Structural Deformation Characteristics and Its Implications of Meso- to Neoproterozoic Sedimentary Strata in the Altyn Tagh Orogenic Belt
-
摘要: 为了解阿尔金造山带中-新元古代与罗迪尼亚(Rodinia)超大陆聚合与裂解相关的构造演化过程,对该地区塔昔达坂群(1 080~950 Ma)与索尔库里群(~930 Ma)进行了野外地质填图和构造解析,结果显示塔昔达坂群为一套低绿片岩相副变质岩,并经历了三期构造变形:第一期(D1)以透入性片理S1置换原生层理S0;第二期(D2)受NNE-SSW挤压形成近WNW-ESE向褶皱及褶劈理S2;第三期(D3)表现为SE-NW向挤压的逆冲断层及直立褶皱.索尔库里群不整合覆盖于塔昔达坂群之上,两者之间存在着沉积环境、构造变形的不连续性.结合两者的物质组成、变形期次以及研究区新元古代早期岩浆岩的时空分布及形成环境,提出阿尔金地区中元古代晚期-新元古代早期完成了从活动大陆边缘到后碰撞伸展的构造转换过程,为约束其与Rodinia超大陆裂解-碰撞过程及其古地理归属提供了关键证据.Abstract: To elucidate the Meso-Neoproterozoic tectonic evolution associated with the amalgamation and breakup of the Rodinia supercontinent in the Altyn Tagh Orogenic Belt, the field geological mapping is conducted and the structural analysis is carried out on the Taxidaban Group (1 080-950 Ma) and Suoerkuli Group (~930 Ma) in the region. The results show that the Taxidaban Group comprises low greenschist-facies para-metamorphic rocks subjected to three phases of deformation: (1) The D1 phase is characterized by pervasive schistosity S1 transposing primary bedding S0; (2) the D2 phase developed WNW-ESE trending folds and crenulation cleavage S2 under NNE-SSW compression; (3) the D3 phase presents as NW-SE directed thrust faults and upright folds induced by SE-NW compression. The Suoerkuli Group unconformably overlies the Taxidaban Group, exhibiting distinct discontinuities in depositional environments and structural deformation between the two units. Integrating lithological compositions, deformation sequences, and spatiotemporal distribution of early Neoproterozoic magmatic rocks with their tectonic settings, this study proposes that the Altyn region completed a tectonic transition from an active continental margin to post-collisional extension during the late Mesoproterozoic to early Neoproterozoic. The findings provide critical evidence for constraining its relationship with Rodinia supercontinent cycles and paleogeographic affinity.
-
图 1 阿尔金造山带地质简图
图据Wang et al.(2013);NA. 北阿尔金地块;NASB. 北阿尔金俯冲混杂岩带;CAM. 中阿尔金地块;SASB. 南阿尔金俯冲碰撞杂岩带
Fig. 1. Geological and tectonic map of Altyn Tagh Orogenic Belt
-
Bradley, D. C., 2011. Secular Trends in the Geologic Record and the Supercontinent Cycle. Earth-Science Reviews, 108(1-2): 16-33. https://doi.org/10.1016/j.earscirev.2011.05.003 Cawood, P. A., Pisarevsky, S. A., 2017. Laurentia-Baltica-Amazonia Relations during Rodinia Assembly. Precambrian Research, 292: 386-397. https://doi.org/10.1016/j.precamres.2017.01.031 Chen, X. Y., Li, B., Li, C., 2025. Chemical Weathering during the Neoproterozoic Snowball Earth Events. Earth Science, 50(3): 1048-1065 (in Chinese with English abstract). Gehrels, G. E., Yin, A., Wang, X. F., 2003. Detrital- Zircon Geochronology of the Northeastern Tibetan Plateau. Geological Society of America Bulletin, 115(7): 881-896. https://doi.org/10.1130/0016-7606(2003)1150881:dgotnt>2.0.co;2 doi: 10.1130/0016-7606(2003)1150881:dgotnt>2.0.co;2 Hao, J. B., 2021. Composition, Geochronology and Mesoproterozoic-Neoproterozoic Tectonic Evolution of the Central-Southern Altyn Tagh (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). Hao, J. B., Wang, C., Liu, L., et al., 2022. Reappraisal of the Petrogenetic Processes of Neoproterozoic Granitoids in the Altyn Tagh, NW China: Implications for Reconstruction of the Qaidam Block in Rodinia. Precambrian Research, 379: 106782. https://doi.org/10.1016/j.precamres.2022.106782 Hao, J. B., Wang, C., Zhang, S., et al., 2023. Grenvillian Evolution of the Qaidam Block and Its Position in Rodinia Constrained by U-Pb-Hf Composition of Detrital Zircons from the Altyn Tagh, Northern Tibet. Gondwana Research, 122: 60-73. https://doi.org/10.1016/j.gr.2023.06.003 He, D. F., Dong, Y. P., Liu, X. M., et al., 2018. Zircon U-Pb Geochronology and Hf Isotope of Granitoids in East Kunlun: Implications for the Neoproterozoic Magmatism of Qaidam Block, Northern Tibetan Plateau. Precambrian Research, 314: 377-393. https://doi.org/10.1016/j.precamres.2018.06.017 Hoffman, P. F., 1991. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out? Science, 252(5011): 1409-1412. https://doi.org/10.1126/science.252.5011.1409 Hu, X. M., Xue, W. W., Lai, W., et al., 2021. Sedimentary Basin Orogenic Belt and Continental Geodynamics. Acta Geologica Sinica, 95(1): 139-158 (in Chinese with English abstract). Kuang, H. W., Liu, Y. Q., Geng, Y. S., et al., 2019. Important Sedimentary Geological Events of the Meso-Neoproterozoic and Their Significance. Journal of Palaeogeography, 21(1): 1-30 (in Chinese with English abstract). Li, J. Y., Xia, Y. Q., Zhang, X. L., et al., 2024. Paleozoic Multi-Stage Magmatic Events Related to Proto-Tethys and Paleo-Tethys Evolution: Insights from Intrusive Rocks in the Eastern Altyn Orogen, NW China. Journal of Earth Science, 35(4): 1130-1148. https://doi.org/10.1007/s12583-021-1603-z Li, X., Liu, L., Liao, X. Y., et al., 2023. Metamorphic Evolution of Garnet Amphibolite from the Yaganbuyang Area in the South Altyn Orogen, West China: Insights from Phase Equilibria Modeling and Geochronology. Journal of Earth Science, 34(3): 640-657. https://doi.org/10.1007/s12583-021-1439-6 Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis. Precambrian Research, 160(1-2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021 Liu, L., Che, Z. C., Wang, Y., et al., 1999. The Petrological Characters and Geotectonic Setting of High Pressure Metamorphic Rock Belts in Altun Mountains. Acta Petrologica Sinica, 15(1): 57-63 (in Chinese with English abstract). Liu, L., Wang, C., Chen, D. L., et al., 2009. Petrology and Geochronology of HP-UHP Rocks from the South Altyn Tagh, Northwestern China. Journal of Asian Earth Sciences, 35(3-4): 232-244. https://doi.org/10.1016/j.jseaes.2008.10.007 Liu, Y. S., Yu, H. F., Xin, H. T., et al., 2009. Tectonic Units Division and Precambrian Significant Geological Events in Altyn Tagh Mountain, China. Geological Bulletin of China, 28(10): 1430-1438 (in Chinese with English abstract). Long, X. P., Sun, M., Yuan, C., et al., 2012. Zircon REE Patterns and Geochemical Characteristics of Paleoproterozoic Anatectic Granite in the Northern Tarim Craton, NW China: Implications for the Reconstruction of the Columbia Supercontinent. Precambrian Research, 222: 474-487. https://doi.org/10.1016/j.precamres.2011.09.009 Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1-2): 94-107. https://doi.org/10.1016/j.precamres.2007.04.025 Meert, J. G., Torsvik, T. H., 2003. The Making and Unmaking of a Supercontinent: Rodinia