Effect of Particle Size Distribution on Collapse of Immersed Polydisperse Granular Columns
-
摘要:
基于典型的颗粒柱坍塌试验,采用计算流体力学与离散单元法耦合的数值方法,系统探讨了以分形维数表征的粒径分布特征在不同流态下对颗粒柱坍塌过程的流动能力和能量演化的影响机制.结果表明:随着环境流体由空气逐步过渡至低粘度流体和高粘度流体,颗粒柱的运动距离相比干燥条件降低约40%,流动能力显著减弱;在自由下落态和惯性态中,不同分形维数系统的流动性差异仅约1%,而在粘性态中,较高分形维数的系统表现出明显的运动延迟且运动能力降低幅度达11%;并且这种差异被认为是细颗粒含量更多的系统更容易在高粘度流体中耗散能量引起的;利用渗透性测试方法发现,水下颗粒系统的运动能力主要受初始渗透性影响,渗透性越差运动能力越弱.
Abstract:In this study, a typical granular column collapse scenario is investigated using a numerical approach that couples computational fluid dynamics (CFD) with the discrete element method (DEM). Granular columns with varying fractal dimensions—used to characterize PSD—are simulated in different fluids to examine the influence of PSD on flow behavior and energy evolution across distinct flow regimes. The results show that as the ambient fluid gradually changes from air to low-viscosity fluid and then to high-viscosity fluid, the runout distance of the granular systems decreases by about 40% compared to dry conditions, and the mobility is significantly weakened. In free-fall and inertial regimes, the mobility difference between systems with different fractal dimensions is only about 1%, whereas in viscous regimes, the system with a higher fractal dimension shows a significant movement delay and the mobility is reduced by 11%. This reduced mobility can be attributed to the increased presence of fine particles, which enhance energy dissipation under low Stokes number conditions. Permeability tests further reveal that mobility is primarily governed by the initial permeability of the immersed granular system-lower permeability corresponds to reduced mobility.
-
Key words:
- granular material /
- fractal dimension /
- submarine landslide /
- column collapse /
- permeability /
- engineering geology
-
图 4 水下颗粒柱坍塌模拟与经典实验(Polanía et al., 2024)在3个典型时刻(T = tf/3, 2tf/3, tf)的沉积物轮廓对比
Fig. 4. Comparison of the height profiles of final deposit from immersed column collapse simulation with those in typical experiment (Polanía et al., 2024) at three typical times (T = tf /3, 2 tf /3, tf)
表 1 水下颗粒柱坍塌模拟的参数设置
Table 1. Physical parameters used in immersed granular column collapse
参数 值 流体密度ρf($ \mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $) 1 000 流体动力粘度μf$ (\mathrm{P}\mathrm{a}\cdot \mathrm{s}) $ 10-3, 10-2 分形维数D 1.0, 3.5 平均粒径dp(mm/mm) 4.9, 2.3 初始体积分数φ 0.667 颗粒密度ρp$ (\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3}) $
颗粒杨氏模量$ (\mathrm{M}\mathrm{P}\mathrm{a} $)2 650
50颗粒泊松比υ 0.24 颗粒摩擦系数μp 0.4 颗粒恢复系数e 0.65 表 2 不同流态对应的颗粒粒径与流体动力粘度
Table 2. Particle size and fluid dynamic viscosity for different flow regimes
分形维数D 平均粒径dp
(mm)流体动力粘度
$ {\mu }_{\mathrm{f}} $ (Pa·s)斯托克斯数St 1.0 4.90 10-5 6 213.000 (FF) 3.5 2.30 10-5 1 998.000 (FF) 1.0 4.90 10-3 88.260 (I) 3.5 2.30 10-3 28.380 (I) 1.0 0.49 10-3 2.880 (VI) 3.5 0.23 10-3 0.730 (VI) 1.0 0.49 10-2 0.287 (V) 3.5 0.23 10-2 0.073 (V) -
Bougouin, A., Lacaze, L., 2018. Granular Collapse in a Fluid: Different Flow Regimes for an Initially Dense-Packing. Physical Review Fluids, 3(6): 064305. https://doi.org/10.1103/physrevfluids.3.064305 Breard, E. C. P., Dufek, J., Charbonnier, S., et al., 2023. The Fragmentation-Induced Fluidisation of Pyroclastic Density Currents. Nature Communications, 14: 2079. https://doi.org/10.1038/s41467-023-37867-1 Cabrera, M., Estrada, N., 2021. Is the Grain Size Distribution a Key Parameter for Explaining the Long Runout of Granular Avalanches? Journal of Geophysical Research: Solid Earth, 126(9): e2021JB022589. https://doi.org/10.1029/2021JB022589 Courrech du Pont, S., Gondret, P., Perrin, B., et al., 2003. Granular Avalanches in Fluids. Physical Review Letters, 90(4): 044301. https://doi.org/10.1103/physrevlett.90.044301 Crosta, G. B., Hermanns, R. L., Dehls, J., et al., 2017. Rock Avalanches Clusters along the Northern Chile Coastal Scarp. Geomorphology, 289: 27-43. https://doi.org/10.1016/j.geomorph.2016.11.024 Cui, W., Wei, J., Wang, C., et al., 2021. Discrete Element Simulation of Collapse Characteristics of Particle Column Considering Gradation and Shape. Chinese Journal of Geotechnical Engineering, 43(12): 2230-2239(in Chinese with English abstract). Cundall, P. A., Strack, O. D. L., 1979. A Discrete Numerical Model for Granular Assemblies. Géotechnique, 29(1): 47-65. https://doi.org/10.1680/geot.1979.29.1.47 Di Felice, R., 1994. The Voidage Function for Fluid-Particle Interaction Systems. International Journal of Multiphase Flow, 20(1): 153-159. https://doi.org/10.1016/0301-9322(94)90011-6 Ergun, S., 1952. Fluid Flow through Packed Columns. Chemical Engineering Progress, 48 (2): 89. Gao, S., Theuerkauf, J., Pakseresht, P., et al., 2024. A Modified Ergun Equation for Application in Packed Beds with Bidisperse and Polydisperse Spherical Particles. Powder Technology, 445: 120035. https://doi.org/10.1016/j.powtec.2024.120035 Hsu, S. K., Kuo, J., Lo, C. L., et al., 2008. Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19(6): 767. https://doi.org/10.3319/tao.2008.19.6.767(pt) Hyslip, J. P., Vallejo, L. E., 1997. Fractal Analysis of the Roughness and Size Distribution of Granular Materials. Engineering Geology, 48(3/4): 231-244. https://doi.org/10.1016/S0013-7952(97)00046-X Iverson, R. M., 2005. Regulation of Landslide Motion by Dilatancy and Pore Pressure Feedback. Journal of Geophysical Research: Earth Surface, 110(F2). https://doi.org/10.1029/2004JF000268 Iverson, R.M., 1997. The Physics of Debris Flows. Reviews of Geophysics, 35(3): 245-296. doi: 10.1029/97RG00426 Jing, L., Guo, S.Y., Zhao, T., 2019. Understanding Dynamics of Submarine Landslide with Coupled CFD-DEM. Rock and Soil Mechanics, 40(1): 388-394(in Chinese with English abstract). Jing, L., Kwok, C. Y., Leung, Y. F., et al., 2016. Extended CFD-DEM for Free-Surface Flow with Multi-Size Granules. International Journal for Numerical and Analytical Methods in Geomechanics, 40(1): 62-79. https://doi.org/10.1002/nag.2387 Jing, L., Yang, G. C., Kwok, C. Y., et al., 2019. Flow Regimes and Dynamic Similarity of Immersed Granular Collapse: A CFD-DEM Investigation. Powder Technology, 345: 532-543. https://doi.org/10.1016/j.powtec.2019.01.029 Lacaze, L., Bouteloup, J., Fry, B., et al., 2021. Immersed Granular Collapse: From Viscous to Free-Fall Unsteady Granular Flows. Journal of Fluid Mechanics, 912: A15. https://doi.org/10.1017/jfm.2020.1088 Lai, Z. Q., Chen, D., Jiang, E. H., et al., 2021. Effect of Fractal Particle Size Distribution on the Mobility of Dry Granular Flows. AIP Advances, 11(9): 095113. https://doi.org/10.1063/5.0065051 Lee, C. H., 2021. Two-Phase Modelling of Submarine Granular Flows with Shear-Induced Volume Change and Pore-Pressure Feedback. Journal of Fluid Mechanics, 907: A31. https://doi.org/10.1017/jfm.2020.838 Li, K., Cheng, Q. G., Lin, Q. W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912(in Chinese with English abstract). Lube, G., Huppert, H. E., Sparks, R. S. J., et al., 2004. Axisymmetric Collapses of Granular Columns. Journal of Fluid Mechanics, 508: 175-199. https://doi.org/10.1017/S0022112004009036 Man, T., Ge, Z., Huppert, H.E., et al., 2022. Transient Rheology and Size Effect in Granular Column Collapses. Chinese Journal of Computational Mechanics, 39(3): 381-388(in Chinese with English abstract). Nian, T. K., Shen, Y. Q., Zheng, D. F., et al., 2021. Research Advances on the Chain Disasters of Submarine Landslides. Journal of Engineering Geology, 29(6): 1657-1675(in Chinese with English abstract). Oquendo-Patiño, W. F., Estrada, N., 2022. Finding the Grain Size Distribution That Produces the Densest Arrangement in Frictional Sphere Packings: Revisiting and Rediscovering the Century-Old Fuller and Thompson Distribution. Physical Review E, 105(6): 064901. https://doi.org/10.1103/PhysRevE.105.064901 Pailha, M., Nicolas, M., Pouliquen, O., 2008. Initiation of Underwater Granular Avalanches: Influence of the Initial Volume Fraction. Physics of Fluids, 20(11): 111701. https://doi.org/10.1063/1.3013896 Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114(in Chinese with English abstract). Peng, M., Zhao, Q. X., Li, S., et al., 2025. Two-Phase SPH Simulation of Granular Landslide-Tsunamis Processes Considering Dynamic Seepage. Earth Science: 1-13(in Chinese with English abstract). Polanía, O., Cabrera, M., Renouf, M., et al., 2022. Collapse of Dry and Immersed Polydisperse Granular Columns: A Unified Runout Description. Physical Review Fluids, 7(8): 084304. https://doi.org/10.1103/physrevfluids.7.084304 Polanía, O., Estrada, N., Azéma, E., et al., 2024. Polydispersity Effect on Dry and Immersed Granular Collapses: An Experimental Study. Journal of Fluid Mechanics, 983: A40. https://doi.org/10.1017/jfm.2024.176 Rondon, L., Pouliquen, O., Aussillous, P., 2011. Granular Collapse in a Fluid: Role of the Initial Volume Fraction. Physics of Fluids, 23(7): 073301. https://doi.org/10.1063/1.3594200 Shi, A. N., Yang, G. C., Kwok, C. Y., et al., 2024. Enhanced Mobility of Granular Avalanches with Fractal Particle Size Distributions: Insights from Discrete Element Analyses. Earth and Planetary Science Letters, 642: 118835. https://doi.org/10.1016/j.epsl.2024.118835 Tang, H., Lin, B. S., Wang, D. M., 2024. Granular Collapse in Fluids: Dynamics and Flow Regime Identification. Particuology, 92: 30-41. https://doi.org/10.1016/j.partic.2024.04.013 Tang, H., Wu, Y. S., Wang, D. M., 2025. Dynamics and Flow Regime of Immersed Granular Collapse: Role of Fractal Particle Size Distribution. Computers and Geotechnics, 186: 107392. https://doi.org/10.1016/j.compgeo.2025.107392 Trulsson, M., Andreotti, B., Claudin, P., 2012. Transition from the Viscous to Inertial Regime in Dense Suspensions. Physical Review Letters, 109(11): 118305. https://doi.org/10.1103/physrevlett.109.118305 Wang, C., Wang, Y. Q., Peng, C., et al., 2017. Dilatancy and Compaction Effects on the Submerged Granular Column Collapse. Physics of Fluids, 29(10): 103307. https://doi.org/10.1063/1.4986502 Wu, S. G., Sun, Y. B., Li, Q. P., 2019. Deepwater Geohazards in the South China Sea. Science Press, Beijing (in Chinese). Wu, Y. L., An, X. Z., Yu, A. B., 2017. DEM Simulation of Cubical Particle Packing under Mechanical Vibration. Powder Technology, 314: 89-101. https://doi.org/10.1016/j.powtec.2016.09.029 Yang, G. C., Jing, L., Kwok, C. Y., et al., 2020. Pore-Scale Simulation of Immersed Granular Collapse: Implications to Submarine Landslides. Journal of Geophysical Research: Earth Surface, 125(1): e2019JF005044. https://doi.org/10.1029/2019JF005044 Yin, Z. Y., Xu, Q., Hu, W., 2012. Constitutive Relations for Granular Materials Considering Particle Crushing: Review and Development. Chinese Journal of Geotechnical Engineering, 34(12): 2170-2180(in Chinese with English abstract). 崔溦, 魏杰, 王超, 等, 2021. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟. 岩土工程学报, 43(12): 2230-2239. 景路, 郭颂怡, 赵涛, 2019. 基于流体动力学-离散单元耦合算法的海底滑坡动力学分析. 岩土力学, 40(1): 388-394. 李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展. 地球科学, 47(3): 893-912. doi: 10.3799/dqkx.2021.169 满腾, 葛转, Herbert E. Huppert, 等, 2022. 颗粒柱塌落中的尺寸效应和瞬态流变性研究. 计算力学学报, 39(3): 381-388. 年廷凯, 沈月强, 郑德凤, 等, 2021. 海底滑坡链式灾害研究进展. 工程地质学报, 29(6): 1657-1675. 彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114. doi: 10.3799/dqkx.2023.137 彭铭, 赵庆新, 李爽, 等, 2025. 考虑动态渗流的散粒体滑坡-涌浪过程两相SPH模拟. 地球科学: 1-13. (2025-06-11). doi: 10.3799/dqkx.2025.100 吴时国, 孙运宝, 李清平, 等, 2019. 南海深水地质灾害. 北京: 科学出版社. 尹振宇, 许强, 胡伟, 2012. 考虑颗粒破碎效应的粒状材料本构研究: 进展及发展. 岩土工程学报, 34(12): 2170-2180. -




下载: