• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    白龙江流域特大滑坡灾害链发育分布特征及形成机制

    王高峰 毕远宏 李浩 高幼龙 田运涛 陈宗良 李瑞冬 丛凯 樊小鹏 董翰川

    王高峰, 毕远宏, 李浩, 高幼龙, 田运涛, 陈宗良, 李瑞冬, 丛凯, 樊小鹏, 董翰川, 2025. 白龙江流域特大滑坡灾害链发育分布特征及形成机制. 地球科学, 50(10): 3885-3904. doi: 10.3799/dqkx.2025.151
    引用本文: 王高峰, 毕远宏, 李浩, 高幼龙, 田运涛, 陈宗良, 李瑞冬, 丛凯, 樊小鹏, 董翰川, 2025. 白龙江流域特大滑坡灾害链发育分布特征及形成机制. 地球科学, 50(10): 3885-3904. doi: 10.3799/dqkx.2025.151
    Wang Gaofeng, Bi Yuanhong, Li Hao, Gao Youlong, Tian Yuntao, Chen Zongliang, Li Ruidong, Cong Kai, Fan Xiaopeng, Dong Hanchuan, 2025. Developmental and Distribution Characteristics and Formation Mechanisms of Large-Scale Landslide Disaster Chains in Bailong River Basin. Earth Science, 50(10): 3885-3904. doi: 10.3799/dqkx.2025.151
    Citation: Wang Gaofeng, Bi Yuanhong, Li Hao, Gao Youlong, Tian Yuntao, Chen Zongliang, Li Ruidong, Cong Kai, Fan Xiaopeng, Dong Hanchuan, 2025. Developmental and Distribution Characteristics and Formation Mechanisms of Large-Scale Landslide Disaster Chains in Bailong River Basin. Earth Science, 50(10): 3885-3904. doi: 10.3799/dqkx.2025.151

    白龙江流域特大滑坡灾害链发育分布特征及形成机制

    doi: 10.3799/dqkx.2025.151
    基金项目: 

    中国地质调查局项目 DD20221747

    中国地质调查局项目 DD20251329

    2024年度甘肃省科技计划项目(联合科研基金重大项目) 24JRRA800

    国家重点研发计划课题 2022YFC3003403

    自然资源部兰州城市地质灾害野外科学观测研究站开放基金课题 202406

    详细信息
      作者简介:

      王高峰(1984-),男,博士,高级工程师,主要从事地质灾害调查与GIS研究. ORCID:0009-0003-6494-8626. E-mail:wgf_cgcs303@163.com

      通讯作者:

      李浩(1990-),男,在读博士,工程师,从事地质灾害调查评价工作. E-mail:leehao1990@126.com

    • 中图分类号: P694;P642

    Developmental and Distribution Characteristics and Formation Mechanisms of Large-Scale Landslide Disaster Chains in Bailong River Basin

    • 摘要:

      白龙江流域夹持于东昆仑断裂和西秦岭断裂两条巨大的左旋走滑断裂之间,特殊的地质环境条件使得该区一直是我国地质灾害链最发育、成灾最严重的地区之一,防灾减灾形势极为严峻.通过资料收集、遥感解译及野外调查,构建了132处特大滑坡灾害链数据库,系统探究其发育分布特征与形成机制.研究表明:(1)滑坡体均为大型及以上,规模效应显著,1 000×104~5 000×104 m3范围内滑坡数量占比40.2%、总体积占比44.8%;以高位堆积层滑坡为主,24.2%具有“三段式”阻滑地形特征,发育于泥盆系、志留系软硬组合易滑结构地层滑坡总面积占比65%;(2)变形以多期次逐级后退式牵引且局部伴有拉裂-推移、渐进推移式断裂带滑坡及复合型大型堆积体滑坡为主;超60%具备远程运动机制,表现为长历时蠕滑主导的强碎屑流特征;(3)空间上表现为沿大型活动断裂带呈带状集中、沿河流水系呈线状分布的特点,54.6%发育于断裂带2 km范围内,集中在断裂错断、转折、末端及交汇部位;滑动方向多平行断裂走向,NWW-NW向、NE向断裂与水系共同控制区域分布;(4)其形成发展主要受活动断裂、含千枚岩等易滑岩层、差异性中高山峡谷地貌控制;区域性5~15 d中长历时强降雨为主要诱发因素且具滞后性,震后1.5~5 a灾害频次与规模显著加剧.研究成果对丰富和认识青藏高原东北缘重特大滑坡灾害链形成机理,提升防灾减灾能力具有重要指导意义.

