Characteristics of Deep Hydrocarbon Source Rocks and Prediction of Effective Source Kitchen Distribution in Enping 17 Sub-Sag, Pearl River Mouth Basin
-
摘要: 为明晰珠江口盆地恩平17洼主力烃源岩特征和有效烃源灶分布,系统分析洼陷地质背景、烃源岩发育环境和地化特征,借助热压模拟实验分析烃源岩生烃特征,建立烃源岩TOC概率神经网络预测模型,结合烃源岩热演化模拟和有效烃源岩TOC下限判识,预测有效烃源灶分布.结果表明恩平17洼主要发育文昌组半深湖-深湖相和浅湖相两套烃源岩,半深湖-深湖相烃源岩油气产率均较高,具有“生油集中,晚期爆发式生气”特征;浅湖相烃源岩气产率相对较高,具有“宽窗持续生气,生气下限较高”的特征.有效烃源灶分布于TOC大于1.2%的区域,平面上主要分布在洼陷中心和北部近洼区,垂向上主要分布于文四段,其次为文三段和文五段,相带上以半深湖-深湖相为主,其次为浅湖相,在高热演化作用下,油气兼生,具备发育规模天然气潜力,为珠江口盆地富油洼陷寻找天然气提供资源基础.Abstract: In order to fully understand the characteristics of main source rocks and the distribution of effective source kitchen in Enping 17 sub-sag, it systematically analyzes the geological background of the depression, the development environment of hydrocarbon source rocks and the geochemical characteristics, the hydrocarbon generation characteristics of hydrocarbon source rocks by means of thermal pressure simulation experiments, establishes the TOC probability neural network prediction model of hydrocarbon source rocks, and predicts the distribution of effective source kitchen in combination with the thermal evolution simulation of hydrocarbon source rocks and the identification of the TOC lower limit of effective hydrocarbon source rocks.The results indicate that the Enping 17 sub-sag mainly develops two sets of hydrocarbon source rocks, the semi deep-deep lake and shallow lake facies of the Wenchang Formation. The oil and gas production rates of the semi deep-deep lake facies are relatively high, with the characteristics of concentrated oil generation and late explosive gas generation. Shallow lacustrine mudstone has a relatively high gas production rate and is characterized by wide window continuous gas generation and a high lower limit of gas generation. The effective source kitchen of Wenchang Formation in Enping 17 sub-sag are distributed in the areas where the TOC of source rocks is greater than 1.2%, mainly distributed in the sub-sag center and the northern near sub-sag on the plane, mainly distributed in the 4th member of Wenchang Formation vertically, followed by the 3rd and 5th member of Wenchang Formation. The facies are dominated by semi deep-deep lake facies, while the shallow lake facies source rocks are another set of important source rocks in this area. Under the high thermal evolution, oil and gas are generated simultaneously in the sub-sag, which has the development of large-scale natural gas potential, provides a resource basis for searching for natural gas in oil rich sag of the Pearl River Mouth basin.
-
表 1 恩平17洼和番禺4洼烃源岩发育古环境指标
Table 1. Paleoenvironmental indicators of hydrocarbon source rock development in Enping 17 sub-sag and Panyu 4 sub-sag
洼陷(层段) 井号 古水深 古气候 古氧相 古生产力 Mn/Fe V/Cr MgO(%) Sr/Cu Th/U V/(V+Ni) P/Ti(%) P/Al(%) 恩平17洼(恩平组) E2 $ \frac{0.8-1.3}{1.0} $ $ \frac{0.5-1.7}{1.2} $ $ \frac{1.2-1.5}{1.3} $ $ \frac{0.6-3.3}{1.8} $ $ \frac{3.0-4.2}{3.7} $ $ \frac{0.52-0.78}{0.68} $ $ \frac{5.5-10.1}{7.0} $ $ \frac{0.23-0.37}{0.30} $ 恩平17洼(上文昌) E1、E2 $ \frac{0.9-4.1}{2.4} $ $ \frac{0.4-3.0}{1.4} $ $ \frac{0.4-2.0}{1.0} $ $ \frac{0.6-10.1}{2.6} $ $ \frac{2.4-4.4}{3.6} $ $ \frac{0.65-0.93}{0.79} $ $ \frac{2.2-63.3}{22.9} $ $ \frac{0.08-1.88}{0.67} $ 番禺4洼(下文昌) P1 $ \frac{1.5-4.8}{3.3} $ $ \frac{2.1-5.2}{3.7} $ $ \frac{1.3-2.7}{1.8} $ $ \frac{1.8-11.8}{6.3} $ $ \frac{2.9-4.1}{3.5} $ $ \frac{0.83-0.90}{0.87} $ $ \frac{20.3-42.9}{28.2} $ $ \frac{0.72-1.42}{0.99} $ 注:$ \frac{\mathrm{最}\mathrm{小}\mathrm{值}-\mathrm{最}\mathrm{大}\mathrm{值}}{\mathrm{平}\mathrm{均}\mathrm{值}} $. -