Revisited. Tectonophysics, 375(1-4): 261-288. https://doi.org/10.1016/S0040-1951(03)00342-1 Peng, Y. B., Yu, S. Y., Li, S. Z., et al., 2019. Early Neoproterozoic Magmatic Imprints in the Altun-Qilian- Kunlun Region of the Qinghai-Tibet Plateau: Response to the Assembly and Breakup of Rodinia Supercontinent. Earth-Science Reviews, 199: 102954. https://doi.org/10.1016/j.earscirev.2019.102954 Slagstad, T., Marker, M., Roberts, N. M. W., et al., 2020. The Sveconorwegian Orogeny-Reamalgamation of the Fragmented Southwestern Margin of Fennoscandia. Precambrian Research, 350: 105877. https://doi.org/10.1016/j.precamres.2020.105877 Wang, C., Liu, L., Li, R. S., 2018. Precambrian Geology of the Northern Margin of the Tibetan Plateau: Review and Discussion. Chinese Journal of Geology, 53(3): 972-999 (in Chinese with English abstract). Wang, C., Liu, L., Yang, W. Q., et al., 2013. Provenance and Ages of the Altyn Complex in Altyn Tagh: Implications for the Early Neoproterozoic Evolution of Northwestern China. Precambrian Research, 230: 193-208. https://doi.org/10.1016/j.precamres.2013.02.003 Wei, Q. R., Li, D. W., Wang, G. C., 2007. Geochemical Characteristics and Tectonic Setting of Volcanic Rocks from the Wanbaogou Group in East Kunlun Orogenic Belt. Journal of Mineralogy and Petrology, 27(1): 97-106 (in Chinese with English abstract). Wu, Y., Chen, Z. L., Chen, B. L., et al., 2019. Early Paleozoic Tectonic Deformation in Qiashenkansayigou Area, North Altun, and Implication for Tectonic Evolution. Journal of Geomechanics, 25(3): 301-312. (in Chinese with English abstract). Xie, T. H., Cao, Y. T., Liu, L., et al., 2025. The Property of the Metamorphic Strata from Bashkurgan Group in the Munabulake Area in South Altyn Tagh, Northwestern China: Constrains from Zircon U-Pb Dating and Lu-Hf Isotopic Composition. Acta Petrologica Sinica, 41(1): 198-214 (in Chinese with English abstract). doi: 10.18654/1000-0569/2025.01.11 Xin, H. T., Liu, Y. S., Luo, Z. H., 2013. The Growth of Archen Continental Crust in Aqtashtagh Area of Southeast Tarim, China: Constrains from Petrochemistry and Chronology about Milan Group and TTG-Gneiss. Earth Science Frontiers, 20(1): 240-259 (in Chinese with English abstract). Xu, N., Wu, C. L., Zhao, M. M., et al., 2024. Genesis and Geological Significance of Post-Collision Granites in South Altun. Earth Science, 49(12): 4418-4433 (in Chinese with English abstract). Xu, Z. Q., He, B. Z., Zhang, C. L., et al., 2013. Tectonic Framework and Crustal Evolution of the Precambrian Basement of the Tarim Block in NW China: New Geochronological Evidence from Deep Drilling Samples. Precambrian Research, 235: 150-162. https://doi.org/10.1016/j.precamres.2013.06.001 Yin, A., Dang, Y. Q., Zhang, M., et al., 2008. Cenozoic Tectonic Evolution of the Qaidam Basin and Its Surrounding Regions (Part 3): Structural Geology, Sedimentation, and Regional Tectonic Reconstruction. Geological Society of America Bulletin, 120(7-8): 847-876. https://doi.org/10.1130/b26232.1 Yu, H. F., Lu, S. N., Liu, Y. S., 2002. Composing of the Altyn Tagh Formation-Complex and Its Tectonic Signification. Geological Bulletin of China, 21(12): 834-840 (in Chinese with English abstract). Yu, S. Y., Zhang, J. X., del Real, P. G., et al., 2013. The Grenvillian Orogeny in the Altun-Qilian-North Qaidam Mountain Belts of Northern Tibet Plateau: Constraints from Geochemical and Zircon U-Pb Age and Hf Isotopic Study of Magmatic Rocks. Journal of Asian Earth Sciences, 73: 372-395. https://doi.org/10.1016/j.jseaes.2013.04.042 Zeng, Z. C., Bian, X. W., Zhao, J. L., et al., 2019. U-Pb Geochronology of Zircons from the Volcanic Rocks in Bingounan Formation, Southern Altyn Tagh: Implication for the Precambrian Tectonic Evolution. Geological Review, 65(1): 103-118 (in Chinese with English abstract). Zhang, H. D., Li, R. S., Ji, W. H., et al., 2012. The Material Composition and LA-ICP-MS Zircon U-Pb Age of East Kunlun Tectonic Melange in Xiaonanchuan Area, Golmud City, Qinghai Province, and Its Geological Significance. Geological Bulletin of China, 31(1): 38-49 (in Chinese with English abstract). Zhang, J. X., Lu, Z. L., Mao, X. H., et al., 2021. Revisiting the Precambrian Micro-Continental Blocks within the Early Paleozoic Orogenic System of the Northeastern Qinghai-Tibet Plateau: Insight into the Origin of Proto-Tethyan Ocean. Acta Petrologica Sinica, 27(1): 23-46 (in Chinese with English abstract). Zhang, T., Fang, X. M., Wang, Y. D., et al., 2018. Late Cenozoic Tectonic Activity of the Altyn Tagh Range: Constraints from Sedimentary Records from the Western Qaidam Basin, NE Tibetan Plateau. Tectonophysics, 737: 40-56. https://doi.org/10.1016/j.tecto.2018.04.021 Zhang, Z. C., Guo, Z. J., Feng, Z. S., et al., 2010. SHRIMP U-Pb Age of Zircons from Suoerkuli Rhyolite in the Altyn Tagh Mountains and Its Geological Significations. Acta Petrologica Sinica, 26(2): 597-606 (in Chinese with English abstract). Zhou, S. J., 2010. Division to the Tectofacies in the Caledonian Tectonic Belt in Lapeiquan Area in Altun Mountain (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). 陈欣阳, 李彪, 李超, 2025. 新元古代成冰纪雪球地球与化学风化作用. 地球科学, 50(3): 1048-1065. doi: 10.3799/dqkx.2025.006 郝江波, 2021. 中-南阿尔金地区中-新元古代物质组成、年代学及构造演化(博士学位论文). 西安: 西北大学. 胡修棉, 薛伟伟, 赖文, 等, 2021. 造山带沉积盆地与大陆动力学. 地质学报, 95(1): 139-158. 旷红伟, 柳永清, 耿元生, 等, 2019. 中国中新元古代重要沉积地质事件及其意义. 古地理学报, 21(1): 1-30. 刘良, 车自成, 王焰, 等, 1999. 阿尔金高压变质带的特征及其构造意义. 岩石学报, 15(1): 57-63. 刘永顺, 于海峰, 辛后田, 等, 2009. 阿尔金山地区构造单元划分和前寒武纪重要地质事件. 地质通报, 28(10): 1430-1438. 王超, 刘良, 李荣社, 2018. 青藏高原北缘前寒武纪地质演化: 进展与研究. 地质科学, 53(3): 972-999. 魏启荣, 李德威, 王国灿, 2007. 东昆仑万保沟群火山岩(Pt2w)岩石地球化学特征及其构造背景. 矿物岩石, 27 (1): 97-106. 吴玉, 陈正乐, 陈柏林, 等, 2019. 北阿尔金恰什坎萨依沟地区早古生代构造变形特征及构造演化启示. 地质力学学报, 25(3): 301-312. 解添合, 曹玉亭, 刘良, 等, 2025. 南阿尔金木纳布拉克地区巴什库尔干岩群变质岩的锆石U-Pb定年和Lu-Hf同位素特征及其地质意义. 岩石学报, 41(1): 198-214. 辛后田, 刘永顺, 罗照华, 等, 2013. 塔里木盆地东南缘阿克塔什塔格地区新太古代陆壳增生: 米兰岩群和TTG片麻岩的地球化学及年代学约束. 地学前缘, 20(1): 240-259. 徐楠, 吴才来, 赵苗苗, 等, 2024. 南阿尔金早古生代后碰撞花岗岩的成因及地质意义. 地球科学, 49(12): 4418-4433. doi: 10.3799/dqkx.2023.171 于海峰, 陆松年, 刘永顺, 等, 2002. "阿尔金山岩群"的组成及其构造意义. 地质通报, 21(12): 834-840. 曾忠诚, 边小卫, 赵江林, 等, 2019. 阿尔金南缘冰沟南组火山岩锆石U-Pb年龄及其前寒武纪构造演化意义. 地质论评, 65(1): 103-118. 张海迪, 李荣社, 计文化, 等, 2012. 青海省格尔木市小南川地区昆南构造混杂岩带的物质组成、LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 31(1): 38-49. 张建新, 路增龙, 毛小红, 等, 2021. 青藏高原东北缘早古生代造山系中前寒武纪微陆块的再认识-兼谈原特提斯洋的起源. 岩石学报, 27(1): 23-46. 张志诚, 郭召杰, 冯志硕, 等, 2010. 阿尔金索尔库里地区元古代流纹岩锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 26(2): 597-606. 周世军, 2010. 阿尔金山拉配泉地区加里东期构造带大地构造相划分(硕士学位论文). 北京: 中国地质大学. -