       

    • 图  1  研究区地质构造图

      F0.东昆仑断裂;F1.西秦岭北缘断裂;F2.临潭-宕昌断裂;F3.光盖山-迭山断裂;F4.迭部-白龙江断裂;F5.塔藏断裂;F6.礼县-罗家堡断裂;F7.风-太断裂;F8.两当-江洛断裂;F9.成县盆地南支断裂;F10.武都-略阳断裂;F11.哈南-青山湾-稻畦子断裂;F12.文县-康县断裂;F13.青川断裂;F14.虎牙断裂;F15.岷江断裂;F16.茂汶断裂;F17.映秀断裂

      Fig.  1.  Geological structure map of the study area

      图  2  滑坡发育规模分布曲线

      Fig.  2.  Scale distribution curve of landslide development

      图  3  典型哑铃状滑坡平面图(武都区泻流坡滑坡)

      Fig.  3.  Planar graph of a typical dumbbell-shaped landslide (Xieliupo Landslide in Wudu)

      图  4  典型扇形状滑坡平面图(武都区红土坡滑坡)

      Fig.  4.  Planar graph of typical fan-shaped landslide (Hongtupo Landslide in Wudu)

      图  5  南峪滑坡群平面简图

      Fig.  5.  Simplified planar graph of the Nanyu Landslide cluster

      图  6  舟曲县立节北山滑坡变形分区特征

      Fig.  6.  Deformation zonation characteristics of the Lijiebeishan Landslide, Zhouqu County

      图  7  研究区特大滑坡灾害链滑体体积与视摩擦角关系

      Fig.  7.  Relationship between landslide volume and apparent friction angle for large-scale geohazard chains in the study area

      图  8  研究区特大滑坡灾害链运动特征

      Fig.  8.  Kinematic characteristics of large-scale geohazard chains in the study area

      图  9  研究区特大滑坡灾害链密度分布

      Fig.  9.  Density distribution of large-scale geohazard chains in the study area

      图  10  光盖山-迭山断裂带特大地质灾害链与断裂的空间关系情况

      Fig.  10.  Spatial relationship between large-scale geohazard chains and the Guanggaishan-Dieshan fault zone

      图  11  研究区典型断裂与滑坡灾害三维示意图

      Fig.  11.  Schematic 3D diagram of typical fault distribution and landslide hazards in the study area

      图  12  江顶崖滑坡剖面图(据郭长宝等,2019)

      Fig.  12.  Geological profile of the Jiangdingya Landslide (modified from Guo et al., 2019)

      图  13  研究区易发生特大地质灾害链的成灾地貌类型

      Fig.  13.  Disaster-pregnant landform types prone to large-scale geological disaster chains in the study area

      表  1  研究区典型特大地质灾害链类型及其典型特征

      Table  1.   Types and characteristics of typical large-scale geohazard chains in the study area

      灾害链类型 典型特征 典型案例
      滑坡/崩塌-碎屑流灾害链 滑坡剪出口较高,启动后迅速解体并做远程运动,常发生较陡斜坡的中上部,流域上游 武都泻流坡滑坡、立节北山滑坡等
      滑坡-堰塞湖-洪水灾害链 发生于白龙江及其支流的干流河谷两岸,一般为断裂控制型滑坡,滑坡体积通常较大,滑坡发生后堵塞主河形成堰塞湖,造成上游淹没成灾,堰塞湖溃决后洪水导致下游沿途成灾,影响范围可达数千米至数十千米 咀疙瘩滑坡、泄流坡滑坡、牙豁口滑坡等
      滑坡-堰塞湖-溃决洪水-古滑坡复活灾害链 滑坡发生后挤压主河,导致河水集中冲刷对岸,诱发对岸岸坡崩滑体发生成灾,或灾害集中分布呈串珠状分布,溃决洪水洪峰流量大,诱发下游古滑坡复活,级联发生风险高,危害极大 江顶崖滑坡等
      下载: 导出CSV

      表  2  不同断裂影响区内特大滑坡灾害链隐患分布统计

      Table  2.   Statistics of potential large-scale geohazard chains in different fault-affected zones

      断裂带代码 A B C D
      滑坡体数目(个) 41 19 17 45
      滑坡体数目百分比(%) 31.06 14.39 12.88 34.09
      滑坡体集中区面积(km2) 2 098.60 1 278.32 696.68 2 182.37
      滑坡体面积(km2) 35.70 10.78 9.97 35.74
      滑坡体面积百分比(%) 1.70 0.84 1.43 1.64
      滑坡体体积(104 m3) 92 808.61 21 401.17 30 052.60 68 722.96
      单位面积滑坡体积(104 m3/km2) 44.22 16.74 43.14 31.49
      下载: 导出CSV
    • Chang, Z. Y., Wang, J., Bai, S. B., et al., 2014. Appraisal of Active Tectonic in Bailongjiang Basin Based on DEM Data. Quaternary Sciences, 34(2): 292-301(in Chinese with English abstract).
      Chen, M., Wang, Y. S., Liang, R. F., et al., 2018. Research on Development and Distribution Rules of Largescale Landslides in Bailongjiang River Basin. Journal of Engineering Geology, 26(2): 325-333 (in Chinese with English abstract).
      Chen, N. S., Tian, S. F., Zhang, Y., et al., 2021. Soil Mass Domination in Debris-Flow Disasters and Strategy for Hazard Mitigation. Earth Science Frontiers, 28(4): 337-348 (in Chinese with English abstract).
      Chong, Y., Chen, G., Meng, X. M., et al., 2022. Analysis of the Transformation Mechanism and Prediction of a Landslide Debris Flow Multi-Hazards Chain in an Alpine Canyon Area: A Case Study in Zhouqu. Journal of Lanzhou University (Natural Sciences), 58(3): 372-384(in Chinese with English abstract).
      Cui, P., Guo, J., 2021. Evolution Models, Risk Prevention and Control Countermeasures of the Valley Disaster Chain. Advanced Engineering Sciences, 53(3): 5-18(in Chinese with English abstract).
      Feng, J., Shang, X. J., Fan, M., et al., 2006. Geological Calamity Distribution and Critical Rainfall in Longnan Region of Gansu Province. Arid Meteorology, 24(4): 20-24 (in Chinese with English abstract).
      Feng, J., Zhang, R., Feng, R. J., 2011. Causes of the Post-Earthquake Geo-Calamities in Southern Gansu. Journal of Geological Hazards and Environment Preservation, 22(1): 5-9 (in Chinese with English abstract).
      Feng, Z., You, Y., Chen, L., et al., 2024. Numerical Simulation Study on Kinematic Post-Failure Process of Large-Scale Landslide in the Bailong River Basin. Journal of Catastrophology, 39(1): 45-50 (in Chinese with English abstract).
      Guo, C. B., Du, Y. B., Zhang, Y. S., et al., 2015. Geohazard Effects of the Xianshuihe Fault and Characteristics of Typical Landslides in Western Sichuan. Geological Bulletin of China, 34(1): 121-134 (in Chinese with English abstract).
      Guo, C. B., Ren, S. S., Li, X., et al., 2019. Development Characteristics and Reactivation Mechanism of the Jiangdingya Ancient Landslide in the Nanyu Town, Zhouqu County, Gansu Province. Geoscience, 33(1): 206-217(in Chinese with English abstract).
      Guo, C. B., Wu, R. A., Zhong, N., et al., 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658 (in Chinese with English abstract).
      Guo, C. B., Yan, Y. Q., Zhang, Y. S., et al., 2022. Research Progress and Prospect of Failure Mechanism of Large Deep-Seated Creeping Landslides in Tibetan Plateau, China. Earth Science, 47(10): 3677-3700(in Chinese with English abstract).
      Guo, F. Y., Meng, X. M., Chen, G., et al., 2016. Geomorphology Evolution of Bailong River Basin and Its Impact on Geo-Hazard. Yangtze River, 47(7): 37-43, 49 (in Chinese with English abstract).
      Guo, F. Y., Song, X. L., Xie, Y., et al., 2015. A Discussion on the Geological Hazards Meteorological Warning System in Gansu Province. The Chinese Journal of Geological Hazard and Control, 26(1): 127-133 (in Chinese with English abstract).
      Han, J. L., Wu, S. R., Wang, H. B., 2007. Preliminary Study on Geological Hazard Chains. Earth Science Frontiers, 14(6): 11-23 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60001-9
      Hsü, K. J., 1975. Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls. Geological Society of America Bulletin, 86(1): 129-140. https://doi.org/10.1130/0016-7606(1975)86129:cdssgb>2.0.co;2 doi: 10.1130/0016-7606(1975)86129:cdssgb>2.0.co;2
      Huang, R. Q., 2004. Mechanism of Large Scale Landslides in Western China. Advance in Earth Sciences, 19(3): 443-450 (in Chinese with English abstract).
      Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract).
      Liu, C. L., Qi, S. W., Tong, L. Q., et al., 2010. Great Landslides in Himalaya Mountain Area and Their Occurrence with Lithology. Journal of Engineering Geology, 18(5): 669-676 (in Chinese with English abstract).
      Liu, C. Z., Lyu, J. T., Tong, L. Q., et al., 2019. Research on Glacial/Rock Fall-Landslide-Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet. Geology in China, 46(2): 219-234(in Chinese with English abstract).
      Meng, X. M., Chen, G., Guo, P., et al., 2013. Research of Landslides and Debris Flows in Bailong River Basin: Progrss and Prospect. Marine Geology & Quaternary Geology, 33(4): 1-15 (in Chinese with English abstract).
      Qi, T. J., Meng, X. M., Qing, F., et al., 2021. Distribution and Characteristics of Large Landslides in a Fault Zone: A Case Study of the NE Qinghai-Tibet Plateau. Geomorphology, 379: 107592. https://doi.org/10.1016/j.geomorph.2021.107592
      Shao, Y. X., Yuan, D. Y., He, W. G., et al., 2014. Seismic Hazard Assessment for Active Faults of Longnan City. China Earthquake Engineering Journal, 36(3): 645-655(in Chinese with English abstract).
      Su, Q., Liang, M. J., Yuan, D. Y., et al., 2016. Geomorphic Features of the Bailongjiang River Drainage Basin and Its Relationship with Geological Disaster. Earth Science, 41(10): 1758-1770(in Chinese with English abstract).
      Tang, H. M., Li, C. D., Hu, W., et al., 2022. What is the Physical Mechanism of Major Landslides? Earth Science, 47(10): 3902-3903 (in Chinese).
      Tang, Y. Y., 1992. The Effect of Neotectonic Movement on Formations of Landslide and Debris Flow in Southern Gansu. Journal of Lanzhou University (Natural Sciences), 28(4): 152-160(in Chinese).
      Tie, Y. B., Zhang, X. Z., Gong, L. F., et al., 2022. Research on the Pattern of Typical Geohazard Chains in the Southwest Mountainous Region, China. Journal of Geomechanics, 28(6): 1071-1080(in Chinese with English abstract).
      Wang, F. W., Chen, Y., Liu, W. C., et al., 2022. Dynamic Characteristics and Research Difficulties of High-Level Remote Landslide in Southeastern Tibet. Journal of Engineering Geology, 30(6): 1831-1841(in Chinese with English abstract).
      Wang, G. F., Li, H., Tian, Y. T., et al., 2023. Study on the Formation Mechanism and Risk Prediction of High-Level Accumulation Landslides in Bailongjiang River Basin, Gansu Province. Chinese Journal of Rock Mechanics and Engineering, 42(4): 1003-1018(in Chinese with English abstract).
      Wu, J., Chen, G., Meng, X. M., et al., 2022. Rainfall Threshold of Landslides in the Bailong River Basin, China. Mountain Research, 40(6): 875-886(in Chinese with English abstract).
      Wu, W. J., Wang, G. Y., Liu, X. R., et al., 2021. The Development Characteristics and Causes of the Yahuokou Landslide in Zhouqu County, Gansu Province. Journal of Glaciology and Geocryology, 43(2): 544-554(in Chinese with English abstract).
      Xu, Q., Zheng, G., Li, W. L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 1534-1551(in Chinese with English abstract).
      Yang, W. M., Huang, X., Zhang, C. S., et al., 2014. Deformation Behavior of Landslides and Their Formation Mechanism along Pingding-Huama Active Fault in Bailongjiang River Region. Journal of Jilin University (Earth Science Edition), 44(2): 574-583(in Chinese with English abstract).
      Yin, Y. P., Zhu, S. N., Li, B., 2021. High-Level Remote Geological Disasters in Qinghai-Tibet Plateau. Science Press, Beijing(in Chinese).
      Yu, J. X., Zheng, W. J., Yuan, D. Y., et al., 2012. Late Quaternary Active Characteristics and Slip-Rate of Pingding-Huama Fault, the Eastern Segment of Guanggaishan-Dieshan Fault Zone(West Qinling Mountain). Quaternary Sciences, 32(5): 957-967(in Chinese with English abstract).
      Yuan, B., He, F. G., Li, J. P., et al., 2012. Relationship between Debris Flow Activity and Precipitation Characteristics in Wudu Area, Gansu Province. Journal of Lanzhou University (Natural Sciences), 48(6): 15-20(in Chinese with English abstract).
      Zhang, B., 2020. Fault Geometry and Deformation Partition of WNW-Trending Faults in the West Qinling Mountain(Dissertation). Institute of Geology, China Eathquake Administration, Beijing (in Chinese with English abstract).
      Zhang, Y. P., Zheng, W. J., Yuan, D. Y., et al., 2021. Geometrical Imagery and Kinematic Dissipation of the Late Cenozoic Active Faults in the West Qinling Belt: Implications for the Growth of the Tibetan Plateau. Journal of Geomechanics, 27(2): 159-177(in Chinese with English abstract).
      Zhang, Y. S., Guo, C. B., Yao, X., et al., 2016. Study on Geological Disaster Effect of Active Faults in the Eastern Margin of Qinghai-Tibet Plateau. Acta Geoscientica Sinica, 37(3): 277-286(in Chinese with English abstract).
      Zhang, Y. S., Ren, S. S., Li, J. Q., et al., 2023. Easy-to-Slip Geological Structure and High-Level Sliding Mechanism of Dorasi Landslide in Nujiang Structural Melange Belt. Earth Science, 48(12): 4668-4679(in Chinese with English abstract).
      Zhang, Y. S., Shi, J. S., Sun, P., et al., 2009. Coupling between Endogenic and Exogenic Geological Processes in the Wenchuan Earthquake and Example Analysis of Geo-Hazards. Journal of Geomechanics, 15(2): 131-141(in Chinese with English abstract).
      常直杨, 王建, 白世彪, 等, 2014. 基于DEM的白龙江流域构造活动定量分析. 第四纪研究, 34(2): 292-301.
      陈明, 王运生, 梁瑞锋, 等, 2018. 白龙江流域大型滑坡发育分布规律研究. 工程地质学报, 26(2): 325-333.
      陈宁生, 田树峰, 张勇, 等, 2021. 泥石流灾害的物源控制与高性能减灾. 地学前缘, 28(4): 337-348.
      种艳, 陈冠, 孟兴民, 等, 2022. 高山峡谷区滑坡-泥石流灾害链成灾模式与危险性评价: 以舟曲立节为例. 兰州大学学报(自然科学版), 58(3): 372-384.
      崔鹏, 郭剑, 2021. 沟谷灾害链演化模式与风险防控对策. 工程科学与技术, 53(3): 5-18.
      冯军, 尚学军, 樊明, 等, 2006. 陇南地质灾害降雨区划及临界雨量研究. 干旱气象, 24(4): 20-24.
      冯军, 张蓉, 冯瑞娟, 2011. 地震后陇南特大地质灾害成因分析. 地质灾害与环境保护, 22(1): 5-9.
      冯振, 游杨, 陈亮, 等, 2024. 白龙江流域大型高位滑坡成灾动力过程模拟研究. 灾害学, 39(1): 45-50.
      郭长宝, 杜宇本, 张永双, 等, 2015. 川西鲜水河断裂带地质灾害发育特征与典型滑坡形成机理. 地质通报, 34(1): 121-134.
      郭长宝, 任三绍, 李雪, 等, 2019. 甘肃舟曲南峪江顶崖古滑坡发育特征与复活机理. 现代地质, 33(1): 206-217.
      郭长宝, 吴瑞安, 钟宁, 等, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658. doi: 10.3799/dqkx.2024.124
      郭长宝, 闫怡秋, 张永双, 等, 2022. 青藏高原大型深层蠕滑型滑坡变形机制研究进展与展望. 地球科学, 47(10): 3677-3700. doi: 10.3799/dqkx.2022.249
      郭富赟, 孟兴民, 陈冠, 等, 2016. 白龙江流域地貌演化及其对地质灾害的影响. 人民长江, 47(7): 37-43, 49.
      郭富赟, 宋晓玲, 谢煜, 等, 2015. 甘肃地质灾害气象预警技术方法探讨. 中国地质灾害与防治学报, 26(1): 127-133.
      韩金良, 吴树仁, 汪华斌, 2007. 地质灾害链. 地学前缘, 14(6): 11-23.
      黄润秋, 2004. 中国西部地区典型岩质滑坡机理研究. 地球科学进展, 19(3): 443-450.
      黄润秋, 2007.20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433–454.
      刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究. 中国地质, 46(2): 219-234.
      刘春玲, 祁生文, 童立强, 等, 2010. 喜马拉雅山地区重大滑坡灾害及其与地层岩性的关系研究. 工程地质学报, 18(5): 669-676.
      孟兴民, 陈冠, 郭鹏, 等, 2013. 白龙江流域滑坡泥石流灾害研究进展与展望. 海洋地质与第四纪地质, 33(4): 1-15.
      邵延秀, 袁道阳, 何文贵, 等, 2014. 陇南市活断层地震危险性评估. 地震工程学报, 36(3): 645-655.
      苏琦, 梁明剑, 袁道阳, 等, 2016. 白龙江流域构造地貌特征及其对滑坡泥石流灾害的控制作用. 地球科学, 41(10): 1758-1770. doi: 10.3799/dqkx.2016.527
      唐辉明, 李长冬, 胡伟, 等, 2022. 重大滑坡启滑的物理机制是什么?. 地球科学, 47(10): 3902-3903. doi: 10.3799/dqkx.2022.857
      唐永仪, 1992. 新构造运动在陇南滑坡泥石流形成中的作用. 兰州大学学报(自然科学版), 28(4): 152-160.
      铁永波, 张宪政, 龚凌枫, 等, 2022. 西南山区典型地质灾害链成灾模式研究. 地质力学学报, 28(6): 1071-1080.
      汪发武, 陈也, 刘伟超, 等, 2022. 藏东南高位远程滑坡动力学特征及研究难点. 工程地质学报, 30(6): 1831-1841.
      王高峰, 李浩, 田运涛, 等, 2023. 甘肃省白龙江流域典型高位堆积层滑坡成因机制研究及其危险性预测. 岩石力学与工程学报, 42(4): 1003-1018.
      吴杰, 陈冠, 孟兴民, 等, 2022. 白龙江流域滑坡降雨临界值. 山地学报, 40(6): 875-886.
      吴玮江, 王国亚, 刘兴荣, 等, 2021. 甘肃舟曲县牙豁口滑坡发育特征与成因分析. 冰川冻土, 43(2): 544-554.
      许强, 郑光, 李为乐, 等, 2018.2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究. 工程地质学报, 26(6): 1534-1551.
      杨为民, 黄晓, 张春山, 等, 2014. 白龙江流域坪定—化马断裂带滑坡特征及其形成演化. 吉林大学学报(地球科学版), 44(2): 574-583.
      殷跃平, 朱赛楠, 李滨, 等, 2021. 青藏高原高位远程地质灾害. 北京: 科学出版社.
      俞晶星, 郑文俊, 袁道阳, 等, 2012. 西秦岭西段光盖山-迭山断裂带坪定-化马断裂的新活动性与滑动速率. 第四纪研究, 32(5): 957-967.
      袁斌, 和法国, 李军鹏, 等, 2012. 甘肃武都区泥石流活动与降雨特征关系. 兰州大学学报(自然科学版), 48(6): 15-20.
      张波, 2020. 西秦岭NWW向断裂系的几何图像与变形分配(博士学位论文). 北京: 中国地震局地质研究所.
      张逸鹏, 郑文俊, 袁道阳, 等, 2021. 西秦岭晚新生代构造变形的几何图像、运动学特征及其动力机制. 地质力学学报, 27(2): 159-177.
      张永双, 郭长宝, 姚鑫, 等, 2016. 青藏高原东缘活动断裂地质灾害效应研究. 地球学报, 37(3): 277-286.
      张永双, 任三绍, 李金秋, 等, 2023. 怒江构造混杂岩带多拉寺滑坡的易滑地质结构及高位启滑运动机制. 地球科学, 48(12): 4668-4679. doi: 10.3799/dqkx.2023.017
      张永双, 石菊松, 孙萍, 等, 2009. 汶川地震内外动力耦合及灾害实例. 地质力学学报, 15(2): 131-141.
    • 加载中
    图(13) / 表(2)
    计量
    • 文章访问数:  92
    • HTML全文浏览量:  15
    • PDF下载量:  10
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-14
    • 刊出日期:  2025-10-25

    目录

      /

      返回文章
      返回