Cai, G. F., Peng, G. R., Wu, J., et al., 2022. Sedimentary Filling Response to Detachment Structural Deformation in Shallow-Water Continental Shelf of Pearl River Mouth Basin: A Case Study of Enping Sag. Earth Science, 47(7): 2391-2409 (in Chinese with English abstract). doi: 10.3799/dqkx.2022.215 Gao, G., Wang, Y. H., Liu, G. D., et al., 2013. Confirmation and Distribution Features of Effective Source Rocks in Yinger Sag, Jiuquan Basin. Petroleum Geology & Experiment, 35(4): 414-418, 425(in Chinese with English abstract). Gao, Y. D., Zhang, X. T., Li, Z. G., et al., 2021. Variability in Sequence Stratigraphic Architectures of Lower-Middle Miocene Pearl River Delta, Northern Enping Sag, Pearl River Mouth Basin: Implications for Lithological Trap Development. Earth Science, 46(5): 1758-1770(in Chinese with English abstract). doi: 10.3799/dqkx.2021.011 Gao, Y. D., Zhu, W. L., Peng, G. R., et al., 2024. Evaluation of Source Rocks and Prediction of Oil and Gas Resources Distribution in Baiyun Sag, Pearl River Mouth Basin, China. Petroleum Exploration and Development, 51(5): 986-996(in Chinese with English abstract). Hu, S. B., Long, Z. L., Zhu, J. Z., et al., 2019. Characteristics of Geothermal Field and the Tectonic-Thermal Evolution in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(Suppl. 1): 178-187(in Chinese with English abstract). Kuang, L. C., Gao, G., Xiang, B. L., et al., 2014. Lowest Limit of Organic Carbon Content in Effective Source Rocks from Lucaogou Formation in Jimusar Sag. Petroleum Geology & Experiment, 36(2): 224-229(in Chinese with English abstract). Lei, C., Ye, J. R., Yin, S. Y., et al., 2024. Constraints of Paleoclimate and Paleoenvironment on Organic Matter Enrichment in Lishui Sag, East China Sea Basin: Evidence from Element Geochemistry of Paleocene Mudstones. Earth Science, 49(7): 2359-2372(in Chinese with English abstract). doi: 10.3799/dqkx.2023.011 Lu, S. F., Zhang, M., 2008. Oil and Gas Geochemistry. Petroleum Industry Press, Beijing, 201-206(in Chinese). Pang, X., Zheng, J. Y., Mei, L. F., et al., 2021. Characteristics and Origin of Continental Marginal Fault Depressions under the Background of Preexisting Subduction Continental Margin, Northern South China Sea, China. Petroleum Exploration and Development, 48(5): 1069-1080(in Chinese with English abstract). Peng, G. R., Long, Z. L., Shi, Y. L., et al., 2022. Discussion on Integrated Geological and Geophysical Identification Method for Spatial Distribution of Favorable Source Rocks in Depression with Lack of Drilling Data: A Case Study of Enping 17 Sag, Zhu Ⅰ Depression, Pearl River Mouth Basin. Petroleum Geology & Experiment, 44(6): 1116-1122 (in Chinese with English abstract). Peng, G. R., Shi, C., Long, Z. L., et al., 2023. Relationship between Element Geochemical Characteristics and Organic Matter Enrichment of Wenchang Formation Mudstones in Enping Sub-Sag 21, Pearl River Mouth Basin. Marine Geology Frontiers, 39(6): 65-74(in Chinese with English abstract). Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History(Second ed. ). Cambridge University Press, Cambridge. Shi, C., 2022. REE Characteristics and Geological Significance of Mudstones from Wenchang Formation in Eastern Yangjiang Sag of Pearl River Mouth Basin. Bulletin of Geological Science and Technology, 41(3): 166-172(in Chinese with English abstract). Shi, C., Long, Z. L., Zhu, J. Z., et al., 2020a. Element Geochemistry of the Enping Formation in the Baiyun Sag of Pearl River Mouth Basin and Their Environmental Implications. Marine Geology & Quaternary Geology, 40(5): 79-86(in Chinese with English abstract). Shi, C., Zhu, J. Z., Long, Z. L., et al., 2020b. TOC Prediction for Source Rocks of Wenchang Formation with a Joint Logging and Seismic Method in the Panyu 4 Sag in Pearl River Mouth Basin. Marine Geology Frontiers, 36(2): 26-32(in Chinese with English abstract). Shi, C., Zhu, J. Z., Long, Z. L., et al., 2019. Prediction of Total Organic Carbon in Source Rocks by Probabilistic Neural Network: A Case Study of Southern Lufeng Area in Pearl River Mouth Basin. Fault-Block Oil & Gas Field, 26(5): 561-565(in Chinese with English abstract). Shi, H. S., Du, J. Y., Mei, L. F., et al., 2020. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461(in Chinese with English abstract). Sweeney, J. J., Burnham, A. K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics (1). AAPG Bulletin, 74: 1559-1570. https://doi.org/10.1306/0c9b251f-1710-11d7-8645000102c1865d. Tang, X. Y., Huang, S. P., Yang, S. C., et al., 2016. Correcting on Logging-Derived Temperatures of the Pearl River Mouth Basin and Characteristics of Its Present Temperature Field. Chinese Journal of Geophysics, 59(8): 2911-2921(in Chinese with English abstract). Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-87813-8 Wang, L., Jin, Q., 2005. Tertiary Hydrocarbon Kitchen in Western Qaidam Basin and Its Control on Hydrocarbon Accumulation. Oil & Gas Geology, 26(4): 467-472(in Chinese with English abstract). Wu, J., Zhu, D. W., Zhao, P., et al., 2021. Controls of Faulted Composite Accumulation Ridge on the Long Distance Migration and Accumulation of Neogene Hydrocarbon: A Case Study of the Eastern Yangjiang Sag and the Enping Sag in the Pearl River Mouth Basin. Geotectonica et Metallogenia, 45(1): 131-139 (in Chinese with English abstract). Xiong, W. L., Zhu, J. Z., Yang, X. Y., et al., 2020. Study on the Genetic Sources and Accumulation Processes of Oil and Gas in the North Uplift Structural Belt of Enping Sag. China Offshore Oil and Gas, 32(1): 54-65(in Chinese with English abstract). Xue, N., Shao, X. Z., Zhu, G. Y., et al., 2023. Geochemical Characteristics and Formation Environment of Source Rocks of Triassic Chang 7 Member in Northern Pingliang Area, Ordos Basin. Lithologic Reservoirs, 35(3): 51-65(in Chinese with English abstract). Yang, F., Cao, Z. L., Liu, H. L., et al., 2024. Source Rock Evaluation and Prediction of Effective Hydrocarbon Kitchen Distribution of Upper Triassic in Junggar Basin. Petroleum Geology & Experiment, 46(2): 380-392(in Chinese with English abstract). Yang, H. B., Feng, D. H., Yang, X. Y., et al., 2024. Characteristics of Source Rocks and Thermal Evolution Simulation of Permian Pingdiquan Formation in Dongdaohaizi Sag, Junggar Basin. Lithologic Reservoirs, 36(5): 156-166(in Chinese with English abstract). Yang, M. H., Zuo, Y. H., Duan, X. G., et al., 2023. Hydrocarbon Kitchen Evolution of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and Its Enlightenment to Hydrocarbon Accumulation. Earth Science, 48(2): 582-595(in Chinese with English abstract). doi: 10.3799/dqkx.2022.441 Zhao, P., Peng, G. R., Wu, J., et al., 2021. Accumulation and Key Controls of Lateral Cross-Fault Hydrocarbon Migration: A Case Study of the Enping Sag in the Pearl River Mouth Basin. Geotectonica et Metallogenia, 45(1): 148-157. (in Chinese with English abstract). Zhu, D. W., Peng, G. R., Zhang, Z. T., et al., 2021. Model of Oil-Gas Cross-Fault Migration, Evaluation and Application: A Case in the Enping Sag of Pearl River Mouth Basin. Geotectonica et Metallogenia, 45(1): 140-147(in Chinese with English abstract). Zhu, M., Zhang, X. T., Huang, Y. P., et al., 2019. Source Rock Characteristics and Resource Potential in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(Suppl. 1): 53-68(in Chinese with English abstract). 蔡国富, 彭光荣, 吴静, 等, 2022. 珠江口盆地浅水陆架区拆离断陷的构造变形与沉积充填响应: 以恩平凹陷为例. 地球科学, 47(7): 2391-2409. doi: 10.3799/dqkx.2022.215 高岗, 王银会, 柳广弟, 等, 2013. 酒泉盆地营尔凹陷有效烃源岩的确认及其展布特征. 石油实验地质, 35(4): 414-418, 425. 高阳东, 张向涛, 李智高, 等, 2021. 珠江口盆地恩平凹陷北带下-中中新统层序构型及其差异性分析: 对岩性圈闭发育的启示. 地球科学, 46(5): 1758-1770. doi: 10.3799/dqkx.2021.011 高阳东, 朱伟林, 彭光荣, 等, 2024. 珠江口盆地白云凹陷烃源岩评价及油气资源分布预测. 石油勘探与开发, 51(5): 986-996. 胡圣标, 龙祖烈, 朱俊章, 等, 2019. 珠江口盆地地温场特征及构造-热演化. 石油学报, 40(增刊1): 178-187. 匡立春, 高岗, 向宝力, 等, 2014. 吉木萨尔凹陷芦草沟组有效源岩有机碳含量下限分析. 石油实验地质, 36(2): 224-229. 雷闯, 叶加仁, 殷世艳, 等, 2024. 东海盆地丽水凹陷古气候和古环境对有机质富集的约束: 来自古新统泥岩的元素地球化学证据. 地球科学, 49(7): 2359-2372. doi: 10.3799/dqkx.2023.011 卢双舫, 张敏, 2008. 油气地球化学. 北京: 石油工业出版社. 庞雄, 郑金云, 梅廉夫, 等, 2021. 先存俯冲陆缘背景下南海北部陆缘断陷特征及成因. 石油勘探与开发, 48(5): 1069-1080. 彭光荣, 龙祖烈, 史玉玲, 等, 2022. 低钻揭洼陷有利烃源岩空间展布地质与地球物理综合识别方法: 以珠江口盆地珠一坳陷恩平17洼为例. 石油实验地质, 44(6): 1116-1122. 彭光荣, 石创, 龙祖烈, 等, 2023. 珠江口盆地恩平21洼文昌组泥岩元素地球化学特征及其与有机质富集的关系. 海洋地质前沿, 39(6): 65-74. 石创, 2022. 珠江口盆地阳江东凹文昌组泥岩稀土元素特征及其地质意义. 地质科技通报, 41(3): 166-172. 石创, 龙祖烈, 朱俊章, 等, 2020a. 珠江口盆地白云凹陷恩平组泥岩元素地球化学特征及环境指示意义. 海洋地质与第四纪地质, 40(5): 79-86. 石创, 朱俊章, 龙祖烈, 等, 2020b. 井震联合预测珠江口盆地番禺4洼文昌组烃源岩总有机碳. 海洋地质前沿, 36(2): 26-32. 石创, 朱俊章, 龙祖烈, 等, 2019. 基于概率神经网络的烃源岩TOC预测: 以珠江口盆地陆丰南区为例. 断块油气田, 26(5): 561-565. 施和生, 杜家元, 梅廉夫, 等, 2020. 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 447-461. 唐晓音, 黄少鹏, 杨树春, 等, 2016. 南海珠江口盆地钻井BHT温度校正及现今地温场特征. 地球物理学报, 59(8): 2911-2921. 王力, 金强, 2005. 柴达木盆地西部第三系烃源灶及其对油气聚集的控制作用. 石油与天然气地质, 26(4): 467-472. 吴静, 朱定伟, 赵鹏, 等, 2021. 断裂复合汇聚脊对新近系油气远距离富集的控制作用: 以珠江口盆地阳江东凹与恩平凹陷为例. 大地构造与成矿学, 45(1): 131-139. 熊万林, 朱俊章, 杨兴业, 等, 2020. 恩平凹陷北部隆起构造带油气成因来源及成藏过程研究. 中国海上油气, 32(1): 54-65. 薛楠, 邵晓州, 朱光有, 等, 2023. 鄂尔多斯盆地平凉北地区三叠系长7段烃源岩地球化学特征及形成环境. 岩性油气藏, 35(3): 51-65. 杨帆, 曹正林, 刘海磊, 等, 2024. 准噶尔盆地上三叠统烃源岩评价与有效烃源灶分布预测. 石油实验地质, 46(2): 380-392. 杨海波, 冯德浩, 杨小艺, 等, 2024. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟. 岩性油气藏, 36(5): 156-166. 杨梅华, 左银辉, 段新国, 等, 2023. 四川盆地下寒武统筇竹寺组烃源岩灶演化及其对成藏的启示. 地球科学, 48(2): 582-595. doi: 10.3799/dqkx.2022.441 赵鹏, 彭光荣, 吴静, 等, 2021. 油气穿越未成岩断裂运移富集成藏模式与主控因素: 以珠江口盆地恩平凹陷为例. 大地构造与成矿学, 45(1): 148-157. 朱定伟, 彭光荣, 张忠涛, 等, 2021. 油气"穿断运移"模式、评价方法与应用: 以珠江口盆地恩平凹陷为例. 大地构造与成矿学, 45(1): 140-147. 朱明, 张向涛, 黄玉平, 等, 2019. 珠江口盆地烃源岩特征及资源潜力. 石油学报, 40(增刊1): 53-68. -




下载: