.结果表明:(1)显性与隐性火山灰的分布特征为重建该时期火山活动的历史轨迹提供了重要依据;(2)火山活动通过向海洋中输入大量磷,促进海洋表层初级生产力提高,并驱动了海洋底部缺氧水体扩张;(3)缺氧水体加剧了磷的重循环作用,进一步提高了初级生产力;(4)火山活动增强的风化作用加大了陆地硫酸盐输入,能够进一步促进海洋底部水体硫化缺氧程度.奥陶纪末期华南地区持续的火山活动及其相关效应,促进了奥陶纪-志留纪转折期海洋表层初级生产力提高和底部水体硫化缺氧扩张,最终促使该区五峰组-龙马溪组的异常高有机质规模沉积.

       

    • 图  1  奥陶纪-志留纪转折期地质事件与中国华南地区五峰组-龙马溪组页岩气甜点段分布特征

      邱振和邹才能(2020); Zou et al.(2022)修改

      Fig.  1.  Major geological events during the Ordovician and Silurian transition and characteristics of shale gas sweet-spot intervals of Wufeng-Lungmachi shale in Yangtze area, South China

      图  2  地质背景.(a)晚奥陶世(~450 Ma)全球古地理图(据Longman et al., 2021修改);(b)华南地区古地理图显示万和、双河、漆辽和田坝剖面位置;(c)晚奥陶世扬子陆棚海剖面示意性图(据Zou et al., 2018修改)

      Fig.  2.  Geological setting. (a) Late Ordovician (~450 Ma) paleogeography (modified from Longman et al., 2021); (b) simplified paleogeographic map of the Yangtze Shelf Sea during the Late Ordovician, showing the locations of the Wanhe (WH), Shuanghe (SH), Qiliao (QL) and Tianba (TB) sections; (c) schematic cross-section of the Late Ordovician Yangtze Shelf Sea (modified from Zou et al., 2018)

      图  3  奥陶纪-志留纪转折期全球火山灰野外照片

      a.美国典型火山灰层Millbrig(M)和Deicke(D)(Huff,2008);b.Deicke火山灰层(Huff,2008);c,d.英国Dob’ Linn剖面火山灰层;e,f.华南地区双河剖面火山灰层(Tao et al.,2020Kong et al.,2025);g.华南地区万和剖面火山灰层(Kong et al.,2025);h.华南地区漆辽剖面火山灰层(Tao et al.,2020

      Fig.  3.  Field photos of volcanic ash during the Ordovician-Silurian transition globally

      图  4  奥陶纪-志留纪转折期元素示踪火山活动图解

      底图和部分数据来自Yang et al.(2022)

      Fig.  4.  Diagrams of volcanic activity traced by major and trace elements during the Ordovician-Silurian transition

      图  5  奥陶纪-志留纪转折期全球Hg含量(a)和Hg/TOC比值(b)随时间变化图解以及全球火山活动强度、气候变化和水体氧化还原条件示意(c)(据Qiu et al., 2025修改)

      Fig.  5.  Temporal changes in Hg concentrations (a) and Hg/TOC ratios (b) on a global scale and the intensity of volcanic activity, climate change, and redox conditions(c) (modified from Qiu et al., 2025)

      图  6  漆辽剖面精细地球化学剖面

      Kong et al.(2025)修改

      Fig.  6.  High-resolution geochemical sections of the Qiliao Section

      图  7  田坝剖面精细地球化学剖面

      Kong et al.(2025)修改

      Fig.  7.  High-resolution geochemical sections of the Tianba Section

      图  8  万和、双河、漆辽和田坝剖面汞同位素对比

      Kong et al.(2025)修改;笔石带:D. cn.:Dicellograptus complanatusD. cx.:Dicellograptus complexusP. pacificusParaorthograptus pacificusM. e.Metabolograptus extraordinariusM. p.Metabolograptus persculptusA. a.Akidograptus ascensusP. a.Parakidograptus acuminatusC. v.Cystograptus vesiculosusC. c.Coronograptus cyphusD. triangulatusDemirastrites triangulates

      Fig.  8.  Comparison of mercury isotopes from the WH, SH, QL and TB sections

      图  9  万和、双河、漆辽和田坝剖面4个阶段Δ199Hg值箱式图

      Kong et al.(2025)修改

      Fig.  9.  Box plots of Δ199Hg values across four stages from WH, SH, QL and TB sections

      图  10  华南奥陶纪-志留纪转折期斑脱岩、早古生代岩浆岩与现代岛弧沉凝灰岩磷含量对比

      部分斑脱岩数据来自(Yang et al.,2022);岩浆岩数据来自(Wang et al.,2011Zhang et al.,2011Zhang et al.,2012Huang et al.,2013Zhong et al.,2014Zhong et al.,2016Jia et al.,2017Zhang et al.,2017Liu et al.,2020Li et al.,2021Yuan et al.,2024);五峰组-龙马溪组页岩数据来自(Zou et al.,2018Qiu et al.,2022b);平均上地壳数据来自(McLennan,2001),澳大利亚后太古宙页岩(PAAS)数据来自(Taylor and McLennan,1985

      Fig.  10.  Comparison of phosphorus content in Ordovician-Silurian transition bentonites, Early Paleozoic magmatic rocks from South China, and modern arc sedimentary ash rocks

      图  11  长宁双河剖面综合地球化学纪录(数据来自Zou et al., 2018; Qiu et al., 2022b)

      Fig.  11.  Integrated geochemical records of the Shuanghe Section, Changning (data from Zou et al., 2018; Qiu et al., 2022b)

      图  12  双河剖面和巫溪钻井岩心样品五峰组-龙马溪组页岩总有机碳含量(TOC)及有机碳(Corg)与有机磷(Porg)、活性磷(Preac)摩尔值交汇图(数据来自Qiu et al., 2022b)

      Fig.  12.  TOC, molar Corg/Porg and Corg/Preac ratios of the Wufeng-Lungmachi shales from the Shuanghe outcrop section and the Wuxi drill core (data from Qiu et al., 2022b)

      图  13  火山活动与奥陶纪-志留纪转折期异常高有机质页岩沉积模式

      Zou et al.(2022)邱振等(2024)修改

      Fig.  13.  Model of extraordinarily high organic matter deposition in the Ordovician-Silurian transition related to volcanic activity

    • Ayris, P., Delmelle, P., 2012. Volcanic and Atmospheric Controls on Ash Iron Solubility: A Review. Physics and Chemistry of the Earth, 45-46: 103-112. https://doi.org/10.1016/j.pce.2011.04.013
      Bao, H. Y., Meng, Z. Y., Li, K., et al., 2023. Plane Heterogeneity Characteristics and Main Controlling Factors of Development of Upper Gas Layer in Gas-Bearing Shale of Longmaxi Formation in Fuling Area, Sichuan Basin. Earth Science, 48(7): 2750-2763 (in Chinese with English abstract).
      Batchelor, R. A., 2008. Geochemical 'Golden Spike' for Lower Palaeozoic Metabentonites. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 99(3-4): 177-187. https://doi.org/10.1017/s1755691009007087
      Bergquist, B. A., Blum, J. D., 2009. The Odds and Evens of Mercury Isotopes: Applications of Mass-Dependent and Mass-Independent Isotope Fractionation. Elements, 5(6): 353-357. https://doi.org/10.2113/gselements.5.6.353.
      Bergström, S. M., Huff, W. D., Kolata, D. R., et al., 1997. A Unique Middle Ordovician K‐Bentonite Bed Succession at Röstånga, S. Sweden. GFF, 119(3): 231-244. https://doi.org/10.1080/11035899709546481
      Biswas, A., Blum, J. D., Bergquist, B. A., et al., 2008. Natural Mercury Isotope Variation in Coal Deposits and Organic Soils. Environmental Science & Technology, 42(22): 8303-8309. https://doi.org/10.1021/es801444b
      Blum, J. D., Sherman, L. S., Johnson, M. W., 2014. Mercury Isotopes in Earth and Environmental Sciences. Annual Review of Earth and Planetary Sciences, 42(1): 249-269. https://doi.org/10.1146/annurev-earth-050212-124107
      Bond, D. P. G., Grasby, S. E., 2020. Late Ordovician Mass Extinction Caused by Volcanism, Warming, and Anoxia, not Cooling and Glaciation. Geology, 48(8): 777-781. https://doi.org/10.1130/g47377.1
      Briffa, K. R., Jones, P. D., Schweingruber, F. H., et al., 1998. Influence of Volcanic Eruptions on Northern Hemisphere Summer Temperature over the Past 600 Years. Nature, 393: 450-455. https://doi.org/10.1038/30943
      Buggisch, W., Joachimski, M. M., Lehnert, O., et al., 2010. Did Intense Volcanism Trigger the First Late Ordovician Icehouse? Geology, 38: 327-330. https://doi.org/10.1130/g30577.1
      Cai, Q. S., Hu, M. Y., Yang, Z, et al., 2024. Sedimentary Environment and Organic Matter Accumulation of Black Rock Series of Wufeng-Longmaxi Formations in Foreland Depression, Western Hunan Province: An Example from Well TD2 in Changde Area. Earth Science, 49(7): 2330-2345 (in Chinese with English abstract).
      Courtillot, V. E., 2002. Evolutionary Catastrophes: The Science of Mass Extinction. Cambridge University Press, Cambridge.
      Cox, G. M., Lyons, T. W., Mitchell, R. N., et al., 2018. Linking the Rise of Atmospheric Oxygen to Growth in the Continental Phosphorus Inventory. Earth and Planetary Science Letters, 489: 28-36. https://doi.org/10.1016/j.epsl.2018.02.016
      Dellwig, O., Leipe, T., März, C., et al., 2010. A New Particulate Mn-Fe-P-Shuttle at the Redoxcline of Anoxic Basins. Geochimica et Cosmochimica Acta, 74(24): 7100-7115. https://doi.org/10.1016/j.gca.2010.09.017
      Demers, J. D., Blum, J. D., Zak, D. R., 2013. Mercury Isotopes in a Forested Ecosystem: Implications for Air-Surface Exchange Dynamics and the Global Mercury Cycle. Global Biogeochemical Cycles, 27(1): 222-238. https://doi.org/10.1002/gbc.20021
      Derakhshi, M., Ernst, R. E., Kamo, S. L., 2022. Ordovician-Silurian Volcanism in Northern Iran: Implications for a New Large Igneous Province (LIP) and a Robust Candidate for the Late Ordovician Mass Extinction. Gondwana Research, 107: 256-280. https://doi.org/10.1016/j.gr.2022.03.009
      Du, X. B., Lu, Y. C., Duan, D., et al., 2020. Was Volcanic Activity during the Ordovician-Silurian Transition in South China Part of a Global Phenomenon? Constraints from Zircon U-Pb Dating of Volcanic Ash Beds in Black Shales. Marine and Petroleum Geology, 114: 104209. https://doi.org/10.1016/j.marpetgeo.2019.104209
      Du, X. B., Jia, J. X., Zhao, K., et al., 2022. Development Characteristics of Deep-Time Volcanic Ash Layers and Its Influence on Deposition of Organic-Rich Shale across Ordovician-Silurian Transition in Yangtze Area, South China. Journal of Central South University (Science and Technology), 53(9): 3509-3521 (in Chinese with English abstract).
      Duggen, S., Croot, P., Schacht, U., et al., 2007. Subduction Zone Volcanic Ash can Fertilize the Surface Ocean and Stimulate Phytoplankton Growth: Evidence from Biogeochemical Experiments and Satellite Data. Geophysical Research Letters, 34(1): 2006GL027522. https://doi.org/10.1029/2006gl027522
      Duhamel, S., Diaz, J. M., Adams, J. C., et al., 2021. Phosphorus as an Integral Component of Global Marine Biogeochemistry. Nature Geoscience, 14(6): 359-368. https://doi.org/10.1038/s41561-021-00755-8
      Ernst, R. E., Youbi, N., 2017. How Large Igneous Provinces Affect Global Climate, Sometimes Cause Mass Extinctions, and Represent Natural Markers in the Geological Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 30-52. https://doi.org/10.1016/j.palaeo.2017.03.014
      Fendley, I. M., Frieling, J., Mather, T. A., et al., 2024. Early Jurassic Large Igneous Province Carbon Emissions Constrained by Sedimentary Mercury. Nature Geoscience, 17(3): 241-248. https://doi.org/10.1038/s41561-024-01378-5
      Finnegan, S., Heim, N. A., Peters, S. E., et al., 2012. Climate Change and the Selective Signature of the Late Ordovician Mass Extinction. Proceedings of the National Academy of Sciences of the United States of America, 109(18): 6829-6834. https://doi.org/10.1073/pnas.1117039109
      Fisher, R. V., Schmincke, H. U., 1984. Pyroclastic Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74864-6
      Fortey, R. A., Cocks, L. R. M., 2005. Late Ordovician Global Warming: The Boda Event. Geology, 33(5): 405. https://doi.org/10.1130/g21180.1
      Ge, X. Y., Mou, C. L., Men, X., et al., 2023. Discussion on U-Pb Dating and Tectonic Setting of K-Bentonites from Late Ordovician-Early Silurian Period in the Sichuan Basin. Sedimentary Geology and Tethyan Geology (in press)(in Chinese with English abstract).
      Gernon, T. M., Barr, R., Fitton, J. G., et al., 2022. Transient Mobilization of Subcrustal Carbon Coincident with Palaeocene-Eocene Thermal Maximum. Nature Geoscience, 15(7): 573-579. https://doi.org/10.1038/s41561-022-00967-6
      Gernon, T. M., Mills, B. J. W., Hincks, T. K., et al., 2024. Solid Earth Forcing of Mesozoic Oceanic Anoxic Events. Nature Geoscience, 17(9): 926-935. https://doi.org/10.1038/s41561-024-01496-0
      Gong, Q., Wang, X. D., Zhao, L. S., et al., 2017. Mercury Spikes Suggest Volcanic Driver of the Ordovician-Silurian Mass Extinction. Scientific Reports, 7: 5304. https://doi.org/10.1038/s41598-017-05524-5
      Grasby, S. E., Shen, W. J., Yin, R. S., et al., 2017. Isotopic Signatures of Mercury Contamination in Latest Permian Oceans. Geology, 45(1): 55-58. https://doi.org/10.1130/g38487.1
      Grasby, S. E., Them, T. R., Chen, Z. H., et al., 2019. Mercury as a Proxy for Volcanic Emissions in the Geologic Record. Earth-Science Reviews, 196: 102880. https://doi.org/10.1016/j.earscirev.2019.102880
      Guo, L. C., Xiong, S. F., Mills, B. J. W., et al., 2024. Acceleration of Phosphorus Weathering under Warm Climates. Science Advances, 10(28): eadm7773. https://doi.org/10.1126/sciadv.adm7773
      Gutjahr, M., Ridgwell, A., Sexton, P. F., et al., 2017. Very Large Release of Mostly Volcanic Carbon during the Palaeocene-Eocene Thermal Maximum. Nature, 548(7669): 573-577. https://doi.org/10.1038/nature23646
      Hamme, R. C., Webley, P. W., Crawford, W. R., et al., 2010. Volcanic Ash Fuels Anomalous Plankton Bloom in Subarctic Northeast Pacific. Geophysical Research Letters, 37(19): 2010GL044629. https://doi.org/10.1029/2010GL044629
      Hong, H. L., Algeo, T. J., Fang, Q., et al., 2019. Facies Dependence of the Mineralogy and Geochemistry of Altered Volcanic Ash Beds: An Example from Permian-Triassic Transition Strata in Southwestern China. Earth-Science Reviews, 190: 58-88. https://doi.org/10.1016/j.earscirev.2018.12.007
      Hu, X. M., Li, J., Han, Z., et al., 2020. Two Types of Hyperthermal Events in the Mesozoic-Cenozoic: Environmental Impacts, Biotic Effects, and Driving Mechanisms. Science China Earth Sciences, 50(8): 1023-1043(in Chinese).
      Hu, D. P., Li, M. H., Chen, J. B., et al., 2021. Major Volcanic Eruptions Linked to the Late Ordovician Mass Extinction: Evidence from Mercury Enrichment and Hg Isotopes. Global and Planetary Change, 196: 103374. https://doi.org/10.1016/j.gloplacha.2020.103374
      Hu, Y. H., Liu, J., Zhou, M. Z., et al., 2009a. An Overview of Ordovician and Silurian K-Bentonites. Geochimica, 38(4): 393-404(in Chinese with English abstract)
      Hu, Y. H., Sun, W. D., Ding, X., et al., 2009b. Volcanic Event at the Ordovician-Silurian Boundary: The Message from K-Bentonite of Yangtze Block. Acta Petrologica Sinica, 25(12): 3298-3308 (in Chinese with English abstract).
      Huang, X. L., Yu, Y., Li, J., et al., 2013. Geochronology and Petrogenesis of the Early Paleozoic Ⅰ-Type Granite in the Taishan Area, South China: Middle-Lower Crustal Melting during Orogenic Collapse. Lithos, 177: 268-284. https://doi.org/10.1016/j.lithos.2013.07.002
      Huff, W. D., 2008. Ordovician K-Bentonites: Issues in Interpreting and Correlating Ancient Tephras. Quaternary International, 178(1): 276-287. https://doi.org/10.1016/j.quaint.2007.04.007
      Huff, W. D., 2016. K-Bentonites: A Review. American Mineralogist, 101(1): 43-70. https://doi.org/10.2138/am-2016-5339
      Huff, W. D., Kolata, D. R., Bergström, S. M., et al., 1996. Large-Magnitude Middle Ordovician Volcanic Ash Falls in North America and Europe: Dimensions, Emplacement and Post-Emplacement Characteristics. Journal of Volcanology and Geothermal Research, 73(3-4): 285-301. https://doi.org/10.1016/0377-0273(96)00025-x
      Jia, J. X., Du, X. B., Zhao, K., et al., 2022. Sources of K-Bentonites across the Ordovician-Silurian Transition in South China: Implications for Tectonic Activities on the Northern and Southern Margins of the South China Block. Marine and Petroleum Geology, 139: 105599. https://doi.org/10.1016/j.marpetgeo.2022.105599
      Jia, X. H., Wang, X. D., Yang, W. Q., 2017. Petrogenesis and Geodynamic Implications of the Early Paleozoic Potassic and Ultrapotassic Rocks in the South China Block. Journal of Asian Earth Sciences, 135: 80-94. https://doi.org/10.1016/j.jseaes.2016.12.013
      Jiskra, M., Heimbürger-Boavida, L. E., Desgranges, M. M., et al., 2021. Mercury Stable Isotopes Constrain Atmospheric Sources to the Ocean. Nature, 597: 678-682. https://doi.org/10.1038/s41586-021-03859-8
      Jones, D. S., Martini, A. M., Fike, D. A., et al., 2017. A Volcanic Trigger for the Late Ordovician Mass Extinction? Mercury Data from South China and Laurentia. Geology, 45(7): 631-634. https://doi.org/10.1130/g38940.1
      Jones, M. T., Gislason, S. R., 2008. Rapid Releases of Metal Salts and Nutrients Following the Deposition of Volcanic Ash into Aqueous Environments. Geochimica et Cosmochimica Acta, 72(15): 3661-3680. https://doi.org/10.1016/j.gca.2008.05.030
      Kiipli, T., Kallaste, T., Kiipli, E., et al., 2008a. Use of Immobile Trace Elements for the Correlation of Telychian Bentonites on Saaremaa Island, Estonia, and Mapping of Volcanic Ash Clouds. Estonian Journal of Earth Sciences, 57(1): 39. https://doi.org/10.3176/earth.2008.1.04
      Kiipli, T., Soesoo, A., Kallaste, T., et al., 2008b. Geochemistry of Telichian (Silurian) K-Bentonites in Estonia and Latvia. Journal of Volcanology and Geothermal Research, 171(1-2): 45-58. https://doi.org/10.1016/j.jvolgeores.2007.11.005
      Kiipli, T., Einasto, R., Kallaste, T., et al., 2011. Geochemistry and Correlation of Volcanic Ash Beds from the Rootsiküla Stage (Wenlock-Ludlow) in the Eastern Baltic. Estonian Journal of Earth Sciences, 60(4): 207. https://doi.org/10.3176/earth.2011.4.02
      Kiipli, T., Kallaste, T., Nestor, V., 2012. Correlation of Upper Llandovery-Lower Wenlock Bentonites in the När (Gotland, Sweden) and Ventspils (Latvia) Drill Cores: Role of Volcanic Ash Clouds and Shelf Sea Currents in Determining Areal Distribution of Bentonite. Estonian Journal of Earth Sciences, 61(4): 295. https://doi.org/10.3176/earth.2012.4.08
      Kong, W. L., Qiu, Z., Zhang, J. Q., et al., 2025. Mercury Deposition in South China across the Ordovician-Silurian Transition: Implications for Climate Change. Geochemistry, Geophysics, Geosystems, 26(7): e2024GC012122. https://doi.org/10.1029/2024GC012122
      Kwon, S. Y., Blum, J. D., Yin, R. S., et al., 2020. Mercury Stable Isotopes for Monitoring the Effectiveness of the Minamata Convention on Mercury. Earth-Science Reviews, 203: 103111. https://doi.org/10.1016/j.earscirev.2020.103111
      Li, X. L., Yu, J. H., Jiang, D. S., et al., 2021. Linking Ocean Subduction with Early Paleozoic Intracontinental Orogeny in South China: Insights from the Xiaying Complex in Eastern Guangxi Province. Lithos, 398/399: 106258. https://doi.org/10.1016/j.lithos.2021.106258
      Liang, C., Liu, Y. D., Cao, Y. C., et al., 2023. Coupling Relationship of Multiple Events and Enrichment of Organic Matter during Ordovician-Silurian Transition Period in Yangtze Region. Journal of China University of Petroleum (Edition of Natural Science), 47(6): 1-12 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1673-5005.2023.06.001
      Liang, C., Xie, H. R., Wu, J., et al., 2025. Volcanic Activity Driving Rapid Organic Carbon Burial during the Ordovician-Silurian Transition. Geological Society of America Bulletin, 137(5-6): 1909-1926. https://doi.org/10.1130/b37946.1
      Lin, I. I., Hu, C. M., Li, Y. H., et al., 2011. Fertilization Potential of Volcanic Dust in the Low-Nutrient Low-Chlorophyll Western North Pacific Subtropical Gyre: Satellite Evidence and Laboratory Study. Global Biogeochemical Cycles, 25(1). https://doi.org/10.1029/2009gb003758
      Liu, X., Wang, Q., Ma, L., et al., 2020. Early Paleozoic Intracontinental Granites in the Guangzhou Region of South China: Partial Melting of a Metasediment-Dominated Crustal Source. Lithos, 376-377: 105763. https://doi.org/10.1016/j.lithos.2020.105763
      Liu, Y., Li, Y. C., Hou, M. C., et al., 2023. Terrestrial rather than Volcanic Mercury Inputs to the Yangtze Platform (South China) during the Ordovician-Silurian Transition. Global and Planetary Change, 220: 104023. https://doi.org/10.1016/j.gloplacha.2022.104023
      Longman, J., Mills, B. J. W., Manners, H. R., et al., 2021. Late Ordovician Climate Change and Extinctions Driven by Elevated Volcanic Nutrient Supply. Nature Geoscience, 14(12): 924-929. https://doi.org/10.1038/s41561-021-00855-5
      McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 2000GC000109. https://doi.org/10.1029/2000GC000109
      Melchin, M. J., Mitchell, C. E., Holmden, C., et al., 2013. Environmental Changes in the Late Ordovician-Early Silurian: Review and New Insights from Black Shales and Nitrogen Isotopes. Geological Society of America Bulletin, 125(11-12): 1635-1670. https://doi.org/10.1130/b30812.1
      Meyer, K. M., Kump, L. R., 2008. Oceanic Euxinia in Earth History: Causes and Consequences. Annual Review of Earth and Planetary Sciences, 36: 251-288. https://doi.org/10.1146/annurev.earth.36.031207.124256
      Olgun, N., Duggen, S., Andronico, D., et al., 2013. Possible Impacts of Volcanic Ash Emissions of Mount Etna on the Primary Productivity in the Oligotrophic Mediterranean Sea: Results from Nutrient-Release Experiments in Seawater. Marine Chemistry, 152: 32-42. https://doi.org/10.1016/j.marchem.2013.04.004
      Olson, S. L., Ostrander, C. M., Gregory, D. D., et al., 2019. Volcanically Modulated Pyrite Burial and Ocean-Atmosphere Oxidation. Earth and Planetary Science Letters, 506: 417-427. https://doi.org/10.1016/j.epsl.2018.11.015
      Perrot, V., Bridou, R., Pedrero, Z., et al., 2015. Identical Hg Isotope Mass Dependent Fractionation Signature during Methylation by Sulfate-Reducing Bacteria in Sulfate and Sulfate-Free Environment. Environmental Science & Technology, 49(3): 1365-1373. https://doi.org/10.1021/es5033376
      Plunkett, G., Pilcher, J. R., 2018. Defining the Potential Source Region of Volcanic Ash in Northwest Europe during the Mid- to Late Holocene. Earth-Science Reviews, 179: 20-37. https://doi.org/10.1016/j.earscirev.2018.02.006
      Pyle, D. M., Mather, T. A., 2003. The Importance of Volcanic Emissions for the Global Atmospheric Mercury Cycle. Atmospheric Environment, 37(36): 5115-5124. https://doi.org/10.1016/j.atmosenv.2003.07.011
      Qiu, Z., Kong, W. L., Zhang, J. Q., et al., 2025. Mercury Evidences Link Intensive Volcanism to the Late Ordovician Mass Extinction and Changes in the Atmosphere-Land-Ocean System. The Innovation Geoscience, 3(2): 100124. https://doi.org/10.59717/j.xinn-geo.2024.100124
      Qiu, Z., Zou, C. N., 2020. Unconventional Petroleum Sedimentology: Connotation and Prospect. Acta Sedimentologica Sinica, 38(1): 1-29(in Chinese with English abstract).
      Qiu, Z., Wei, H. Y., Liu, H. L., et al., 2021. Accumulation of Sediments with Extraordinary High Organic Matter Content: Insight Gained through Geochemical Characterization of Indicative Elements. Oil & Gas Geology, 42(4): 931-948 (in Chinese with English abstract).
      Qiu, Z., Wei, H. Y., Tian, L., et al., 2022a. Different Controls on the Hg Spikes Linked the Two Pulses of the Late Ordovician Mass Extinction in South China. Scientific Reports, 12: 5195. https://doi.org/10.1038/s41598-022-08941-3
      Qiu, Z., Zou, C. N., Mills, B. J. W., et al., 2022b. A Nutrient Control on Expanded Anoxia and Global Cooling during the Late Ordovician Mass Extinction. Communications Earth & Environment, 3: 82. https://doi.org/10.1038/s43247-022-00412-x
      Qiu, Z., Zou, C. N., Wang, H. Y., et al., 2020. Discussion on Characteristics and Controlling Factors of Differential Enrichment of Wufeng-Longmaxi Formations Shale Gas in South China. Natural Gas Geoscience, 31(2): 163-175 (in Chinese with English abstract).
      Qiu, Z., Zou, C. N., Wei, H. Y., et al., 2024. Unconventional Hydrocarbon Accumulation and Major Geological Events—Innovation Research in Unconventional Petroleum Sedimentology. Science Press, Beijing (in Chinese).
      Ray, D. C., Collings, A. V. J., Worton, G. J., et al., 2011. Upper Wenlock Bentonites from Wren's Nest Hill, Dudley: Comparisons with Prominent Bentonites along Wenlock Edge, Shropshire, England. Geological Magazine, 148(4): 670-681. https://doi.org/10.1017/s0016756811000288
      Redfield, A. C., 1934. On the Proportions of Organic Derivatives in Sea Water and Their Relation to the Composition of Plankton. University Press of Liverpool, Liverpool.
      Redfield, A. C., 1958. The Biological Control of Chemical Factors in the Environment. American Scientist, 46(3): 230A,205-230A,221.
      Schobben, M., Foster, W. J., Sleveland, A. R. N., et al., 2020. A Nutrient Control on Marine Anoxia during the End-Permian Mass Extinction. Nature Geoscience, 13(9): 640-646. https://doi.org/10.1038/s41561-020-0622-1
      Sell, B. K., Samson, S. D., 2011. Apatite Phenocryst Compositions Demonstrate a Miscorrelation between the Millbrig and Kinnekulle K-Bentonites of North America and Scandinavia. Geology, 39(4): 303-306. https://doi.org/10.1130/g31425.1
      Sherman, L. S., Blum, J. D., Nordstrom, D. K., et al., 2009. Mercury Isotopic Composition of Hydrothermal Systems in the Yellowstone Plateau Volcanic Field and Guaymas Basin Sea-Floor Rift. Earth and Planetary Science Letters, 279(1-2): 86-96. https://doi.org/10.1016/j.epsl.2008.12.032
      Smolarek-Lach, J., Marynowski, L., Trela, W., et al., 2019. Mercury Spikes Indicate a Volcanic Trigger for the Late Ordovician Mass Extinction Event: An Example from a Deep Shelf of the Peri-Baltic Region. Scientific Reports, 9: 3139. https://doi.org/10.1038/s41598-019-39333-9
      Štrok, M., Baya, P. A., Hintelmann, H., 2015. The Mercury Isotope Composition of Arctic Coastal Seawater. Comptes Rendus Geoscience, 347(7-8): 368-376. https://doi.org/10.1016/j.crte.2015.04.001
      Su, W. B., He, L. Q., Wang, Y. B., et al., 2002. K-Bentonite Beds and High-Resolution Integrated Stratigraphy of the Uppermost Ordovician Wufeng and the Lowest Silurian Longmaxi Formations in South China. Science in China (Seri. D), 32(3): 207-219 (in Chinese).
      Su, W. B., Huff, W. D., Ettensohn, F. R., et al., 2009. K-Bentonite, Black-Shale and Flysch Successions at the Ordovician-Silurian Transition, South China: Possible Sedimentary Responses to the Accretion of Cathaysia to the Yangtze Block and Its Implications for the Evolution of Gondwana. Gondwana Research, 15(1): 111-130. https://doi.org/10.1016/j.gr.2008.06.004
      Tao, H. F., Qiu, Z., Lu, B., et al., 2020. Volcanic Activities Triggered the First Global Cooling Event in the Phanerozoic. Journal of Asian Earth Sciences, 194: 104074. https://doi.org/10.1016/j.jseaes.2019.104074
      Tyrrell, T., 1999. The Relative Influences of Nitrogen and Phosphorus on Oceanic Primary Production. Nature, 400: 525-531. https://doi.org/10.1038/22941
      Walton, C. R., Ewens, S., Coates, J. D., et al., 2023. Phosphorus Availability on the Early Earth and the Impacts of Life. Nature Geoscience, 16(5): 399-409. https://doi.org/10.1038/s41561-023-01167-6
      Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2011. Kwangsian Crustal Anatexis within the Eastern South China Block: Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1-2): 239-260. https://doi.org/10.1016/j.lithos.2011.07.027
      Westheimer, F. H., 1987. Why Nature Chose Phosphates. Science, 235(4793): 1173-1178. https://doi.org/10.1126/science.2434996
      Wignall, P. B., 2001. Large Igneous Provinces and Mass Extinctions. Earth-Science Reviews, 53(1-2): 1-33. https://doi.org/10.1016/s0012-8252(00)00037-4
      Wignall, P., 2005. The Link between Large Igneous Province Eruptions and Mass Extinctions. Elements, 1(5): 293-297. https://doi.org/10.2113/gselements.1.5.293
      Xiong, G. Q., Wang, J., Li, Y. Y., et al., 2017. Zircon U-Pb Dating and Geological Significance of the Bentonites from the Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation in Western Daba Mountains. Sedimentary Geology and Tethyan Geology, 37(2): 46-58 (in Chinese with English abstract).
      Xu, Y. J., Cawood, P. A., Du, Y. S., 2016. Intraplate Orogenesis in Response to Gondwana Assembly: Kwangsian Orogeny, South China. American Journal of Science, 316(4): 329-362. https://doi.org/10.2475/04.2016.02
      Yang, S. C., Hu, W. X., Wang, X. L., et al., 2019. Duration, Evolution, and Implications of Volcanic Activity across the Ordovician-Silurian Transition in the Lower Yangtze Region, South China. Earth and Planetary Science Letters, 518: 13-25. https://doi.org/10.1016/j.epsl.2019.04.020.
      Yang, S. C., Hu, W. X., Fan, J. X., et al., 2022. New Geochemical Identification Fingerprints of Volcanism during the Ordovician-Silurian Transition and Its Implications for Biological and Environmental Evolution. Earth-Science Reviews, 228: 104016. https://doi.org/10.1016/j.earscirev.2022.104016
      Yin, R. S., Chen, D., Pan, X., et al., 2022. Mantle Hg Isotopic Heterogeneity and Evidence of Oceanic Hg Recycling into the Mantle. Nature Communications, 13: 948. https://doi.org/10.1038/s41467-022-28577-1
      Yuan, X. C., Liu, J. L., Yang, Q. J., et al., 2024. Ordovician-Early Devonian Granitic Magmatism as the Consequence of Intracontinental Orogenic Activity along the Qinhang Belt in South China. Geological Society of America Bulletin, 136(7/8): 3137-3155. https://doi.org/10.1130/b36992.1
      Zambardi, T., Sonke, J. E., Toutain, J. P., et al., 2009. Mercury Emissions and Stable Isotopic Compositions at Vulcano Island (Italy). Earth and Planetary Science Letters, 277(1-2): 236-243. https://doi.org/10.1016/j.epsl.2008.10.023
      Zhang, F. F., Wang, Y. J., Zhang, A. M., et al., 2012. Geochronological and Geochemical Constraints on the Petrogenesis of Middle Paleozoic (Kwangsian) Massive Granites in the Eastern South China Block. Lithos, 150: 188-208. https://doi.org/10.1016/j.lithos.2012.03.011
      Zhang, X. S., Xu, X. S., Xia, Y., et al., 2017. Early Paleozoic Intracontinental Orogeny and Post-Orogenic Extension in the South China Block: Insights from Volcanic Rocks. Journal of Asian Earth Sciences, 141: 24-42. https://doi.org/10.1016/j.jseaes.2016.07.016.
      Zhang, Y., Shu, L. S., Chen, X. Y., 2011a. Geochemistry, Geochronology, and Petro-Genesis of the Early Paleozoic Granitic Plutons in the Central-Southern Jiangxi Province, China. Science China Earth Sciences, 54(10): 1492-1510. https://doi.org/10.1007/s11430-011-4249-3
      Zhao, K., Du, X. B., Lu, Y. C., et al., 2021. Is Volcanic Ash Responsible for the Enrichment of Organic Carbon in Shales? Quantitative Characterization of Organic-Rich Shale at the Ordovician-Silurian Transition. GSA Bulletin, 133(3/4): 837-848. https://doi.org/10.1130/b35737.1
      Zhao, M. Y., Mills, B. J. W., Poulton, S. W., et al., 2024. Drivers of the Global Phosphorus Cycle over Geological Time. Nature Reviews Earth & Environment, 5(12): 873-889. https://doi.org/10.1038/s43017-024-00603-4
      Zheng, W., Zhou, A. W., Sahoo, S. K., et al., 2023. Recurrent Photic Zone Euxinia Limited Ocean Oxygenation and Animal Evolution during the Ediacaran. Nature Communications, 14: 3920. https://doi.org/10.1038/s41467-023-39427-z
      Zheng, W., Zhou, A. W., Sun, R. Y., et al., 2023. Mercury Isotopes in Sedimentary Rocks as a Paleoenvironmental Proxy. Chinese Science Bulletin, 68(6): 628-643(in Chinese). doi: 10.1360/TB-2022-0158
      Zhong, Y. F., Ma, C. Q., Liu, L., et al., 2014. Ordovician Appinites in the Wugongshan Domain of the Cathaysia Block, South China: Geochronological and Geochemical Evidence for Intrusion into a Local Extensional Zone within an Intracontinental Regime. Lithos, 198-199: 202-216. https://doi.org/10.1016/j.lithos.2014.04.002
      Zhong, Y. F., Wang, L. X., Zhao, J. H., et al., 2016. Partial Melting of an Ancient Sub-Continental Lithospheric Mantle in the Early Paleozoic Intracontinental Regime and Its Contribution to Petrogenesis of the Coeval Peraluminous Granites in South China. Lithos, 264: 224-238. https://doi.org/10.1016/j.lithos.2016.08.026
      Zhou, M. Z., Luo, T. Y., Huang, Z. L., et al., 2007. Advances in Research on K-Bentonite. Acta Mineralogica Sinica, 27(Suppl. 1): 351-359 (in Chinese with English abstract).
      Zou, C. N., Qiu, Z., Poulton, S. W., et al., 2018a. Ocean Euxinia and Climate Change "Double Whammy" Drove the Late Ordovician Mass Extinction. Geology, 46(6): 535-538. https://doi.org/10.1130/g40121.1
      Zou, C. N., Qiu, Z., Wei, H. Y., et al., 2018b. Euxinia Caused the Late Ordovician Extinction: Evidence from Pyrite Morphology and Pyritic Sulfur Isotopic Composition in the Yangtze Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 511: 1-11. https://doi.org/10.1016/j.palaeo.2017.11.033
      Zou, C. N., Qiu, Z., Zhang, J. Q., et al., 2022. Unconventional Petroleum Sedimentology: A Key to Understanding Unconventional Hydrocarbon Accumulation. Engineering, 18: 62-78. https://doi.org/10.1016/j.eng.2022.06.016
      包汉勇, 孟志勇, 李凯, 等, 2023. 四川盆地涪陵地区龙马溪组含气页岩段上部气层平面非均质性特征及其发育主控因素. 地球科学, 48(7): 2750-2763. doi: 10.3799/dqkx.2023.154
      蔡全升, 胡明毅, 杨智, 等, 2024. 湘西前陆坳陷区五峰-龙马溪组黑色岩系沉积环境与有机质富集机制: 以TD2井为例. 地球科学, 49(7): 2330-2345. doi: 10.3799/dqkx.2023.098
      杜学斌, 贾冀新, 赵珂, 等, 2022. 扬子地区奥陶纪-志留纪过渡期深时火山灰层发育特征及其对富有机质页岩沉积的影响. 中南大学学报(自然科学版), 53(9): 3509-3521.
      葛祥英, 牟传龙, 门欣, 等, 2023. 四川盆地晚奥陶世末期-早志留世初期钾质斑脱岩U-Pb年代学及其成因环境研究. 沉积与特提斯地质(待刊).
      胡修棉, 李娟, 韩中, 等, 2020. 中新生代两类极热事件的环境变化、生态效应与驱动机制. 中国科学: 地球科学, 50(8): 1023-1043.
      胡艳华, 刘健, 周明忠, 等, 2009a. 奥陶纪和志留纪钾质斑脱岩研究评述. 地球化学, 38(4): 393-404.
      胡艳华, 孙卫东, 丁兴, 等, 2009b. 奥陶纪-志留纪边界附近火山活动记录: 来华南周缘钾质斑脱岩的信息. 岩石学报, 25(12): 3298-3308.
      梁超, 刘雨迪, 操应长, 等, 2023. 扬子地区奥陶纪-志留纪转折期多事件耦合关系及有机质富集. 中国石油大学学报(自然科学版), 47(6): 1-12.
      邱振, 韦恒叶, 刘翰林, 等, 2021. 异常高有机质沉积富集过程与元素地球化学特征. 石油与天然气地质, 42(4): 931-948.
      邱振, 邹才能, 王红岩, 等, 2020. 中国南方五峰组-龙马溪组页岩气差异富集特征与控制因素. 天然气地球科学, 31(2): 163-175.
      邱振, 邹才能, 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29.
      邱振, 邹才能, 韦恒叶, 等, 2024. 非常规油气资源富集与重大地质事件: 非常规油气沉积学创新研究. 北京: 科学出版社.
      苏文博, 何龙清, 王永标, 等, 2002. 华南奥陶-志留系五峰组及龙马溪组底部斑脱岩与高分辨综合地层. 中国科学(D辑), 32(3): 207-219.
      熊国庆, 王剑, 李园园, 等, 2017. 大巴山西段上奥陶统-下志留统五峰组-龙马溪组斑脱岩锆石U-Pb年龄及其地质意义. 沉积与特提斯地质, 37(2): 46-58.
      郑旺, 周岸文, 孙若愚, 等, 2023. 沉积岩汞同位素的古环境指示意义. 科学通报, 68(6): 628-643.
      周明忠, 罗泰义, 黄智龙, 等, 2007. 钾质斑脱岩的研究进展. 矿物学报, 27(增刊1): 351-359.
    • 加载中
    图(13)
    计量
    • 文章访问数:  300
    • HTML全文浏览量:  13
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-02-10
    • 刊出日期:  2025-12-25

    目录

      /

      返回文章
      返回