• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    先存断层对地应力演化及微震分布的影响

    武成飞 廖杰 原桂强 李伦 文奥佳 夏彩雨

    武成飞, 廖杰, 原桂强, 李伦, 文奥佳, 夏彩雨, 2025. 先存断层对地应力演化及微震分布的影响. 地球科学, 50(10): 4027-4043. doi: 10.3799/dqkx.2025.164
    引用本文: 武成飞, 廖杰, 原桂强, 李伦, 文奥佳, 夏彩雨, 2025. 先存断层对地应力演化及微震分布的影响. 地球科学, 50(10): 4027-4043. doi: 10.3799/dqkx.2025.164
    Wu Chengfei, Liao Jie, Yuan Guiqiang, Li Lun, Wen Aojia, Xia Caiyu, 2025. Effect of Pre-Existing Faults on Spatio-Temporal Evolution of In-Situ Stress and Microseismic Distribution. Earth Science, 50(10): 4027-4043. doi: 10.3799/dqkx.2025.164
    Citation: Wu Chengfei, Liao Jie, Yuan Guiqiang, Li Lun, Wen Aojia, Xia Caiyu, 2025. Effect of Pre-Existing Faults on Spatio-Temporal Evolution of In-Situ Stress and Microseismic Distribution. Earth Science, 50(10): 4027-4043. doi: 10.3799/dqkx.2025.164

    先存断层对地应力演化及微震分布的影响

    doi: 10.3799/dqkx.2025.164
    基金项目: 

    深圳市中金岭南有色金属股份有限公司科技创新项目 0102.2021.J006

    详细信息
      作者简介:

      武成飞(2000-),男,博士研究生,从事地应力测量与动力学数值模拟相关研究.ORCID:0009-0005-9510-763X. E-mail:wuchf23@mail2.sysu.edu.cn

      通讯作者:

      廖杰(1984-),男,教授,主要从事地球动力学数值模拟相关工作.ORCID: 0000-0002-1106-2536.E-mail: liaojie5@mail.sysu.edu.cn

    • 中图分类号: P642

    Effect of Pre-Existing Faults on Spatio-Temporal Evolution of In-Situ Stress and Microseismic Distribution

    • 摘要:

      金属矿山微震的发生与地应力场及微裂隙的时空演化密切相关.广东韶关凡口铅锌矿记录的微震存在一个显著特点,即微震多发生于矿区先存断层的周缘,而非集中于断层带上.这可能是由于先存断层影响周缘应力累积,进而诱发微裂隙并导致微震发生.为了检验这一想法,应用米级尺度的高分辨率热-力学耦合三维地球动力学数值模拟,考虑地下的温度结构,系统探讨正向演化过程中先存断层对周缘应力场分布的控制作用,进而探讨微震发生的可能性.模拟结果显示,先存断层会扰动应力场分布,在其周缘形成高应力带,进而可能会诱发微裂隙并导致微震发生.先存断层的宽度、数量、几何形态、倾角等都会影响其周缘应力场的分布,但是不会改变在先存断层周缘形成高应力带的特点.基于模拟结果,认为先存断层扰动应力场在其周缘形成高应力带是广东韶关凡口铅锌矿微震触发的一个可能原因,合理解释了凡口矿区微震多发生于断层面之外的特征,建议在断层F3与地层交汇处加强微震监测,为矿山微震灾害预测提供参考.

       

    • 图  1  凡口矿区微震事件总览图

      a. 凡口矿区外围地质简图及2017年1月至2023年6月14 899个微震事件空间位置分布;b. 凡口矿区微震事件平面密度投影;c. 微震事件深度-累积频次及周平均深度分布;d. 微震事件震级-累积频次分布

      Fig.  1.  Overview of microseismic events in Fankou mining area

      图  2  广东韶关凡口铅锌矿微震事件点的投影图及统计分析

      a. 矿区微震事件平面投影图;b~c. 竖向地质剖面微震事件点位置投影图(微震事件点空间范围为前后各50 m);d. 微震事件点距断层F3距离统计图(共14 899个微震事件)

      Fig.  2.  Projection and statistical analysis of microseismic event points in Fankou Lead-Zinc Mine in Shaoguan, Guangdong Province

      图  3  初始模型设置

      a. 初始三维模型设置;b. 模型二维垂直切片(位置见图a);c~e. 不同模型参数的系统实验,包括先存断层宽度,断层倾角和断层平面形态

      Fig.  3.  Initial model setup

      图  4  参考模型的演化结果(模型运行至500 a)

      a. 模型成分场;b. 模型粘度场切片;c. 模型应变速率场切片;d. 模型第二不变偏应力场切片

      Fig.  4.  Evolution results of reference model (model run to 500 a)

      图  5  参考模型不同时刻下应力演化结果(Z=2.12 km处竖向切片)

      a. 应变速率演化结果;b. 应力演化结果

      Fig.  5.  Stress evolution results of the reference model at different times (vertical slice at Z=2.12 km)

      图  6  先存断层宽度的影响作用(模型均演化至500 a)

      a~d. 分别为先存断层宽度20 m、40 m、80 m和100 m的模型竖向应力截面;e. 图a~d中虚线位置处的应力曲线

      Fig.  6.  Influence of pre-existing fault width (models evolved to 500 a)

      图  7  先存断层数量的影响作用(模型经历了相同的演化时间)

      图a~c分别设置1、2、3条先存断层的3组模型应力场竖向截面;d. 图a~d中白色虚线位置处的应力曲线

      Fig.  7.  Influence of the number of pre-existing faults (the model has undergone the same evolution time)

      图  8  先存断层平面形态的影响作用(模型均演化至500 a)

      a~c. 分别为弧间距300 m、800 m、1 300 m的3组模型. 上图为Y=1.76 km处的应力场水平切片、中下图为AA'BB'位置处的应力场垂向切片、弧间距(L

      Fig.  8.  Influence of plane morphology of pre-existing faults (models evolved to 500 a)

      图  9  先存断层倾角的影响作用(模型演化至500 a)

      a~h. 系统改变断层倾角的8组模型(应力垂向切片);i~j. 一维随横向距离变化的应力线图,位置见a和e图的白色虚线;k~n. 一维随深度变化的应力线图,位置见黑色及红色虚线

      Fig.  9.  Influence of dip angle of pre-existing faults (model evolution to 500 a)

      图  10  观测现象与模拟结果的对比

      a~d. 高角度、近垂直断层周缘的微震分布和模拟结果;e~h. 倾斜断层周缘的微震分布和模拟结果

      Fig.  10.  Comparison of observed phenomena and simulation results

      表  1  数值模型基本参数

      Table  1.   Basic parameters of numerical models

      成分 分布深度
      $ Y\left(\mathrm{k}\mathrm{m}\right) $
      密度
      $ \rho (\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3}) $
      内聚力
      $ C\left(\mathrm{P}\mathrm{a}\right) $
      内摩擦系数
      $ \varphi $
      空气 0~1.24 1 0 0.0/0.0
      沉积岩 1.24~2.24 2 600 1×106 0.1/0.1
      地壳 2.24~4.24 2 750 2×107 0.2/0.1
      先存断层 1.24~4.24 1 800 1×106 0.1/0.1
      下载: 导出CSV
    • Cai, J. H., Luo, J. H., Xu, S. Q., et al., 2011. Ore Genesis Research of Fankou Lead-Zinc Deposit, Guangdong Province. Geology and Mineral Resources of South China, 27(1): 1-7(in Chinese with English abstract).
      Cai, W., Dou, L. M., Si, G. Y., et al., 2021. Fault-Induced Coal Burst Mechanism under Mining-Induced Static and Dynamic Stresses. Engineering, 7(5): 687-700. https://doi.org/10.1016/j.eng.2020.03.017
      Castellanos, F., Van der Baan, M., 2015. Dynamic Triggering of Microseismicity in a Mine Setting. Geophysical Journal International, 202(2): 728-737. doi: 10.1093/gji/ggv159
      de Joussineau, G., 2023. The Geometrical Properties of Fracture Corridors. Tectonophysics, 846: 229637. https://doi.org/10.1016/j.tecto.2022.229637
      Du, Y., Wu, C. F., Wang, C. H., et al., 2023. Stress Background and Rock Fractures Revealed by Ultrasonic Borehole Television in the Fankou Lead-Zinc Mine. Frontiers in Earth Science, 11: 1286335. https://doi.org/10.3389/feart.2023.1286335
      Feng, X. T., Liu, J. P., Chen, B. R., et al., 2017. Monitoring, Warning, and Control of Rockburst in Deep Metal Mines. Engineering, 3(4): 538-545. https://doi.org/10.1016/J.ENG.2017.04.013
      Foulger, G. R., Wilson, M. P., Gluyas, J. G., et al., 2018. Global Review of Human-Induced Earthquakes. Earth-Science Reviews, 178: 438-514. https://doi.org/10.1016/j.earscirev.2017.07.008
      Gerya, T. V., 2013. Three-Dimensional Thermomechanical Modeling of Oceanic Spreading Initiation and Evolution. Physics of the Earth and Planetary Interiors, 214: 35-52. https://doi.org/10.1016/j.pepi.2012.10.007
      Glazer, S. N., 2018. Mine Seismology: Seismic Warning Concept. Springer International Publishing, Cham.
      Guo, Y. B., Li, J. L., Ji, H., et al., 2015. Application Research of Microseismic Monitoring System Based on IMS in Lingnan Gold Mine. Nonferrous Metals (Mining Section), 67(2): 4-9, 26(in Chinese with English abstract).
      Han, Y., Wang, J. B., Zhu, X. Y., et al., 2011. Geochemical Charateristics of Carbon and Oxygen Isotope in the Fankou Lead-Zinc Deposit, Guangdong and Its Geological Impolications. Geology and Exploration, 47(4): 642-648(in Chinese with English abstract).
      He, J., Dou, L. M., Gong, S. Y., et al., 2017. Rock Burst Assessment and Prediction by Dynamic and Static Stress Analysis Based on Micro-Seismic Monitoring. International Journal of Rock Mechanics and Mining Sciences, 93: 46-53. https://doi.org/10.1016/j.ijrmms.2017.01.005
