Research on Dynamic Performance Optimization and Stability Evaluation of Seismic Pile-Cable Composite Structure for Bedding Rock Slope in Meizoseismal Areas
-
摘要:
岩质边坡抗震稳定性是强震区工程建设面临的关键科学问题.针对普通支挡结构在强震作用下易失效的问题,研发和优化抗震支挡结构成为当前工程地质领域的重要研究方向.以云南省鲁甸县某高速公路软硬岩互层型顺层岩质边坡为工程背景,基于自主研发的抗震桩锚(SPC)组合结构,通过有限差分软件FLAC3D建立简化数值模型,系统开展SPC组合结构动力性能优化与综合评价研究.选取消能锚索体系和组合抗滑桩体系的关键支护参数,采用参数敏感性分析与逐项优化方法,从边坡稳定性、结构抗震性及工程经济性等角度综合评估优化后的抗震桩锚(OSPC)组合结构,最终提出兼具经济性与安全性的优化设计方案.研究结果表明,OSPC组合结构较普通桩锚(CPC)和SPC组合结构具有良好的抗震性能和经济优势,边坡最大永久位移和最大剪切应变增量减小53%和24%,前后排抗滑桩的桩顶位移减少85%和99%,混凝土和锚索材料减少34%和3%.研究成果可为强震区顺层岩质边坡抗震设计提供技术支撑.
Abstract:The seismic stability of rock slopes is a critical scientific issue in engineering construction in meizoseismal areas. Given the vulnerability of conventional retaining structures to failure under strong earthquakes, the development and optimization of seismic-resistant support structures have become a key research focus in engineering geology. This study investigates a soft-hard interbedded bedding rock slope along an expressway in Ludian County, Yunnan Province. Based on a self-developed seismic pile-cable (SPC) composite structure, simplified numerical models are established using the finite difference method FLAC3D to systematically optimize and evaluate the dynamic performance of the SPC composite structure. Key support parameters are selected for optimization, including those of the energy-dissipating anchor cable system and the composite anti-slide pile system. A parametric sensitivity analysis and stepwise optimization approach are employed, followed by a comprehensive assessment of the optimized seismic pile-cable (OSPC) composite structure from the perspectives of slope stability, seismic resistance, and economic efficiency. The results demonstrate that the OSPC composite structure exhibits superior seismic performance and cost-effectiveness compared to conventional pile-cable (CPC) and SPC composite structures. Specifically, it reduces the maximum permanent displacement and maximum shear strain increment of the slope by 53% and 24%, respectively, while decreasing the pile-top displacement of front and rear anti-slide piles by 85% and 99%, and additionally, the material consumption for concrete and anchor cables is reduced by 34% and 3%. The findings provide theoretical support for the seismic design of bedding rock slopes in meizoseismal areas, offering significant engineering application value.
-
表 1 边坡岩体物理力学参数
Table 1. Physical and mechanical parameters of rock mass in slope
边坡岩体指标 ρ
(kg/m3)σc (MPa) Er (GPa) μr c (MPa) φ(°) σt (MPa) 基岩/硬岩 2 470 35.36 5.92 0.22 7.52 31 3.25 软岩/层面 2 070 3.04 0.065 0.33 0.21 22 0.11 注:ρ.密度;σc.单轴抗压强度;Er.弹性模量;μr.泊松比;c.粘聚力;φ.内摩擦角;σt.单轴抗拉强度. 表 2 SPC组合结构物理力学参数
Table 2. Physical and mechanical parameters of SPC composite structure
支护结构指标 γ (kN/m3) Es (GPa) μs Kb(MPa) As (m2) 抗滑桩 27 41.67 0.19 / 3 锚索 77.4 195 0.25 15 1.82 × 10-4 框格梁 21.7 25 0.18 / 0.24 柔性结构 77.4 195/50 0.25 15 1.82 × 10-4 注:γ.重度;Es.弹性模量;μs.泊松比;Kb.粘结刚度;As.结构截面积. 表 3 SPC组合结构的支护参数
Table 3. Support parameters of SPC composite structure
影响因子水平 消能锚索体系 组合抗滑桩体系 抗滑桩参数 连接结构参数 Las(m) βac(°) Led(m) Fap(kN) Lfp(m) Lrp(m) Dfr(m) Dcp(m) βcs(°) Fcp(kN) 1 5.80 10 1.20 0 9.52 11.60 1.40 0 30 0 2 7.20 20 2.40 200 10.52 12.60 3.40 1.50 15 200 3 8.60 30 3.60 400 11.52 13.60 5.40 3.00 0 400 4 10.00 40 4.80 600 12.52 14.60 7.40 4.50 -15 600 个数 4 4 4 4 4 4 4 4 4 4 总数 16 12 12 注:Las.锚固段长度;βac.锚固倾角;Led.自由段消能长度;Fap.锚索预应力;Lfp.前桩长度;Lrp.后桩长度;Dfr.前后桩排距;Dcp.连接结构位置;βcs.连接结构倾角;Fcp.连接结构预应力. 表 4 最大永久位移和最大剪切应变增量的极差和方差值
Table 4. Range and variance values of maximum permanent displacements and maximum shear strain increments
影响因子 极差分析法 方差分析法 $ {R}_{\mathrm{j}}^{\mathrm{d}} $ $ {R}_{\mathrm{j}}^{\mathrm{\varepsilon }} $ $ {F}_{\mathrm{A}}^{\mathrm{d}} $ $ {F}_{\mathrm{A}}^{\mathrm{\varepsilon }} $ A 0.440 0.012 0.911 0.626 B 0.209 0.014 0.207 0.850 C 0.569 0.016 1.487 1.056 D 4.828 0.233 129.024 226.380 E 0.735 0.041 2.690 11.922 F 0.206 0.012 0.211 0.720 G 1.129 0.034 6.774 5.428 H 1.576 0.079 14.380 27.353 I 0.198 0.013 0.268 0.766 J 0.455 0.020 1.219 1.679 表 5 SPC组合结构的支护参数优化结果
Table 5. Optimization results of support parameters for SPC composite structure
优化顺序 影响因子 评估指标 因子水平 1 2 3 4 1 D Fap (kN) Dmp (mm) 11.46 9.84 9.16 8.78 Δε (%) 0.79 0.72 0.65 0.58 2 H Dcp (m) Dmp (mm) 9.07 8.78 8.82 8.87 Δε (%) 0.61 0.59 0.61 0.57 3 G Dfr (m) Dmp (mm) 8.53 8.89 8.78 9.07 Δε (%) 0.61 0.61 0.59 0.61 4 E Lfp (m) Dmp (mm) 8.91 8.84 8.79 8.65 Δε (%) 0.62 0.61 0.59 0.57 5 C Led (m) Dmp (mm) 8.59 8.63 8.65 8.66 Δε (%) 0.57 0.58 0.58 0.58 6 J Fcp (kN) Dmp (mm) 8.59 8.32 8.11 7.98 Δε (%) 0.57 0.57 0.57 0.57 7 A Las (m) Dmp (mm) 7.97 7.97 7.98 7.97 Δε (%) 0.57 0.57 0.57 0.57 8 B βac (°) Dmp (mm) 8.35 8.25 7.97 7.90 Δε (%) 0.58 0.56 0.57 0.59 9 I βcs(°) Dmp (mm) 8.82 8.31 7.97 7.50 Δε (%) 0.60 0.59 0.57 0.58 10 F Lrp (m) Dmp (mm) 7.78 7.95 7.84 7.97 Δε (%) 0.58 0.58 0.58 0.57 表 6 优化后SPC组合结构的支护参数组合
Table 6. Support parameter combination for optimized SPC composite structure
影响因子 初始参数 因子水平 优化参数 1 2 3 4 D Fap (kN) 200 Ⅳ Ⅲ Ⅱ Ⅰ 600 H Dcp (m) 0 Ⅵ Ⅰ Ⅲ Ⅱ 1.50 G Dfr (m) 5.40 Ⅱ Ⅲ Ⅰ Ⅳ 5.40 E Lfp (m) 11.52 Ⅵ Ⅲ Ⅱ Ⅰ 12.52 C Led (m) 2.40 Ⅰ Ⅱ Ⅲ Ⅳ 1.20 J Fcp (kN) 200 Ⅳ Ⅲ Ⅱ Ⅰ 600 A Las (m) 7.20 Ⅰ Ⅰ Ⅱ Ⅰ 4.40 B βac (°) 30 Ⅳ Ⅲ Ⅰ Ⅱ 30 I βcs(°) 0 Ⅳ Ⅲ Ⅰ Ⅱ 0 F Lrp (m) 14.60 Ⅰ Ⅳ Ⅱ Ⅲ 11.60 表 7 地震荷载下桩锚组合结构中抗滑桩桩顶位移
Table 7. Displacement of the pile top in pile-cable composite structures under earthquake loads
抗滑桩编号 地震强度PGA 桩顶位移Dpt(mm) CPC SPC OSPC 2#抗滑桩 0.10 g 23 -12 0 0.20 g 58 4 1 0.30 g 128 10 2 0.40 g 216 12 3 3#抗滑桩 0.10 g 32 6 8 0.20 g 55 19 10 0.30 g 100 28 11 0.40 g 161 35 12 表 8 不同组合结构加固方案的经济成本对比分析
Table 8. Economic cost comparative analysis of reinforcement schemes with different composite structures
组合结构类型 抗滑桩体系 锚框体系 材料增减占比 混凝土(m3) 锚索(m) 锚索(m) 混凝土(m3) 混凝土 锚索 CPC 288.00 0 172.80 22.80 0% 0% SPC 191.28 28.12 172.80 22.80 -31% +16% OSPC 182.28 28.12 139.20 22.80 -34% -3% -
