Mantle Heterogeneity Recorded by Mass⁃Independent Fractionation of Sulfur Isotopes and Dynamic Implications
-
摘要:
硫是一种挥发性元素,在浅部岩浆过程(如分离结晶、岩浆脱气)中易产生硫同位素质量分馏效应(Mass-dependent fractionation of sulfur isotopes,MDF⁃S),对使用硫同位素组成来约束地幔主要化学储库的属性产生干扰.硫同位素非质量分馏效应(Mass-independent fractionation of sulfur isotopes,MIF-S)是硫同位素分馏行为偏离质量依赖关系的现象,主要通过含硫分子在高能紫外线照射下发生光化学反应产生,其分馏机制与地球早期大气演化关系密切.值得注意的是,MIF-S信号在太古代沉积岩中普遍存在,而在大氧化事件之后该信号却消失不见.硫同位素非质量分馏(MIF-S)不依赖地幔氧化还原状态和高温过程(如部分熔融、分离结晶、岩浆脱气),能够很好地规避浅部岩浆过程导致的硫同位素质量分馏,对理解板块构造启动、地幔氧化还原状态和深部物质循环至关重要.在简要介绍硫同位质量和非质量分馏理论的基础上,本文梳理了地幔主要地球化学储库的硫同位素组成,重点评述了近20年来硫同位素非质量分馏效应在地幔不均一性和板块构造启动时限等研究上的重要进展.
Abstract:Sulfur is a volatile element that is prone to mass-dependent fractionation of sulfur isotopes (MDF-S) during shallow magmatic processes (e.g., fractional crystallization and magma degassing), which limits us to constrain the properties of major mantle chemical reservoirs. The mass-independent fractionation of sulfur isotopes (MIF-S) is a phenomenon in which the fractionation behavior of sulfur isotopes deviates from the mass dependent relationship. MIF-S is mainly produced through photochemical reactions of sulfur-containing molecules under high-energy ultraviolet radiation, and its fractionation mechanism is closely related to the atmospheric evolution on early Earth. It is worth noting that MIF-S signals are commonly preserved in Archean sedimentary rocks, but they disappeared after the Great Oxidation Event (GOE). MIF-S does not rely on mantle redox states and high-temperature processes (such as partial melting, fractional crystallization, magma degassing), and can effectively avoid MDF-S driven by shallow magma processes. And so, MIF-S is crucial for understanding the onset of plate tectonics, mantle redox states, and deep material cycling. On the basis of a brief introduction to the theories of MDF-S and MIF-S, this review summarizes the sulfur isotope composition of major mantle chemical reservoirs, and focuses on the important progress in mantle heterogeneity and onset of plate tectonics recorded by MIF-S in the past two decades.
-
图 1 年轻地质样品(< 2 Ga)多硫同位素(δ33S、δ34S、δ36S)之间的相关性
硫同位素质量分馏(MDF-S,Δ33S=0,Δ36S=0)和硫同位素非质量分馏(MIF-S,Δ33S≠0,Δ36S≠0)的定义来自文献(Farquhar et al.,2000;Johnston,2011)
Fig. 1. Relationships among multiple sulfur isotopes (δ33S, δ34S, δ36S) in young terrestrial samples (< 2 Ga)
图 2 洋岛玄武岩Pb-Sr-Nd-S同位素组成和地幔端元组分
MORB.洋脊玄武岩;OIB.洋岛玄武岩;EM1.Ⅰ型富集地幔端元;EM2.Ⅱ型富集地幔端元;HIMU.高铀/铅比值地幔端元.数据源:洋脊玄武岩和洋岛玄武岩数据分别引自PetDB数据库(http://www.earthchem.org/petdb)和GEOROC数据库(http://georoc.mpch-mainz.gwdg.de/georoc);Pitcairn洋岛玄武岩数据引自Delavault et al.(2016);南大西洋EM1型洋脊玄武岩数据引自Labidi et al.(2013);亏损地幔(DMM)和岛弧玄武岩δ34S数据分别引自Labidi et al.(2013)和Muth and Wallace(2021);济南辉长岩和其余δ34S数据引自Zhang et al.(2020)
Fig. 2. Pb-Sr-Nd-S isotopes of oceanic-island basalts (OIBs) and mantle end members
图 3 岩浆脱气诱导硫同位素质量分馏
加那利群岛和月球硫同位素数据分别引自Beaudry et al.(2018)和Saal and Hauri(2021)
Fig. 3. Degassing-induced mass-dependent fractionation of sulfur isotopes
图 4 沉积物中δ34S和Δ33S随时间的演化序列Fig.4δ34S和Δ33S versus sedimentary age
沉积物多硫同位素数据引自Claire et al.(2014);地质历史时期大气氧浓度和页岩U含量数据引自Zhang et al.(2020);地幔氧逸度数据引自Aulbach and Stagno(2016)
图 5 沉积物中硫化物和硫酸盐的多硫同位素组成
沉积硫同位素数据引自Claire et al.(2014)
Fig. 5. Δ33S versus δ34S and Δ36S for sedimentary sulfides and sulfates
图 6 洋岛玄武岩的Δ33S和34S组成
原位硫同位素数据来源:Mangaia洋岛玄武岩数据引自Cabral et al.(2013);Pitcairn洋岛玄武岩数据引自Delavault et al.(2016);金刚石中硫化物包裹体(Farquhar et al.,2002;Cartigny et al.,2009;Thomassot et al.,2009;Smit et al.,2019);侏罗纪变蛇绿岩中硫化物(Genot et al.,2024).全岩硫同位素数据来源:南大西洋EM1型洋脊玄武岩数据(Labidi et al.,2013);Mangaia洋岛玄武岩(Dottin III et al.,2020a);Pitcairn洋岛玄武岩(Labidi et al.,2022);冰岛玄武岩(Ranta et al.,2022);Samoa洋岛玄武岩(Labidi et al.,2015;Dottin III et al.,2020b);St. Helena洋岛玄武岩(Δ33S=0.014‰±0.010‰;δ34S > 0.5‰)(Cartigny,2015);Canary洋岛玄武岩(Beaudry et al.,2018);Garrett玄武岩(Labidi and Cartigny,2016);Pacific- Antarctic洋脊玄武岩(Labidi et al.,2014);Kimberley金伯利岩(Fitzpayne et al.,2021);济南辉长岩(Zhang et al.,2020)
Fig. 6. Δ33S versus δ34S for oceanic-island basalts (OIBs)
图 7 金刚石中硫化物包裹体、橄榄岩和岩浆岩记录的MIF-S(Δ33S)信号随时间的演化
数据来源:始太古代角闪岩(Caro et al.,2025);始太古代橄榄岩(Lewis et al.,2023);金刚石中硫化物包裹体(Farquhar et al.,2002;Cartigny et al.,2009;Thomassot et al.,2009;Smit et al.,2019);太古代TTG(Caro et al.,2025);元古代花岗岩类(LaFlamme et al.,2018);Belingwe科马提岩(Kubota et al.,2022);Kimberley金伯利岩(Fitzpayne et al.,2021)
Fig. 7. MIF-S (Δ33S) signature of sulfide inclusions in diamonds, peridotites and magmatic rocks changed with time
图 8 太古代硫循环与板块构造启动的概念模型
a.始太古代无板块构造,地表物质无法进入地球内部,对应的古老克拉通地幔没有MIF-S信号;b.始太古代以来板块构造启动,地表物质随俯冲作用进入地球内部,在始太古代‒古元古代地幔岩石和金刚石中显示MIF-S信号.修改自Smit et al.(2019)
Fig. 8. Model of the Archean sulfur cycle and the onset of plate tectonics
-
Algeo, T. J., Luo, G. M., Song, H. Y., et al., 2015. Reconstruction of Secular Variation in Seawater Sulfate Concentrations. Biogeosciences, 12(7): 2131-2151. https://doi.org/10.5194/bg-12-2131-2015 Antonelli, M. A., Kim, S. T., Peters, M., et al., 2014. Early Inner Solar System Origin for Anomalous Sulfur Isotopes in Differentiated Protoplanets. Proceedings of the National Academy of Sciences of the United States of America, 111(50): 17749-17754. https://doi.org/10.1073/pnas.1418907111 Aulbach, S., Stagno, V., 2016. Evidence for a Reducing Archean Ambient Mantle and Its Effects on the Carbon Cycle. Geology, 44(9): 751-754. https://doi.org/10.1130/g38070.1 Bénard, A., Klimm, K., Woodland, A. B., et al., 2018. Oxidising Agents in Sub-Arc Mantle Melts Link Slab Devolatilisation and Arc Magmas. Nature Communications, 9(1): 3500. https://doi.org/10.1038/s41467-018-05804-2 Beaudry, P., Longpré, M. A., Economos, R., et al., 2018. Degassing-Induced Fractionation of Multiple Sulphur Isotopes Unveils Post-Archaean Recycled Oceanic Crust Signal in Hotspot Lava. Nature Communications, 9(1): 5093. https://doi.org/10.1038/s41467-018-07527-w Bindeman, I. N., Zakharov, D. O., Palandri, J., et al., 2018. Rapid Emergence of Subaerial Landmasses and Onset of a Modern Hydrologic Cycle 2.5 Billion Years Ago. Nature, 557(7706): 545-548. https://doi.org/10.1038/s41586-018-0131-1 Brenan, J. M., Mungall, J. E., Bennett, N. R., 2019. Abundance of Highly Siderophile Elements in Lunar Basalts Controlled by Iron Sulfide Melt. Nature Geoscience, 12(9): 701-706. https://doi.org/10.1038/s41561-019-0426-3 Cabral, R. A., Jackson, M. G., Rose-Koga, E. F., et al., 2013. Anomalous Sulphur Isotopes in Plume Lavas Reveal Deep Mantle Storage of Archaean Crust. Nature, 496(7446): 490-493. https://doi.org/10.1038/nature12020 Caro, G., Grocolas, T., Bourgeois, P., et al., 2025. Early Archaean Onset of Volatile Cycling at Subduction Zones. Nature Geoscience, 18(5): 436-442. https://doi.org/10.1038/s41561-025-01677-5 Cartigny, P., Farquhar, J., Thomassot, E., et al., 2009. A Mantle Origin for Paleoarchean Peridotitic Diamonds from the Panda Kimberlite, Slave Craton: Evidence from 13C-, 15N- and 33, 34S-Stable Isotope Systematics. Lithos, 112: 852-864. https://doi.org/10.1016/j.lithos.2009.06.007 Cartigny, L. J., Devey, C. W., Jackson, M. G., et al., 2015. On the Archean vs. Proterozoic Age of the HIMU Mantle Component: New 33S/32S, 34S/32S, 36S/32S-Data from Saint-Helena Glasses. Goldschmidt Conference. MSA and EAG, Prague. Chen, C. F., Förster, M. W., Shcheka, S. S., et al., 2025. Sulfide-Rich Continental Roots at Cratonic Margins Formed by Carbonated Melts. Nature, 637(8046): 615-621. https://doi.org/10.1038/s41586-024-08316-w Chen, K., Tang, M., Lee, C. A., et al., 2020. Sulfide-bearing Cumulates in Deep Continental Arcs: The Missing Copper Reservoir. Earth and Planetary Science Letters, 531: 115971. https://doi.org/10.1016/j.epsl.2019.115971 Chen, L. H., Zeng, G., Jiang, S. Y., et al., 2009. Sources of Anfengshan Basalts: Subducted Lower Crust in the Sulu UHP Belt, China. Earth and Planetary Science Letters, 286(3-4): 426-435. https://doi.org/10.1016/j.epsl.2009.07.006 Chen, L. H., Zeng, G., Liu, J. Q., et al., 2022. The Nature of the Deep Mantle Chemical Reservoirs: Perspective from Continental Intraplate Volcanic Rocks. Acta Petrologica Sinica, 38(12): 3703-3711 (in Chinese with English abstract). Claire, M. W., Kasting, J. F., Domagal-Goldman, S. D., et al., 2014. Modeling the Signature of Sulfur Mass- Independent Fractionation Produced in the Archean Atmosphere. Geochimica et Cosmochimica Acta, 141: 365-380. https://doi.org/10.1016/j.gca.2014.06.032 Cui, H., Zhong, R. C., Xie, Y. L., et al., 2020. Forming Sulfate- and REE-Rich Fluids in the Presence of Quartz. Geology, 48(2): 145-148. https://doi.org/10.1130/g46893.1 Delavault, H., Chauvel, C., Thomassot, E., et al., 2016. Sulfur and Lead Isotopic Evidence of Relic Archean Sediments in the Pitcairn Mantle Plume. Proceedings of the National Academy of Sciences, 113(46): 12952-12956. https://doi.org/10.1073/pnas.1523805113 De Witt, H. L., Hasenkopf, C. A., Trainer, M. G., et al., 2010. The Formation of Sulfate and Elemental Sulfur Aerosols under Varying Laboratory Conditions: Implications for Early Earth. Astrobiology, 10(8): 773-781. https://doi.org/10.1089/ast.2009.9455 Dottin III, J. W., Labidi, J., Jackson, M. G., et al., 2020a. Isotopic Evidence for Multiple Recycled Sulfur Reservoirs in the Mangaia Mantle Plume. Geochemistry, Geophysics, Geosystems, 21(10): e2020GC009081. https://doi.org/10.1029/2020GC009081 Dottin III, J. W., Labidi, J., Lekic, V., et al., 2020b. Sulfur Isotope Characterization of Primordial and Recycled Sources Feeding the Samoan Mantle Plume. Earth and Planetary Science Letters, 534: 116073. https://doi.org/10.1016/j.epsl.2020.116073 Farquhar, J., Bao, H. M., Thiemens, M., 2000. Atmospheric Influence of Earth's Earliest Sulfur Cycle. Science, 289(5480): 756-758. https://doi.org/10.1126/science.289.5480.756 Farquhar, J., Wing, B. A., McKeegan, K. D., et al., 2002. Mass-Independent Sulfur of Inclusions in Diamond and Sulfur Recycling on Early Earth. Science, 298(5602): 2369-2372. https://doi.org/10.1126/science.1078617 Farsang, S., Zajacz, Z., 2025. Sulfur Species and Gold Transport in Arc Magmatic Fluids. Nature Geoscience, 18(1): 98-104. https://doi.org/10.1038/s41561-024-01601-3 Fitzpayne, A., Giuliani, A., Magalhães, N., et al., 2021. Sulfur Isotope Constraints on the Petrogenesis of the Kimberley Kimberlites. Geochemistry, Geophysics, Geosystems, 22(11): e2021GC009845. https://doi.org/10.1029/2021GC009845 Frei, R., Gaucher, C., Poulton, S. W., et al., 2009. Fluctuations in Precambrian Atmospheric Oxygenation Recorded by Chromium Isotopes. Nature, 461(7261): 250-253. https://doi.org/10.1038/nature08266 Genot, I., Angiboust, S., Cartigny, P., 2024. Multiple Sulfur Isotopes Evidence Deep Intra-Slab Transport of Sulfate-Rich Fluids. Geochimica et Cosmochimica Acta, 377: 84-100. https://doi.org/10.1016/j.gca.2024.05.025 Giuliani, A., Drysdale, R. N., Woodhead, J. D., et al., 2022. Perturbation of the Deep-Earth Carbon Cycle in Response to the Cambrian Explosion. Science Advances, 8(9): eabj1325. https://doi.org/10.1126/sciadv.abj1325 Hart, S. R., 1984. A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle. Nature, 309(5971): 753-757. https://doi.org/10.1038/309753a0 Hattori, S., Schmidt, J. A., Johnson, M. S., et al., 2013. SO2 Photoexcitation Mechanism Links Mass-Independent Sulfur Isotopic Fractionation in Cryospheric Sulfate to Climate Impacting Volcanism. Proceedings of the National Academy of Sciences, 110(44): 17656-17661. https://doi.org/10.1073/pnas.1213153110 Heiny, E. A., Stolper, E. M., Eiler, J. M., 2025. Differentiated Planetesimals Record Differing Sources of Sulfur in Inner and Outer Solar System Materials. Proceedings of the National Academy of Sciences, 122(18): e2418198122. https://doi.org/10.1073/pnas.2418198122 Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0 Holland, H. D., 2006. The Oxygenation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470): 903-915. https://doi.org/10.1098/rstb.2006.1838 Hutchison, W., Babiel, R. J., Finch, A. A., et al., 2019. Sulphur Isotopes of Alkaline Magmas Unlock Long-Term Records of Crustal Recycling on Earth. Nature Communications, 10(1): 4208. https://doi.org/10.1038/s41467-019-12218-1 Jackson, M. G., Hart, S. R., Koppers, A. A. P., et al., 2007. The Return of Subducted Continental Crust in Samoan Lavas. Nature, 448(7154): 684-687. https://doi.org/10.1038/nature06048 Johnston, D. T., 2011. Multiple Sulfur Isotopes and the Evolution of Earth's Surface Sulfur Cycle. Earth-Science Reviews, 106(1-2): 161-183. https://doi.org/10.1016/j.earscirev.2011.02.003 Jugo, P. J., Wilke, M., Botcharnikov, R. E., 2010. Sulfur K-Edge XANES Analysis of Natural and Synthetic Basaltic Glasses: Implications for S Speciation and S Content as Function of Oxygen Fugacity. Geochimica et Cosmochimica Acta, 74(20): 5926-5938. https://doi.org/10.1016/j.gca.2010.07.022 Kagoshima, T., Sano, Y., Takahata, N., et al., 2015. Sulphur Geodynamic Cycle. Scientific Reports, 5: 1-6. https://doi.org/10.1038/srep08330 Kleinsasser, J. M., Simon, A. C., Konecke, B. A., et al., 2022. Sulfide and Sulfate Saturation of Dacitic Melts as a Function of Oxygen Fugacity. Geochimica et Cosmochimica Acta, 326: 1-16. https://doi.org/10.1016/j.gca.2022.03.032 Kubota, Y., Matsu'ura, F., Shimizu, K., et al., 2022. Sulfur in Archean Komatiite Implies Early Subduction of Oceanic Lithosphere. Earth and Planetary Science Letters, 598: 117826. https://doi.org/10.1016/j.epsl.2022.117826 Labidi, J., Cartigny, P., 2016. Negligible Sulfur Isotope Fractionation during Partial Melting: Evidence from Garrett Transform Fault Basalts, Implications for the Late Veneer and the Hadean Matte. Earth and Planetary Science Letters, 451: 196-207. https://doi.org/10.1016/j.epsl.2016.07.012 Labidi, J., Cartigny, P., Hamelin, C., et al., 2014. Sulfur Isotope Budget (32S, 33S, 34S and 36S) in Pacific-Antarctic Ridge Basalts: A Record of Mantle Source Heterogeneity and Hydrothermal Sulfide Assimilation. Geochimica et Cosmochimica Acta, 133: 47-67. https://doi.org/10.1016/j.gca.2014.02.023 Labidi, J., Cartigny, P., Jackson, M. G., 2015. Multiple Sulfur Isotope Composition of Oxidized Samoan Melts and the Implications of a Sulfur Isotope 'Mantle Array' in Chemical Geodynamics. Earth and Planetary Science Letters, 417: 28-39. https://doi.org/10.1016/j.epsl.2015.02.004 Labidi, J., Cartigny, P., Moreira, M., 2013. Non-Chondritic Sulphur Isotope Composition of the Terrestrial Mantle. Nature, 501(7466): 208-211. https://doi.org/10.1038/nature12490 Labidi, J., Dottin, J. W., Clog, M., et al., 2022. Near-Zero 33S and 36S Anomalies in Pitcairn Basalts Suggest Proterozoic Sediments in the EM-1 Mantle Plume. Earth and Planetary Science Letters, 584: 117422. https://doi.org/10.1016/j.epsl.2022.117422 Labidi, J., Farquhar, J., Alexander, C. M. O., et al., 2017. Mass Independent Sulfur Isotope Signatures in CMs: Implications for Sulfur Chemistry in the Early Solar System. Geochimica et Cosmochimica Acta, 196: 326-350. https://doi.org/10.1016/j.gca.2016.09.036 Labidi, J., Shahar, A., Le Losq, C., et al., 2016. Experimentally Determined Sulfur Isotope Fractionation between Metal and Silicate and Implications for Planetary Differentiation. Geochimica et Cosmochimica Acta, 175: 181-194. https://doi.org/10.1016/j.gca.2015.12.001 LaFlamme, C., Fiorentini, M. L., Lindsay, M. D., et al., 2018. Atmospheric Sulfur is Recycled to the Crystalline Continental Crust during Supercontinent Formation. Nature Communications, 9(1): 4380. https://doi.org/10.1038/s41467-018-06691-3 Lee, C. A., Erdman, M., Yang, W. B., et al., 2018. Sulfur Isotopic Compositions of Deep Arc Cumulates. Earth and Planetary Science Letters, 500: 76-85. https://doi.org/10.1016/j.epsl.2018.08.017 Lee, C. A., Tang, M., 2020. How to Make Porphyry Copper Deposits. Earth and Planetary Science Letters, 529: 115868. https://doi.org/10.1016/j.epsl.2019.115868 Lee, C. A., Yeung, L. Y., McKenzie, N. R., et al., 2016. Two-Step Rise of Atmospheric Oxygen Linked to the Growth of Continents. Nature Geoscience, 9(6): 417-424. https://doi.org/10.1038/ngeo2707 Lewis, J. A., Hoffmann, J. E., Schwarzenbach, E. M., et al., 2023. Sulfur Isotope Evidence from Peridotite Enclaves in Southern West Greenland for Recycling of Surface Material into Eoarchean Depleted Mantle Domains. Chemical Geology, 633: 121568. https://doi.org/10.1016/j.chemgeo.2023.121568 Li, H. J., Zhang, L. F., Bao, X. J., et al., 2021. High Sulfur Solubility in Subducted Sediment Melt under Both Reduced and Oxidized Conditions: With Implications for S Recycling in Subduction Zone Settings. Geochimica et Cosmochimica Acta, 304: 305-326. https://doi.org/10.1016/j.gca.2021.04.001 Li, J. L., Gao, J., Huang, G. F., et al., 2022. Geochemical Behavior and Recycling of Sulfur in Subduction Zones. Acta Petrologica Sinica, 38(5): 1345-1359 (in Chinese with English abstract). Li, J. L., Schwarzenbach, E. M., John, T., et al., 2020. Uncovering and Quantifying the Subduction Zone Sulfur Cycle from the Slab Perspective. Nature Communications, 11(1): 514. https://doi.org/10.1038/s41467-019-14110-4 Liu, S. A., Wang, Z. Z., Li, S. G., et al., 2016. Zinc Isotope Evidence for a Large-Scale Carbonated Mantle beneath Eastern China. Earth and Planetary Science Letters, 444: 169-178. https://doi.org/10.1016/j.epsl.2016.03.051 Liu, X. Y., Hao, J. L., Li, R. Y., et al., 2022. Sulfur Isotopic Fractionation of the Youngest Chang'e-5 Basalts: Constraints on the Magma Degassing and Geochemical Features of the Mantle Source. Geophysical Research Letters, 49(15): e2022GL099922. https://doi.org/10.1029/2022GL099922 Lodders, K., 2003. Solar System Abundances and Condensation Temperatures of the Elements. The Astrophysical Journal, 591(2): 1220-1247. https://doi.org/10.1086/375492 Luo, G. M., Ono, S., Beukes, N. J., et al., 2016. Rapid Oxygenation of Earth's Atmosphere 2.33 Billion Years Ago. Science Advances, 2(5): e1600134. https://doi.org/10.1126/sciadv.1600134 Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506(7488): 307-315. https://doi.org/10.1038/nature13068 Mazza, S. E., Gazel, E., Bizimis, M., et al., 2019. Sampling the Volatile-Rich Transition Zone beneath Bermuda. Nature, 569(7756): 398-403. https://doi.org/10.1038/s41586-019-1183-6 Meng, X. Y., Simon, A. C., Kleinsasser, J. M., et al., 2022. Formation of Oxidized Sulfur-Rich Magmas in Neoarchaean Subduction Zones. Nature Geoscience, 15(12): 1064-1070. https://doi.org/10.1038/s41561-022-01071-5 Moreira, H., Storey, C., Bruand, E., et al., 2023. Sub-Arc Mantle Fugacity Shifted by Sediment Recycling across the Great Oxidation Event. Nature Geoscience, 16(10): 922-927. https://doi.org/10.1038/s41561-023-01258-4 Moynier, F., Jackson, M. G., Zhang, K., et al., 2021. The Mercury Isotopic Composition of Earth's Mantle and the Use of Mass Independently Fractionated Hg to Test for Recycled Crust. Geophysical Research Letters, 48(17): e2021GL094301. https://doi.org/10.1029/2021GL094301 Muth, M. J., Wallace, P. J., 2021. Slab-Derived Sulfate Generates Oxidized Basaltic Magmas in the Southern Cascade Arc (California, USA). Geology, 49(10): 1177-1181. https://doi.org/10.1130/g48759.1 Nebel, O., Arculus, R. J., van Westrenen, W., et al., 2013. Coupled Hf-Nd-Pb Isotope Co-Variations of HIMU Oceanic Island Basalts from Mangaia, Cook-Austral Islands, Suggest an Archean Source Component in the Mantle Transition Zone. Geochimica et Cosmochimica Acta, 112: 87-101. https://doi.org/10.1016/j.gca.2013.03.005 Och, L. M., Shields-Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004 Ono, S., 2017. Photochemistry of Sulfur Dioxide and the Origin of Mass-Independent Isotope Fractionation in Earth's Atmosphere. Annual Review of Earth and Planetary Sciences, 45(1): 301-329. https://doi.org/10.1146/annurev-earth-060115-012324 Pavlov, A. A., Kasting, J. F., 2002. Mass-Independent Fractionation of Sulfur Isotopes in Archean Sediments: Strong Evidence for an Anoxic Archean Atmosphere. Astrobiology, 2(1): 27-41. https://doi.org/10.1089/153110702753621321 Pons, M. L., Debret, B., Bouilhol, P., et al., 2016. Zinc Isotope Evidence for Sulfate-Rich Fluid Transfer across Subduction Zones. Nature Communications, 7: 13794. https://doi.org/10.1038/ncomms13794 Poulton, S. W., Bekker, A., Cumming, V. M., et al., 2021. A 200-Million-Year Delay in Permanent Atmospheric Oxygenation. Nature, 592(7853): 232-236. https://doi.org/10.1038/s41586-021-03393-7 Ranta, E., Gunnarsson-Robin, J., Halldórsson, S. A., et al., 2022. Ancient and Recycled Sulfur Sampled by the Iceland Mantle Plume. Earth and Planetary Science Letters, 584: 117452. https://doi.org/10.1016/j.epsl.2022.117452 Reekie, C. D. J., Jenner, F. E., Smythe, D. J., et al., 2019. Sulfide Resorption during Crustal Ascent and Degassing of Oceanic Plateau Basalts. Nature Communications, 10(1): 82. https://doi.org/10.1038/s41467-018-08001-3 Saal, A. E., Hauri, E. H., 2021. Large Sulfur Isotope Fractionation in Lunar Volcanic Glasses Reveals the Magmatic Differentiation and Degassing of the Moon. Science Advances, 7(9): eabe4641. https://doi.org/10.1126/sciadv.abe4641 Shirey, S. B., Richardson, S. H., 2011. Start of the Wilson Cycle at 3 Ga Shown by Diamonds from Subcontinental Mantle. Science, 333(6041): 434-436. https://doi.org/10.1126/science.1206275 Smit, K. V., Shirey, S. B., Hauri, E. H., et al., 2019. Sulfur Isotopes in Diamonds Reveal Differences in Continent Construction. Science, 364(6438): 383-385. https://doi.org/10.1126/science.aaw9548 Sobolev, A. V., Asafov, E. V., Gurenko, A. A., et al., 2019. Deep Hydrous Mantle Reservoir Provides Evidence for Crustal Recycling before 3.3 Billion Years Ago. Nature, 571(7766): 555-559. https://doi.org/10.1038/s41586-019-1399-5 Sobolev, A. V., Hofmann, A. W., Nikogosian, I. K., 2000. Recycled Oceanic Crust Observed in 'Ghost Plagioclase' within the Source of Mauna Loa Lavas. Nature, 404(6781): 986-990. https://doi.org/10.1038/35010098 Spencer, C. J., Partin, C. A., Kirkland, C. L., et al., 2019. Paleoproterozoic Increase in Zircon δ18O Driven by Rapid Emergence of Continental Crust. Geochimica et Cosmochimica Acta, 257: 16-25. https://doi.org/10.1016/j.gca.2019.04.016 Stolper, D. A., Keller, C. B., 2018. A Record of Deep-Ocean Dissolved O2 from the Oxidation State of Iron in Submarine Basalts. Nature, 553(7688): 323-327. https://doi.org/10.1038/nature25009 Stracke, A., 2012. Earth's Heterogeneous Mantle: A Product of Convection-Driven Interaction between Crust and Mantle. Chemical Geology, 330-331: 274-299. https://doi.org/10.1016/j.chemgeo.2012.08.007 Tang, M., Chen, K., Rudnick, R. L., 2016. Archean Upper Crust Transition from Mafic to Felsic Marks the Onset of Plate Tectonics. Science, 351(6271): 372-375. https://doi.org/10.1126/science.aad5513 Tang, M., Lee, C. A., Ji, W. Q., et al., 2020. Crustal Thickening and Endogenic Oxidation of Magmatic Sulfur. Science Advances, 6(31): eaba6342. https://doi.org/10.1126/sciadv.aba6342 Tappe, S., Steenfelt, A., Nielsen, T., 2012. Asthenospheric Source of Neoproterozoic and Mesozoic Kimberlites from the North Atlantic Craton, West Greenland: New High-Precision U-Pb and Sr-Nd Isotope Data on Perovskite. Chemical Geology, 320-321: 113-127. https://doi.org/10.1016/j.chemgeo.2012.05.026 Taracsák, Z., Hartley, M. E., Burgess, R., et al., 2025. The Origin of Sulfur in Canary Island Magmas and Its Implications for Earth's Deep Sulfur Cycle. Proceedings of the National Academy of Sciences, 122(12): e2416070122. https://doi.org/10.1073/pnas.2416070122 Thomassot, E., Cartigny, P., Harris, J. W., et al., 2009. Metasomatic Diamond Growth: A Multi-Isotope Study (13C, 15N, 33S, 34S) of Sulphide Inclusions and Their Host Diamonds from Jwaneng (Botswana). Earth and Planetary Science Letters, 282(1-4): 79-90. https://doi.org/10.1016/j.epsl.2009.03.001 Timmerman, S., Honda, M., Burnham, A. D., et al., 2019. Primordial and Recycled Helium Isotope Signatures in the Mantle Transition Zone. Science, 365(6454): 692-694. https://doi.org/10.1126/science.aax5293 Torsvik, T. H., Burke, K., Steinberger, B., et al., 2010. Diamonds Sampled by Plumes from the Core-Mantle Boundary. Nature, 466(7304): 352-355. https://doi.org/10.1038/nature09216 Walter, M. J., Kohn, S. C., Araujo, D., et al., 2011. Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 334(6052): 54-57. https://doi.org/10.1126/science.1209300 Walters, J. B., Cruz-Uribe, A. M., Marschall, H. R., 2019. Isotopic Compositions of Sulfides in Exhumed High-Pressure Terranes: Implications for Sulfur Cycling in Subduction Zones. Geochemistry, Geophysics, Geosystems, 20(7): 3347-3374. https://doi.org/10.1029/2019GC008374 Wan, Y., Chou, I. M., Wang, X. L., et al., 2023. Hydrothermal Sulfate Surges Promote Rare Earth Element Transport and Mineralization. Geology, 51(5): 449-453. https://doi.org/10.1130/g50848.1 Wan, Y., Wang, X. L., Chou, I. M., et al., 2021. Role of Sulfate in the Transport and Enrichment of REE in Hydrothermal Systems. Earth and Planetary Science Letters, 569: 117068. https://doi.org/10.1016/j.epsl.2021.117068 Wang, S. J., Rudnick, R. L., Gaschnig, R. M., et al., 2019. Methanogenesis Sustained by Sulfide Weathering during the Great Oxidation Event. Nature Geoscience, 12(4): 296-300. https://doi.org/10.1038/s41561-019-0320-z Wang, W. Z., Li, C. H., Brodholt, J. P., et al., 2021. Sulfur Isotopic Signature of Earth Established by Planetesimal Volatile Evaporation. Nature Geoscience, 14(11): 806-811. https://doi.org/10.1038/s41561-021-00838-6 Wang, X. J., Chen, L. H., Hofmann, A. W., et al., 2018. Recycled Ancient Ghost Carbonate in the Pitcairn Mantle Plume. Proceedings of the National Academy of Sciences, 115(35): 8682-8687. https://doi.org/10.1073/pnas.1719570115 Wang, Z. C., Becker, H., 2013. Ratios of S, Se and Te in the Silicate Earth Require a Volatile-Rich Late Veneer. Nature, 499(7458): 328-331. https://doi.org/10.1038/nature12285 Weiss, Y., Class, C., Goldstein, S. L., et al., 2016. Key New Pieces of the HIMU Puzzle from Olivines and Diamond Inclusions. Nature, 537(7622): 666-670. https://doi.org/10.1038/nature19113 Wood, B. J., Halliday, A. N., 2010. The Lead Isotopic Age of the Earth can be Explained by Core Formation Alone. Nature, 465(7299): 767-770. https://doi.org/10.1038/nature09072 Woodhead, J., Hergt, J., Giuliani, A., et al., 2019. Kimberlites Reveal 2.5-Billion-Year Evolution of a Deep, Isolated Mantle Reservoir. Nature, 573(7775): 578-581. https://doi.org/10.1038/s41586-019-1574-8 Xu, R., Cai, Y., Lambart, S., et al., 2025. Heavy Boron Isotopes in Intraplate Basalts Reveal Recycled Carbonate in the Mantle. Science Advances, 11(17): eads5104. https://doi.org/10.1126/sciadv.ads5104 Xu, R., Liu, Y. S., Lambart, S., et al., 2022. Decoupled Zn-Sr-Nd Isotopic Composition of Continental Intraplate Basalts Caused by Two-Stage Melting Process. Geochimica et Cosmochimica Acta, 326: 234-252. https://doi.org/10.1016/j.gca.2022.03.014 Xu, Z., Li, Y., 2021. The Sulfur Concentration at Anhydrite Saturation in Silicate Melts: Implications for Sulfur Cycle and Oxidation State in Subduction Zones. Geochimica et Cosmochimica Acta, 306: 98-123. https://doi.org/10.1016/j.gca.2021.05.027 Yang, J. F., Faccenda, M., 2020. Intraplate Volcanism Originating from Upwelling Hydrous Mantle Transition Zone. Nature, 579(7797): 88-91. https://doi.org/10.1038/s41586-020-2045-y Zhang, J. B., Liu, Y. S., Ducea, M. N., et al., 2020. Archean, Highly Unradiogenic Lead in Shallow Cratonic Mantle. Geology, 48(6): 584-588. https://doi.org/10.1130/g47064.1 Zhang, J. B., Liu, Y. S., Foley, S. F., et al., 2024. Widespread Two-Layered Melt Structure in the Asthenosphere. Nature Geoscience, 17(5): 472-477. https://doi.org/10.1038/s41561-024-01433-1 Zhang, J. B., Liu, Y. S., Ling, W. L., et al., 2017. Pressure-Dependent Compatibility of Iron in Garnet: Insights into the Origin of Ferropicritic Melt. Geochimica et Cosmochimica Acta, 197: 356-377. https://doi.org/10.1016/j.gca.2016.10.047 Zhang, X. Y., Chen, L. H., Wang, X. J., et al., 2022. Zinc Isotopic Evidence for Recycled Carbonate in the Deep Mantle. Nature Communications, 13(1): 6085. https://doi.org/10.1038/s41467-022-33789-6 Zhou, Z. B., Chen, L. H., Huang, Z. C., et al., 2025. The Return of Stagnant Slab Recorded by Intraplate Volcanism. Proceedings of the National Academy of Sciences, 122(1): e2414632122. https://doi.org/10.1073/pnas.2414632122 Zindler, A., Hart, S. R., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 陈立辉, 曾罡, 刘建强, 等, 2022. 从大陆火山岩视角了解深部地幔化学储库的属性. 岩石学报, 38(12): 3703-3711. 李继磊, 高俊, 黄高风, 等, 2022. 俯冲带硫的地球化学行为及硫循环. 岩石学报, 38(5): 1345-1359. -