      He, J. F., 2013. Application of Controlled Source Audio-Frequency Magnetotelluric Method in Fankou Lead-Zinc Deposit. Chinese Journal of Engineering Geophysics, 10(6): 763-770(in Chinese with English abstract).
      Islam, M. R., Shinjo, R., 2009. Mining-Induced Fault Reactivation Associated with the Main Conveyor Belt Roadway and Safety of the Barapukuria Coal Mine in Bangladesh: Constraints from BEM Simulations. International Journal of Coal Geology, 79(4): 115-130. https://doi.org/10.1016/j.coal.2009.06.007
      Kong, P., Yuan, A. Y., Liu, Y. Q., et al., 2022. Study on Fault Slip Dynamic Response and Rock Burst Potential under the Influence of Different Horizontal Stresses. Geomatics, Natural Hazards and Risk, 13(1): 1321-1341. https://doi.org/10.1080/19475705.2022.2073831
      Lai, Y. J., 1988. Origin of the Fankou Lead-Zinc Deposit. Geological Review, 34(3): 220-230(in Chinese with English abstract).
      Li, T., Mu, Z. L., Liu, G. J., et al., 2016. Stress Spatial Evolution Law and Rockburst Danger Induced by Coal Mining in Fault Zone. International Journal of Mining Science and Technology, 26(3): 409-415. https://doi.org/10.1016/j.ijmst.2016.02.007
      Li, Y. J., Zhang, X. D., Yuan, S. J., et al., 2004. Study of Fushun Laohutai Mineral Earthquake Activity Trend. China Mining Magazine, 13(11): 64-66(in Chinese with English abstract).
      Li, Y. Y., Deng, H. W., Wen, L., et al., 2022. Method for Identifying and Forecasting Mining-Induced Earthquakes Based on Spatiotemporal Characteristics of Microseismic Activities in Fankou Lead/Zinc Mine. Minerals, 12(3): 318. https://doi.org/10.3390/min12030318
      Li, Z. Y., 2022. Study on the Mechanism and Control Measures of Mine Earthquake in Fankou Lead-Zinc Mine (Dissertation). Central South University, Changsha (in Chinese with English abstract).
      Liang, X. Q., Wen, S. N., 2009. Characteristics of Strike-Slip Structures and Metallogenic Model of the Fankou Lead-Zinc Deposit, Guangdong Province. Geotectonica et Metallogenia, 33(4): 556-566 (in Chinese with English abstract).
      Lin, S. B., 1998. Geologic Characteristic of Fankou Super Large-Scale Lead-Zinc Deposit. Nonferrous Metals Engineering, (S1): 3-12 (in Chinese with English abstract).
      Lin, Y. D., Tu, M., Liu, W. Z., et al., 2012. Faults Activation Mechanism Based on Gradient-Dependent Plasticity. Journal of China Coal Society, 37(12): 2060-2064 (in Chinese with English abstract).
      Liu, D. L., Liu, J. S., Guo, J., et al., 2006. Ore-Controlling Structure in Fankou Lead-Zinc Deposit, Guangdong Province. Mineral Deposits, 25(2): 183-190 (in Chinese with English abstract).
      Liu, J. P., 2011. Studies on Relationship between Microseism Time-Space Evolution and Ground Pressure Activities in Deep Mine (Dissertation). Northeastern University, Shenyang (in Chinese with English abstract).
      Lu, H. Z., 1984. On the Genesis of Fankou Pb-Zn Ore Deposit in Guangdong Province. Geochimica, 13(4): 357-365, 406-407 (in Chinese with English abstract).
      Lu, H. Z., Shi, X. Z., Chen, X., et al., 2023. Investigation and Analysis of Deep Heat Damage in Fankou Lead-Zinc Mine and Its Prevention Measures. Mining Technology, 23(3): 126-129 (in Chinese with English abstract).
      Lu, Z. Y., Dou, L. M., Liu, B. T., et al., 2012. Research on Mine Earthquake Mechanism and Vibration Signal Characters in the Fault. Safety in Coal Mines, 43(11): 51-53 (in Chinese with English abstract).
      Ma, T. H., Tang, C. N., Tang, S. B., et al., 2018. Rockburst Mechanism and Prediction Based on Microseismic Monitoring. International Journal of Rock Mechanics and Mining Sciences, 110: 177-188. https://doi.org/10.1016/j.ijrmms.2018.07.016
      Maghsoudi, S., Baró, J., Kent, A., et al., 2018. Interevent Triggering in Microseismicity Induced by Hydraulic Fracturing. Bulletin of the Seismological Society of America, 108(3A): 1133-1146. https://doi.org/10.1785/0120170368
      Marsan, D., Bean, C. J., Steacy, S., et al., 1999. Spatio-Temporal Analysis of Stress Diffusion in a Mining-Induced Seismicity System. Geophysical Research Letters, 26(24): 3697-3700. https://doi.org/10.1029/1999GL010829
      McGarr, A., Green, R. W. E., 1975. Measurement of Tilt in a Deep-Level Gold Mine and Its Relationship to Mining and Seismicity. Geophysical Journal of the Royal Astronomical Society, 43(2): 327-345. https://doi.org/10.1111/j.1365-246X.1975.tb00638.x
      Meng, S. J., Qin, Y. F., Wang, M., et al., 2024. Research Progress on Mine Earthquake Mechanism and Secondary Disaster Monitoring Technology. World Earthquake Engineering, 40(3): 103-118 (in Chinese with English abstract).
      Mgumbwa, J., Page, A., Human, L., et al., 2017. Managing a Change in Rock Mass Response to Mining at the Frog's Leg Underground Mine. Proceedings of the International Conference on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 917-936. . https://doi.org/10.36487/acg_rep/1704_63_mgumbwa
      Mohamed, T., Alhajj Chehade, H., 2025. Influence of Spatially Variable Fault Friction on Tunnel-Induced Fault Stability. Results in Engineering, 27: 105898. https://doi.org/10.1016/j.rineng.2025.105898
      Morissette, P., Hadjigeorgiou, J., Punkkinen, A., 2017. Characterisation of Burst-Prone Grounds at Vale's Creighton Mine. Mining Technology, 126(3): 123-138. https://doi.org/10.1080/14749009.2016.1252093
      Qi, Q. X., Chen, S. B., Wang, H. X., et al., 2003. Study on the Relations among Coal Bump, Rockburst and Mining Tremor with Numerical Simulation. Chinese Journal of Rock Mechanics and Engineering, 22(11): 1852-1858 (in Chinese with English abstract).
      Qiu, X. P., 1991. Researches on Ore-Forming Tectonic Dynamics of Fankou Lead-Zinc Ore Deposits, Guangdong. Acta Geoscientica Sinica, 12(2): 57-72 (in Chinese with English abstract).
      Sainoki, A., Mitri, H. S., 2014. Methodology for the Interpretation of Fault-Slip Seismicity in a Weak Shear Zone. Journal of Applied Geophysics, 110: 126-134. https://doi.org/10.1016/j.jappgeo.2014.09.007
      Shen, B. T., Duan, Y., Luo, X., et al., 2020. Monitoring and Modelling Stress State near Major Geological Structures in an Underground Coal Mine for Coal Burst Assessment. International Journal of Rock Mechanics and Mining Sciences, 129: 104294. https://doi.org/10.1016/j.ijrmms.2020.104294
      Snelling, P. E., Godin, L., McKinnon, S. D., 2013. The Role of Geologic Structure and Stress in Triggering Remote Seismicity in Creighton Mine, Sudbury, Canada. International Journal of Rock Mechanics and Mining Sciences, 58: 166-179. https://doi.org/10.1016/j.ijrmms.2012.10.005
      Wang, J., 2011. Genetic Mineralography and Genetic Mineralogy Study on Fankou Pb-Zn Ore Deposit in Guangdong Province (Dissertation). Central South University, Changsha (in Chinese with English abstract).
      Wang, L., Peng, S. L., Long, Y. Z., et al., 2003. Polygenetic Compound Mineralization of Fankou Pb-Zn Ore Deposit, Guangdong. Journal of Guilin Institute of Technology, 23(2): 149-153(in Chinese with English abstract).
      Wang, L. M., Guo, L. X., Wang, Y. Q., et al., 2022. Thrust Nappe Structural System of the Fankou Lead-Zinc Deposit in Guangdong: Geological Characteristics, Evolutionary Sequence, and Ore-Controlling Significance. Geotectonica et Metallogenia, 46(6): 1218-1228 (in Chinese with English abstract).
      Wang, T., Wang, Z. H., Jiang, Y. D., et al., 2014. Experimental Study of Stress Distribution and Evolution of Surrounding Rock under the Influence of Fault Slip Induced by Mining. Journal of China University of Mining & Technology, 43(4): 588-592, 683(in Chinese with English abstract).
      Yang, S. H., Wei, X. Z., Chen, L. L., et al., 2024. Analysis of Rock Burst Mechanism in Extra-Thick Coal Seam Controlled by Thrust Fault under Mining Disturbance. Processes, 12(2): 320. https://doi.org/10.3390/pr12020320
      Yao, C. X., 2014. Key Metallogenic Controlling System of Fankou Pattern MVT Lead-Zinc Deposits in the Northern Margin of Quren Basin (Dissertation). Central South University, Changsha(in Chinese with English abstract).
      Yuan, G. Q., 2016. On Deep Rockburst Geological Factors and Precautionary Measures of Fankou Lead-Zinc Mine. Metallurgical Collections, 1(3): 37-42(in Chinese with English abstract).
      Yuan, G. Q., Jia, H. Y., Song, Y. W., et al., 2019. Geological Characteristics of Deep South Shiling Orebodies in the Fankou Lead-Zinc Deposit and the Prospecting Direction. Journal of Geology, 43(1): 1-7(in Chinese with English abstract).
      Zhan, S. H., 2021. Crustal Deformation in the Continental China from Long-Term GPS Measurements (Dissertation). Guangdong University of Technology, Guangzhou (in Chinese with English abstract).
      Zhang, P. H., Yang, T. H., Yu, Q. L., et al., 2015. Microseismicity Induced by Fault Activation during the Fracture Process of a Crown Pillar. Rock Mechanics and Rock Engineering, 48(4): 1673-1682. https://doi.org/10.1007/s00603-014-0659-9
      Zhang, S. G., Ding, C. G., Li, M. G., et al., 2009. A Genetic Mineralogical Study of Sphalerite in the Fankou Pb-Zn Ore District. Acta Petrologica et Mineralogica, 28(4): 364-374 (in Chinese with English abstract).
      Zhang, X. S., 2010. Study on Prevention and Control Scheme of Underground Water Disaster in Fankou Lead-Zinc Mine Area of Guangdong Province(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Zhang, Y. H., Wong, L. N. Y., Meng, F. Z., 2021. Brittle Fracturing in Low-Porosity Rock and Implications to Fault Nucleation. Engineering Geology, 285: 106025. https://doi.org/10.1016/j.enggeo.2021.106025
      Zhang, Y. Z., 2016. Study on the Collaborative Mechanism between Mining Dynamic Disaster & Regional Geostress Field and Its Response Characteristic (Dissertation). University of Science and Technology Beijing, Beijing (in Chinese with English abstract).
      Zhao, Y. X., Wang, H., Lu, Z. G., et al., 2018. Characteristics of Tremor Time-Space Evolution and Coulomb Stress Distribution along the Fault during Workface Excavation. Journal of China Coal Society, 43(2): 340-347 (in Chinese with English abstract).
      Zhu, S. B., Cai, Y. E., Shi, Y. L., 2006. The Contemporary Tectonic Strain Rate Field of Continental China Predicted from GPS Measurements and Its Geodynamic Implications. Pure and Applied Geophysics, 163(8): 1477-1493. https://doi.org/10.1007/s00024-006-0087-1
      Zhu, X. Y., Wang, J. B., Liu, S. B., et al., 2013. Metallogenica Age of Mississippi Valley Type Pb-Zn Deposit in Fankou, Guangdong: Evidence from SHRIMP U-Pb Zircon Dating of Diabase. Acta Geologica Sinica, 87(2): 167-177 (in Chinese with English abstract).
      蔡锦辉, 罗俊华, 徐遂勤, 等, 2011. 广东凡口铅锌矿成因探讨. 华南地质与矿产, 27(1): 1-7.
      郭玉豹, 李京濂, 冀虎, 等, 2015. 基于IMS的玲南金矿微震监测系统的应用研究. 有色金属(矿山部分), 67(2): 4-9, 26.
      韩英, 王京彬, 祝新友, 等, 2011. 广东凡口铅锌矿碳、氧同位素地球化学特征及其地质意义. 地质与勘探, 47(4): 642-648.
      何俊飞, 2013. 可控源音频大地电磁法在凡口铅锌矿中的应用. 工程地球物理学报, 10(6): 763-770.
      赖应篯, 1988. 凡口铅-锌矿床的成因. 地质论评, 34(3): 220-230.
      李永靖, 张向东, 袁世君, 等, 2004. 抚顺老虎台矿矿山地震活动趋势研究. 中国矿业, 13(11): 64-66.
      李泽宇, 2022. 凡口铅锌矿矿震发生机制与控制措施研究(硕士学位论文). 长沙: 中南大学.
      梁新权, 温淑女, 2009. 广东凡口铅锌矿床的走滑构造及成矿模式. 大地构造与成矿学, 33(4): 556-566.
      林绍标, 1998. 凡口超大型铅锌矿床地质特征. 有色金属(增刊1): 3-12.
      林远东, 涂敏, 刘文震, 等, 2012. 基于梯度塑性理论的断层活化机理. 煤炭学报, 37(12): 2060-2064.
      刘德利, 刘继顺, 郭军, 等, 2006. 广东凡口铅锌矿床控矿构造型式. 矿床地质, 25(2): 183-190.
      刘建坡, 2011. 深井矿山地压活动与微震时空演化关系研究(博士学位论). 沈阳: 东北大学.
      卢海珠, 史秀志, 陈新, 等, 2023. 凡口铅锌矿深部热害调查分析与防治措施. 采矿技术, 23(3): 126-129.
      卢焕章, 1984. 广东凡口铅锌矿的成因研究. 地球化学, 13(4): 357–365, 406-407.
      陆振裕, 窦林名, 刘宝田, 等, 2012. 断层处的矿震机理及震动信号特征研究. 煤矿安全, 43(11): 51-53.
      孟上九, 秦艺峰, 王淼, 等, 2024. 矿震机理及其次生灾害监测技术研究进展. 世界地震工程, 40(3): 103-118.
      齐庆新, 陈尚本, 王怀新, 等, 2003. 冲击地压、岩爆、矿震的关系及其数值模拟研究. 岩石力学与工程学报, 22(11): 1852-1858.
      邱小平, 1991. 广东凡口铅锌矿床成矿构造动力研究. 中国地质科学院院报, 12(2): 57-72.
      王晶, 2011. 广东凡口铅锌矿矿床成因矿相学及成因矿物学研究(硕士学位论文). 长沙: 中南大学.
      王力, 彭省临, 龙永珍, 等, 2003. 广东凡口铅锌矿多因复成成矿作用. 桂林工学院学报, 23(2): 149-153.
      汪礼明, 郭兰萱, 王涌泉, 等, 2022. 广东凡口铅锌矿床逆冲推覆构造体系: 地质特征、演化序列及控矿作用. 大地构造与成矿学, 46(6): 1218-1228.
      王涛, 王曌华, 姜耀东, 等, 2014. 开采扰动下断层滑移过程围岩应力分布及演化规律的实验研究. 中国矿业大学学报, 43(4): 588-592, 683.
      姚翠霞, 2014. 曲仁盆地北缘凡口式MVT铅锌矿床关键成矿控制系统(博士学位论文). 长沙: 中南大学.
      原桂强, 2016. 凡口铅锌矿深部岩爆地质因素分析及防范. 冶金丛刊, 1(3): 37-42.
      原桂强, 贾会业, 宋玉伟, 等, 2019. 凡口铅锌矿狮岭南深部矿床地质特征及找矿方向. 地质学刊, 43(1): 1-7.
      詹松辉, 2021. 基于长期GPS观测的中国大陆地壳形变(硕士学位论文). 广州: 广东工业大学.
      张术根, 丁存根, 李明高, 等, 2009. 凡口铅锌矿区闪锌矿的成因矿物学特征研究. 岩石矿物学杂志, 28(4): 364-374.
      张新社, 2010. 广东省凡口铅锌矿矿区地下水害防治方案研究(硕士学位论文). 北京: 中国地质大学(北京).
      张月征, 2016. 开采动力灾害与区域应力场之间的协同机制与响应特征研究(博士学位论文). 北京: 北京科技大学.
      赵毅鑫, 王浩, 卢志国, 等, 2018. 开采扰动下断层面库仑应力及诱发矿震时空演化特征. 煤炭学报, 43(2): 340-347.
      祝新友, 王京彬, 刘慎波, 等, 2013. 广东凡口MVT铅锌矿床成矿年代: 来自辉绿岩锆石SHRIMP定年证据. 地质学报, 87(2): 167-177.
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  37
    • HTML全文浏览量:  13
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-29
    • 刊出日期:  2025-10-25

    目录

      /

      返回文章
      返回