Chen, H., Chen, W. Y., Song, X. H., et al., 2020. Dynamic Response and Stability of Arc Anti-Slide Piles in Slope Reinforcement under Earthquake. Safety and Environmental Engineering, 27(4): 79-86, 101(in Chinese with English abstract). Chen, J. F., Du, C. C., Chen, S. X., et al., 2022. Mechanical Mechanism of Slopes Stabilized with Anti-Slide Piles and Prestressed Anchor Cable Frame Beams under Seismic Loading. Earth Science, 47(12): 4362-4372(in Chinese with English abstract). Chen, J. F., Du, C. C., Peng, M., et al., 2023. System Reliability Analysis of a Slope Stabilized with Anchor Cables and Piles under Seismic Loading. Acta Geotechnica, 18(8): 4493-4514. https://doi.org/10.1007/s11440-023-01812-9 Ding, X. M., Liu, X. C., Wang, C. Y., et al., 2025. Seismic Response Characteristics of ECC Pile-Energy Dissipation Anchor Ductile Retaining Structure. Journal of Civil and Environmental Engineering, 47(2): 76-88(in Chinese with English abstract). Fan, G., Zhang, J. J., Qi, S. C., et al., 2019. Dynamic Response of a Slope Reinforced by Double-Row Anti-Sliding Piles and Pre-Stressed Anchor Cables. Journal of Mountain Science, 16(1): 226-241. https://doi.org/10.1007/s11629-018-5041-z Feng, S., Wu, H. G., Ai, H., et al., 2018. Seismic Optimum Design and Experimental Research on Anti Slide Pile with Pre-Stressed Anchor Cable. Science Technology and Engineering, 18(12): 248-255(in Chinese with English abstract). Gupta, P., Mehndiratta, S., 2024. Exploring the Efficacy of Slope Stabilization Using Piles: A Comprehensive Review. Indian Geotechnical Journal, 1-18. https://doi.org/10.1007/s40098-024-01119-w He, M. C., Guo, P. F., 2018. On Problems of Rock Mechanics and Engineering in the Belt and Road and Their Countermeasures. Journal of Shaoxing University (Natural Science), 38(8): 1-9(in Chinese with English abstract). Hou, X. Q., Ren, J. X., Zheng, J. L., et al., 2024. Comparative Vibrating Table Test Study on Optimized Seismic Performance of H-Type Anti-Sliding Pile Structures. Chinese Journal of Rock Mechanics and Engineering, 43(12): 2892-2907(in Chinese with English abstract). Jia, Z. B., Tao, L. J., Bian, J., et al., 2022. Displacement Analysis of Slope Reinforced by Pile-Anchor Composite Structure under Seismic Loads. Earth Science, 47(12): 4513-4522(in Chinese with English abstract). Jia, Z. B., Tao, L. J., Bian, J., et al., 2022. Research on Influence of Anchor Cable Failure on Slope Dynamic Response. Soil Dynamics and Earthquake Engineering, 161: 107435. https://doi.org/10.1016/j.soildyn.2022.107435 Li, N., Men, Y. M., Gao, O., et al., 2018. Seismic Behavior of the Landslide Supported by Micropiles. Chinese Journal of Rock Mechanics and Engineering, 37(9): 2144-2151(in Chinese with English abstract). Li, Q. Y., Shi, Z. M., Zhao, F., et al., 2023. Mechanical Performance Evaluation of Steel Fiber-Reinforced Concrete (FRC) Based on Multi-Mechanical Indicators from Split Hopkinson Pressure Bar (SHPB) Test. Journal of Building Engineering, 79: 107898. https://doi.org/10.1016/j.jobe.2023.107898 Lian, J., Ding, X. M., Wen, H., et al., 2023. Dynamic Responses and Evolution Characteristics of Bedrock and Overburden Layer Slope with Space Anchor Cable Anti-Slide Piles Based on Large-Scale Shaking Table Test. Soil Dynamics and Earthquake Engineering, 175: 108245. https://doi.org/10.1016/j.soildyn.2023.108245 Pai, L. F., Wu, H. G., 2021. Shaking Table Test of Comparison and Optimization of Seismic Performance of Slope Reinforcement with Multi-Anchor Piles. Soil Dynamics and Earthquake Engineering, 145: 106737. https://doi.org/10.1016/j.soildyn.2021.106737 Pai, L. F., Wu, H. G., Guan, W., et al., 2022. Shaking Table Test for Seismic Optimization of Soil Slope Reinforced by New EPS Pile under Earthquake. Soil Dynamics and Earthquake Engineering, 154: 107140. https://doi.org/10.1016/j.soildyn.2021.107140 Pai, L. F., Wu, H. G., Ma, H. M., 2021. Shaking Table Test Study on Seismic Optimization Comparisons of Multi-Anchor Piles for Strengthening Soil Slopes under Earthquake. Chinese Journal of Rock Mechanics and Engineering, 40(4): 751-765(in Chinese with English abstract). Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389(in Chinese with English abstract). Qi, H., Du, C. C., Peng, M., et al., 2024. Seismic Displacement of Bedding Slopes Stabilized with Anchor Cables and Piles Considering Dynamic Yield Acceleration. Bulletin of Engineering Geology and the Environment, 83(6): 208. https://doi.org/10.1007/s10064-024-03707-9 Qi, S. W., 2006. Two Patterns of Dynamic Responses of Single-Free-Surface Slopes and Their Threshold Height. Chinese Journal of Geophysics, 49(2): 518-523(in Chinese with English abstract). Qi, S. W., He, J. X., Zhan, Z. F., 2022. A Single Surface Slope Effects on Seismic Response Based on Shaking Table Test and Numerical Simulation. Engineering Geology, 306: 106762. https://doi.org/10.1016/j.enggeo.2022.106762 Qiao, J. W., Zheng, J. G., Liu, Z. H., et al., 2019. The Distribution and Major Engineering Problems of Special Soil and Rock along One Belt One Road. Journal of Catastrophology, 34(S1): 65-71(in Chinese with English abstract). Shi, Z. M., Xie, K. L., Yu, S. B., et al., 2024. Research Advance and Thinking on Energy Dissipation and Seismic Bolts. Earth Science, 49(2): 522-537(in Chinese with English abstract). Tian, J. J., Li, T. T., Pei, X. J., et al., 2024. Experimental Study on Multistage Seismic Damage Process of Bedding Rock Slope: A Case Study of the Xinmo Landslide. Journal of Earth Science, 35(5): 1594-1612. https://doi.org/10.1007/s12583-023-1829-z Wei, H., Tao, Z. G., He, M. C., et al., 2024. The Cumulative Damage Evolution Law of Multi-Anchor Circular Piles Reinforced Landslide under Earthquake Action. Rock Mechanics and Rock Engineering, 57(8): 6321-6336. https://doi.org/10.1007/s00603-024-03857-y Wu, W. Y., Xu, C., Wang, X. Q., et al., 2020. Landslides Triggered by the 3 August 2014 Ludian (China) Mw 6.2 Earthquake: An Updated Inventory and Analysis of Their Spatial Distribution. Journal of Earth Science, 31(4): 853-866. https://doi.org/10.1007/s12583-020-1297-7 Xu, X., Huang, Y., 2021. Parametric Study of Structural Parameters Affecting Seismic Stability in Slopes Reinforced by Pile-Anchor Structures. Soil Dynamics and Earthquake Engineering, 147: 106789. https://doi.org/10.1016/j.soildyn.2021.106789 Zhang, G. J., Sun, B., 2019. Seismic Action-Based Study on Optimization of Application of Anti-Slide Pile with Pre-Stressed Anchor Cable to Slope Reinforcement. Water Resources and Hydropower Engineering, 50(9): 148-153(in Chinese with English abstract). Zhang, J. J., Qu, H. L., Liao, Y., et al., 2012. Seismic Damage of Earth Structures of Road Engineering in the 2008 Wenchuan Earthquake. Environmental Earth Sciences, 65(4): 987-993. https://doi.org/10.1007/s12665-011-1519-5 Zhao, F., Shi, Z. M., Chen, J. F., et al., 2022a. A Type of Anti-Slide Pile. 2022.11. 