• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    珠江口盆地恩平17洼深层烃源岩特征及有效烃源灶分布预测

    石创 彭光荣 龙祖烈 李振升 郑立庆 曹雨菡 熊万林

    石创, 彭光荣, 龙祖烈, 李振升, 郑立庆, 曹雨菡, 熊万林, 2025. 珠江口盆地恩平17洼深层烃源岩特征及有效烃源灶分布预测. 地球科学, 50(12): 4604-4616. doi: 10.3799/dqkx.2025.144
    引用本文: 石创, 彭光荣, 龙祖烈, 李振升, 郑立庆, 曹雨菡, 熊万林, 2025. 珠江口盆地恩平17洼深层烃源岩特征及有效烃源灶分布预测. 地球科学, 50(12): 4604-4616. doi: 10.3799/dqkx.2025.144
    Shi Chuang, Peng Guangrong, Long Zulie, Li Zhensheng, Zheng Liqing, Cao Yuhan, Xiong Wanlin, 2025. Characteristics of Deep Hydrocarbon Source Rocks and Prediction of Effective Source Kitchen Distribution in Enping 17 Sub-Sag, Pearl River Mouth Basin. Earth Science, 50(12): 4604-4616. doi: 10.3799/dqkx.2025.144
    Citation: Shi Chuang, Peng Guangrong, Long Zulie, Li Zhensheng, Zheng Liqing, Cao Yuhan, Xiong Wanlin, 2025. Characteristics of Deep Hydrocarbon Source Rocks and Prediction of Effective Source Kitchen Distribution in Enping 17 Sub-Sag, Pearl River Mouth Basin. Earth Science, 50(12): 4604-4616. doi: 10.3799/dqkx.2025.144

    珠江口盆地恩平17洼深层烃源岩特征及有效烃源灶分布预测

    doi: 10.3799/dqkx.2025.144
    基金项目: 

    自然资源部“十四·五”全国油气资源评价项目 QGYQZYPJ2022-3

    中国海洋石油集团总公司“十四·五”重大科技项目 KJGG2022-0403

    详细信息
      作者简介:

      石创(1988-),男,高级工程师,主要从事油气成藏与资源评价研究工作ORCID:0009-0000-7870-5041. E⁃mail:shichuang@cnooc.com.cn

    • 中图分类号: P618.13

    Characteristics of Deep Hydrocarbon Source Rocks and Prediction of Effective Source Kitchen Distribution in Enping 17 Sub-Sag, Pearl River Mouth Basin

    • 摘要: 为明晰珠江口盆地恩平17洼主力烃源岩特征和有效烃源灶分布,系统分析洼陷地质背景、烃源岩发育环境和地化特征,借助热压模拟实验分析烃源岩生烃特征,建立烃源岩TOC概率神经网络预测模型,结合烃源岩热演化模拟和有效烃源岩TOC下限判识,预测有效烃源灶分布.结果表明恩平17洼主要发育文昌组半深湖-深湖相和浅湖相两套烃源岩,半深湖-深湖相烃源岩油气产率均较高,具有“生油集中,晚期爆发式生气”特征;浅湖相烃源岩气产率相对较高,具有“宽窗持续生气,生气下限较高”的特征.有效烃源灶分布于TOC大于1.2%的区域,平面上主要分布在洼陷中心和北部近洼区,垂向上主要分布于文四段,其次为文三段和文五段,相带上以半深湖-深湖相为主,其次为浅湖相,在高热演化作用下,油气兼生,具备发育规模天然气潜力,为珠江口盆地富油洼陷寻找天然气提供资源基础.

       

    • 图  1  恩平凹陷构造位置与地层综合柱状图

      Fig.  1.  Comprehensive stratigraphy column chart structural location of in Enping depression

      图  2  恩平17洼洼陷演化模式

      Fig.  2.  Evolutionary model of Enping 17 sub-sag

      图  3  恩平凹陷不同类型原油和泥岩生物标志化合物特征

      C304-Mst为C304-甲基甾烷;C30H为C30藿烷;T为双杜松烷

      Fig.  3.  Characteristics of biomarker compounds in different types of crude oil and mudstone in Enping depression

      图  4  恩平17洼文昌组烃源岩评价

      a.有机质丰度分析;b.有机质类型

      Fig.  4.  Evaluation map of Wenchang Formation source rocks in Enping 17 sub-sag

      图  5  恩平17洼文昌组烃源岩成熟度综合评价

      Fig.  5.  Comprehensive evaluation of maturity of Wenchang Formation source rocks in Enping 17 sub-sag

      图  6  恩平17洼和番禺4洼不同类型烃源岩产烃特征

      Fig.  6.  Characteristics of hydrocarbon production from different types of source rocks in Enping 17 sub-sag and Panyu 4 sub-sag

      图  7  文昌组烃源岩TOC测井预测

      a.E1井预测结果,b.E2井预测结果

      Fig.  7.  Logging prediction of TOC for source rocks of Wenchang Formation

      图  8  恩平17洼文昌组烃源岩TOC预测

      Fig.  8.  TOC prediction of Wenchang Formation source rocks in Enping 17 sub-sag

      图  9  恩平17洼文昌组各三级层序烃源岩中间面现今Ro

      Fig.  9.  Current vitrinite reflectance map of the middle surface of the source rocks in the third order sequences of the Wenchang Formation in Enping 17 sub-sag

      图  10  恩平17洼文昌组烃源岩TOC与热解参数游离烃S1和烃指数S1/TOC关系

      Fig.  10.  Relationship between TOC and pyrolysis parameters of S1 and S1/TOC of Wenchang Formation source rocks in Enping 17 sub-sag

      表  1  恩平17洼和番禺4洼烃源岩发育古环境指标

      Table  1.   Paleoenvironmental indicators of hydrocarbon source rock development in Enping 17 sub-sag and Panyu 4 sub-sag

      洼陷(层段) 井号 古水深 古气候 古氧相 古生产力
      Mn/Fe V/Cr MgO(%) Sr/Cu Th/U V/(V+Ni) P/Ti(%) P/Al(%)
      恩平17洼(恩平组) E2 $ \frac{0.8-1.3}{1.0} $ $ \frac{0.5-1.7}{1.2} $ $ \frac{1.2-1.5}{1.3} $ $ \frac{0.6-3.3}{1.8} $ $ \frac{3.0-4.2}{3.7} $ $ \frac{0.52-0.78}{0.68} $ $ \frac{5.5-10.1}{7.0} $ $ \frac{0.23-0.37}{0.30} $
      恩平17洼(上文昌) E1、E2 $ \frac{0.9-4.1}{2.4} $ $ \frac{0.4-3.0}{1.4} $ $ \frac{0.4-2.0}{1.0} $ $ \frac{0.6-10.1}{2.6} $ $ \frac{2.4-4.4}{3.6} $ $ \frac{0.65-0.93}{0.79} $ $ \frac{2.2-63.3}{22.9} $ $ \frac{0.08-1.88}{0.67} $
      番禺4洼(下文昌) P1 $ \frac{1.5-4.8}{3.3} $ $ \frac{2.1-5.2}{3.7} $ $ \frac{1.3-2.7}{1.8} $ $ \frac{1.8-11.8}{6.3} $ $ \frac{2.9-4.1}{3.5} $ $ \frac{0.83-0.90}{0.87} $ $ \frac{20.3-42.9}{28.2} $ $ \frac{0.72-1.42}{0.99} $
      注:$ \frac{\mathrm{最}\mathrm{小}\mathrm{值}-\mathrm{最}\mathrm{大}\mathrm{值}}{\mathrm{平}\mathrm{均}\mathrm{值}} $.
      下载: 导出CSV
    • Cai, G. F., Peng, G. R., Wu, J., et al., 2022. Sedimentary Filling Response to Detachment Structural Deformation in Shallow-Water Continental Shelf of Pearl River Mouth Basin: A Case Study of Enping Sag. Earth Science, 47(7): 2391-2409 (in Chinese with English abstract). doi: 10.3799/dqkx.2022.215
      Gao, G., Wang, Y. H., Liu, G. D., et al., 2013. Confirmation and Distribution Features of Effective Source Rocks in Yinger Sag, Jiuquan Basin. Petroleum Geology & Experiment, 35(4): 414-418, 425(in Chinese with English abstract).
      Gao, Y. D., Zhang, X. T., Li, Z. G., et al., 2021. Variability in Sequence Stratigraphic Architectures of Lower-Middle Miocene Pearl River Delta, Northern Enping Sag, Pearl River Mouth Basin: Implications for Lithological Trap Development. Earth Science, 46(5): 1758-1770(in Chinese with English abstract). doi: 10.3799/dqkx.2021.011
      Gao, Y. D., Zhu, W. L., Peng, G. R., et al., 2024. Evaluation of Source Rocks and Prediction of Oil and Gas Resources Distribution in Baiyun Sag, Pearl River Mouth Basin, China. Petroleum Exploration and Development, 51(5): 986-996(in Chinese with English abstract).
      Hu, S. B., Long, Z. L., Zhu, J. Z., et al., 2019. Characteristics of Geothermal Field and the Tectonic-Thermal Evolution in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(Suppl. 1): 178-187(in Chinese with English abstract).
      Kuang, L. C., Gao, G., Xiang, B. L., et al., 2014. Lowest Limit of Organic Carbon Content in Effective Source Rocks from Lucaogou Formation in Jimusar Sag. Petroleum Geology & Experiment, 36(2): 224-229(in Chinese with English abstract).
      Lei, C., Ye, J. R., Yin, S. Y., et al., 2024. Constraints of Paleoclimate and Paleoenvironment on Organic Matter Enrichment in Lishui Sag, East China Sea Basin: Evidence from Element Geochemistry of Paleocene Mudstones. Earth Science, 49(7): 2359-2372(in Chinese with English abstract). doi: 10.3799/dqkx.2023.011
      Lu, S. F., Zhang, M., 2008. Oil and Gas Geochemistry. Petroleum Industry Press, Beijing, 201-206(in Chinese).
      Pang, X., Zheng, J. Y., Mei, L. F., et al., 2021. Characteristics and Origin of Continental Marginal Fault Depressions under the Background of Preexisting Subduction Continental Margin, Northern South China Sea, China. Petroleum Exploration and Development, 48(5): 1069-1080(in Chinese with English abstract).
      Peng, G. R., Long, Z. L., Shi, Y. L., et al., 2022. Discussion on Integrated Geological and Geophysical Identification Method for Spatial Distribution of Favorable Source Rocks in Depression with Lack of Drilling Data: A Case Study of Enping 17 Sag, Zhu Ⅰ Depression, Pearl River Mouth Basin. Petroleum Geology & Experiment, 44(6): 1116-1122 (in Chinese with English abstract).
      Peng, G. R., Shi, C., Long, Z. L., et al., 2023. Relationship between Element Geochemical Characteristics and Organic Matter Enrichment of Wenchang Formation Mudstones in Enping Sub-Sag 21, Pearl River Mouth Basin. Marine Geology Frontiers, 39(6): 65-74(in Chinese with English abstract).
      Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History(Second ed. ). Cambridge University Press, Cambridge.
      Shi, C., 2022. REE Characteristics and Geological Significance of Mudstones from Wenchang Formation in Eastern Yangjiang Sag of Pearl River Mouth Basin. Bulletin of Geological Science and Technology, 41(3): 166-172(in Chinese with English abstract).
      Shi, C., Long, Z. L., Zhu, J. Z., et al., 2020a. Element Geochemistry of the Enping Formation in the Baiyun Sag of Pearl River Mouth Basin and Their Environmental Implications. Marine Geology & Quaternary Geology, 40(5): 79-86(in Chinese with English abstract).
      Shi, C., Zhu, J. Z., Long, Z. L., et al., 2020b. TOC Prediction for Source Rocks of Wenchang Formation with a Joint Logging and Seismic Method in the Panyu 4 Sag in Pearl River Mouth Basin. Marine Geology Frontiers, 36(2): 26-32(in Chinese with English abstract).
      Shi, C., Zhu, J. Z., Long, Z. L., et al., 2019. Prediction of Total Organic Carbon in Source Rocks by Probabilistic Neural Network: A Case Study of Southern Lufeng Area in Pearl River Mouth Basin. Fault-Block Oil & Gas Field, 26(5): 561-565(in Chinese with English abstract).
      Shi, H. S., Du, J. Y., Mei, L. F., et al., 2020. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461(in Chinese with English abstract).
      Sweeney, J. J., Burnham, A. K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics (1). AAPG Bulletin, 74: 1559-1570. https://doi.org/10.1306/0c9b251f-1710-11d7-8645000102c1865d.
      Tang, X. Y., Huang, S. P., Yang, S. C., et al., 2016. Correcting on Logging-Derived Temperatures of the Pearl River Mouth Basin and Characteristics of Its Present Temperature Field. Chinese Journal of Geophysics, 59(8): 2911-2921(in Chinese with English abstract).
      Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-87813-8
      Wang, L., Jin, Q., 2005. Tertiary Hydrocarbon Kitchen in Western Qaidam Basin and Its Control on Hydrocarbon Accumulation. Oil & Gas Geology, 26(4): 467-472(in Chinese with English abstract).
      Wu, J., Zhu, D. W., Zhao, P., et al., 2021. Controls of Faulted Composite Accumulation Ridge on the Long Distance Migration and Accumulation of Neogene Hydrocarbon: A Case Study of the Eastern Yangjiang Sag and the Enping Sag in the Pearl River Mouth Basin. Geotectonica et Metallogenia, 45(1): 131-139 (in Chinese with English abstract).
      Xiong, W. L., Zhu, J. Z., Yang, X. Y., et al., 2020. Study on the Genetic Sources and Accumulation Processes of Oil and Gas in the North Uplift Structural Belt of Enping Sag. China Offshore Oil and Gas, 32(1): 54-65(in Chinese with English abstract).
      Xue, N., Shao, X. Z., Zhu, G. Y., et al., 2023. Geochemical Characteristics and Formation Environment of Source Rocks of Triassic Chang 7 Member in Northern Pingliang Area, Ordos Basin. Lithologic Reservoirs, 35(3): 51-65(in Chinese with English abstract).
      Yang, F., Cao, Z. L., Liu, H. L., et al., 2024. Source Rock Evaluation and Prediction of Effective Hydrocarbon Kitchen Distribution of Upper Triassic in Junggar Basin. Petroleum Geology & Experiment, 46(2): 380-392(in Chinese with English abstract).
      Yang, H. B., Feng, D. H., Yang, X. Y., et al., 2024. Characteristics of Source Rocks and Thermal Evolution Simulation of Permian Pingdiquan Formation in Dongdaohaizi Sag, Junggar Basin. Lithologic Reservoirs, 36(5): 156-166(in Chinese with English abstract).
      Yang, M. H., Zuo, Y. H., Duan, X. G., et al., 2023. Hydrocarbon Kitchen Evolution of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and Its Enlightenment to Hydrocarbon Accumulation. Earth Science, 48(2): 582-595(in Chinese with English abstract). doi: 10.3799/dqkx.2022.441
      Zhao, P., Peng, G. R., Wu, J., et al., 2021. Accumulation and Key Controls of Lateral Cross-Fault Hydrocarbon Migration: A Case Study of the Enping Sag in the Pearl River Mouth Basin. Geotectonica et Metallogenia, 45(1): 148-157. (in Chinese with English abstract).
      Zhu, D. W., Peng, G. R., Zhang, Z. T., et al., 2021. Model of Oil-Gas Cross-Fault Migration, Evaluation and Application: A Case in the Enping Sag of Pearl River Mouth Basin. Geotectonica et Metallogenia, 45(1): 140-147(in Chinese with English abstract).
      Zhu, M., Zhang, X. T., Huang, Y. P., et al., 2019. Source Rock Characteristics and Resource Potential in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(Suppl. 1): 53-68(in Chinese with English abstract).
      蔡国富, 彭光荣, 吴静, 等, 2022. 珠江口盆地浅水陆架区拆离断陷的构造变形与沉积充填响应: 以恩平凹陷为例. 地球科学, 47(7): 2391-2409. doi: 10.3799/dqkx.2022.215
      高岗, 王银会, 柳广弟, 等, 2013. 酒泉盆地营尔凹陷有效烃源岩的确认及其展布特征. 石油实验地质, 35(4): 414-418, 425.
      高阳东, 张向涛, 李智高, 等, 2021. 珠江口盆地恩平凹陷北带下-中中新统层序构型及其差异性分析: 对岩性圈闭发育的启示. 地球科学, 46(5): 1758-1770. doi: 10.3799/dqkx.2021.011
      高阳东, 朱伟林, 彭光荣, 等, 2024. 珠江口盆地白云凹陷烃源岩评价及油气资源分布预测. 石油勘探与开发, 51(5): 986-996.
      胡圣标, 龙祖烈, 朱俊章, 等, 2019. 珠江口盆地地温场特征及构造-热演化. 石油学报, 40(增刊1): 178-187.
      匡立春, 高岗, 向宝力, 等, 2014. 吉木萨尔凹陷芦草沟组有效源岩有机碳含量下限分析. 石油实验地质, 36(2): 224-229.
      雷闯, 叶加仁, 殷世艳, 等, 2024. 东海盆地丽水凹陷古气候和古环境对有机质富集的约束: 来自古新统泥岩的元素地球化学证据. 地球科学, 49(7): 2359-2372. doi: 10.3799/dqkx.2023.011
      卢双舫, 张敏, 2008. 油气地球化学. 北京: 石油工业出版社.
      庞雄, 郑金云, 梅廉夫, 等, 2021. 先存俯冲陆缘背景下南海北部陆缘断陷特征及成因. 石油勘探与开发, 48(5): 1069-1080.
      彭光荣, 龙祖烈, 史玉玲, 等, 2022. 低钻揭洼陷有利烃源岩空间展布地质与地球物理综合识别方法: 以珠江口盆地珠一坳陷恩平17洼为例. 石油实验地质, 44(6): 1116-1122.
      彭光荣, 石创, 龙祖烈, 等, 2023. 珠江口盆地恩平21洼文昌组泥岩元素地球化学特征及其与有机质富集的关系. 海洋地质前沿, 39(6): 65-74.
      石创, 2022. 珠江口盆地阳江东凹文昌组泥岩稀土元素特征及其地质意义. 地质科技通报, 41(3): 166-172.
      石创, 龙祖烈, 朱俊章, 等, 2020a. 珠江口盆地白云凹陷恩平组泥岩元素地球化学特征及环境指示意义. 海洋地质与第四纪地质, 40(5): 79-86.
      石创, 朱俊章, 龙祖烈, 等, 2020b. 井震联合预测珠江口盆地番禺4洼文昌组烃源岩总有机碳. 海洋地质前沿, 36(2): 26-32.
      石创, 朱俊章, 龙祖烈, 等, 2019. 基于概率神经网络的烃源岩TOC预测: 以珠江口盆地陆丰南区为例. 断块油气田, 26(5): 561-565.
      施和生, 杜家元, 梅廉夫, 等, 2020. 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 447-461.
      唐晓音, 黄少鹏, 杨树春, 等, 2016. 南海珠江口盆地钻井BHT温度校正及现今地温场特征. 地球物理学报, 59(8): 2911-2921.
      王力, 金强, 2005. 柴达木盆地西部第三系烃源灶及其对油气聚集的控制作用. 石油与天然气地质, 26(4): 467-472.
      吴静, 朱定伟, 赵鹏, 等, 2021. 断裂复合汇聚脊对新近系油气远距离富集的控制作用: 以珠江口盆地阳江东凹与恩平凹陷为例. 大地构造与成矿学, 45(1): 131-139.
      熊万林, 朱俊章, 杨兴业, 等, 2020. 恩平凹陷北部隆起构造带油气成因来源及成藏过程研究. 中国海上油气, 32(1): 54-65.
      薛楠, 邵晓州, 朱光有, 等, 2023. 鄂尔多斯盆地平凉北地区三叠系长7段烃源岩地球化学特征及形成环境. 岩性油气藏, 35(3): 51-65.
      杨帆, 曹正林, 刘海磊, 等, 2024. 准噶尔盆地上三叠统烃源岩评价与有效烃源灶分布预测. 石油实验地质, 46(2): 380-392.
      杨海波, 冯德浩, 杨小艺, 等, 2024. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟. 岩性油气藏, 36(5): 156-166.
      杨梅华, 左银辉, 段新国, 等, 2023. 四川盆地下寒武统筇竹寺组烃源岩灶演化及其对成藏的启示. 地球科学, 48(2): 582-595. doi: 10.3799/dqkx.2022.441
      赵鹏, 彭光荣, 吴静, 等, 2021. 油气穿越未成岩断裂运移富集成藏模式与主控因素: 以珠江口盆地恩平凹陷为例. 大地构造与成矿学, 45(1): 148-157.
      朱定伟, 彭光荣, 张忠涛, 等, 2021. 油气"穿断运移"模式、评价方法与应用: 以珠江口盆地恩平凹陷为例. 大地构造与成矿学, 45(1): 140-147.
      朱明, 张向涛, 黄玉平, 等, 2019. 珠江口盆地烃源岩特征及资源潜力. 石油学报, 40(增刊1): 53-68.
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  101
    • HTML全文浏览量:  10
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-05-19
    • 刊出日期:  2025-12-25

    目录

      /

      返回文章
      返回