15. China, CN114197495B (in Chinese). Zhao, F., Yu, S. B., Li, B., et al., 2022b. Research Advances on Large-Scale Shaking Table Test for Rock Slopes under Earthquake. Earth Science, 47(12): 4498-4512(in Chinese with English abstract). Zhao, F., Shi, Z. M., Chen, J. F., et al., 2023. A Graded Yielding Self-Resetting Seismic Anchor Bolt and Installation Method. 2023.02. 07. China, CN114351699B (in Chinese). Zhao, F., Shi, Z. M., Li, Q. Y., et al., 2024. A Comprehensive Performance Evaluation and Optimization of Steel/Carbon Fiber-Reinforced Eco-Efficient Concrete (FREC) Utilizing Multi-Mechanical Indicators. Journal of Cleaner Production, 441: 140993. https://doi.org/10.1016/j.jclepro.2024.140993 Zheng, W. B., Zhuang, X. Y., Cai, Y. C., 2012. On the Seismic Stability Analysis of Reinforced Rock Slope and Optimization of Prestressed Cables. Frontiers of Structural and Civil Engineering, 6(2): 132-146. https://doi.org/10.1007/s11709-012-0152-z Zheng, W. B., Zhuang, X. Y., Cai, Y. C., et al., 2012. Modeling of Prestressed Anchors in Rock Slope under Earthquake and Optimization of Anchor Arrangement. Chinese Journal of Geotechnical Engineering, 34(9): 1668-1676(in Chinese with English abstract). Zhou, H. F., Ye, F., Fu, W. X., et al., 2024. Dynamic Effect of Landslides Triggered by Earthquake: A Case Study in Moxi Town of Luding County, China. Journal of Earth Science, 35(1): 221-234. https://doi.org/10.1007/s12583-022-1806-y 陈行, 陈文宇, 宋兴海, 等, 2020. 地震作用下弧形抗滑桩加固边坡的动力响应及稳定性分析. 安全与环境工程, 27(4): 79-86, 101. 陈建峰, 杜长城, 陈思贤, 等, 2022. 地震作用下抗滑桩-预应力锚索框架组合结构受力机制. 地球科学, 47(12): 4362-4372. doi: 10.3799/dqkx.2022.325 丁选明, 刘学成, 王春艳, 等, 2025. ECC桩-消能锚韧性支挡结构的地震响应规律. 土木与环境工程学报(中英文), 47(2): 76-88. 冯帅, 吴红刚, 艾挥, 等, 2018. 预应力锚索抗滑桩抗震优化设计与试验研究. 科学技术与工程, 18(12): 248-255. 何满潮, 郭鹏飞, 2018. "一带一路" 中的岩石力学与工程问题及对策探讨. 绍兴文理学院学报(自然科学), 38(8): 1-9. 侯小强, 任继贤, 郑佳乐, 等, 2024. h型抗滑桩结构优化抗震性能对比振动台试验研究. 岩石力学与工程学报, 43(12): 2892-2907. 贾志波, 陶连金, 边金, 等, 2022. 地震荷载下桩-锚组合结构加固边坡的位移解析. 地球科学, 47(12): 4513-4522. doi: 10.3799/dqkx.2022.278 李楠, 门玉明, 高讴, 等, 2018. 微型桩群桩支护滑坡的地震动力响应研究. 岩石力学与工程学报, 37(9): 2144-2151. 牌立芳, 吴红刚, 马惠民, 2021. 地震作用下多锚点桩加固土质边坡的抗震优化对比振动台试验研究. 岩石力学与工程学报, 40(4): 751-765. 彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389. 祁生文, 2006. 单面边坡的两种动力反应形式及其临界高度. 地球物理学报, 49(2): 518-523. 乔建伟, 郑建国, 刘争宏, 等, 2019. "一带一路" 沿线特殊岩土分布与主要工程问题. 灾害学, 34(增刊1): 65-71. 石振明, 谢可禄, 俞松波, 等, 2024. 消能抗震锚杆的研究进展与思考. 地球科学, 49(2): 522-537. doi: 10.3799/dqkx.2023.001 张国军, 孙博, 2019. 基于地震作用的预应力锚索抗滑桩边坡加固应用优化研究. 水利水电技术, 50(9): 148-153. 赵飞, 石振明, 陈建峰, 等, 2022a. 一种抗滑桩. 2022.11. 15. 中国, CN114197495B. 赵飞, 俞松波, 李博, 等, 2022b. 地震作用下岩质边坡大型振动台试验研究进展. 地球科学, 47(12): 4498-4512. doi: 10.3799/dqkx.2022.317 赵飞, 石振明, 陈建峰, 等, 2023. 一种分级让压自复位抗震锚杆及安装方法. 2023.02. 07. 中国, CN114351699B. 郑文博, 庄晓莹, 蔡永昌, 等, 2012. 地震作用下预应力锚索对岩石边坡稳定性影响的模拟方法及锚索优化研究. 岩土工程学报, 34(9): 1668-1676. -




下载: