• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中非剪切背景下裂陷盆地的发育机制:以Bongor盆地为例

    肖坤叶 张新顺 高彦杰 王林 杜业波 王利 高华华

    肖坤叶, 张新顺, 高彦杰, 王林, 杜业波, 王利, 高华华, 2025. 中非剪切背景下裂陷盆地的发育机制:以Bongor盆地为例. 地球科学, 50(12): 4801-4818. doi: 10.3799/dqkx.2025.172
    引用本文: 肖坤叶, 张新顺, 高彦杰, 王林, 杜业波, 王利, 高华华, 2025. 中非剪切背景下裂陷盆地的发育机制:以Bongor盆地为例. 地球科学, 50(12): 4801-4818. doi: 10.3799/dqkx.2025.172
    Xiao Kunye, Zhang Xinshun, Gao Yanjie, Wang Lin, Du Yebo, Wang Li, Gao Huahua, 2025. Formation Mechanism of Rift Basins in Central African Strike-Slip Tectonic Setting: A Case Study of Bongor Basin. Earth Science, 50(12): 4801-4818. doi: 10.3799/dqkx.2025.172
    Citation: Xiao Kunye, Zhang Xinshun, Gao Yanjie, Wang Lin, Du Yebo, Wang Li, Gao Huahua, 2025. Formation Mechanism of Rift Basins in Central African Strike-Slip Tectonic Setting: A Case Study of Bongor Basin. Earth Science, 50(12): 4801-4818. doi: 10.3799/dqkx.2025.172

    中非剪切背景下裂陷盆地的发育机制:以Bongor盆地为例

    doi: 10.3799/dqkx.2025.172
    基金项目: 

    中国石油天然气股份有限公司科技项目 2023ZZ07

    科学研究与技术开发项目“中西非裂谷系走滑构造数值模拟及构造变形研究” YGJ2024-02

    详细信息
      作者简介:

      肖坤叶(1969-),男,教授级高级工程师,主要从事海外油气勘探、资源评价与油气地质综合研究. ORCID:0009-0000-6158-4562. E-mail:xiaokunye@petrochina.com.cn

      通讯作者:

      张新顺,ORCID: 0000-0002-4752-7753. E-mail: vvvzxs@petrochina.com.cn

    • 中图分类号: P541

    Formation Mechanism of Rift Basins in Central African Strike-Slip Tectonic Setting: A Case Study of Bongor Basin

    • 摘要: 基于地震资料精细解析和构造物理模拟实验研究了中非剪切带Bongor盆地独特的结构构造特征及其形成演化的动力学机制.结果显示Bongor盆地整体表现为南断北超箕状断陷结构,局部发育构造转换带,沉积中心受控于边界主干断裂,现今保留明显的反转裂谷盆地特征,受早白垩世两期裂陷和晚白垩世末期-古近纪挤压反转共同控制.构造物理模拟实验证实了盆地受两期裂陷及其后反转作用的控制机制,并揭示两期裂陷伸展方向夹角为25°~45°.研究认为:早白垩世早期,南大西洋初始扩张引发的南非次板块与东北非次板块间近N-S向拉张,导致包括Bongor盆地在内的中非裂谷系盆地经历第一期近南北向伸展的裂陷作用;早白垩世晚期,大西洋赤道段的扩张以及特提斯洋向欧亚大陆俯冲,导致东北非地块与南非地块之间经历近NE-SW向的伸展作用,北西走向的Bongor经历第二期裂陷作用.研究提出了Bongor盆地形成演化的新认识,对指导下一步油气勘探具有重要意义.

       

    • 图  1  Bongor盆地区域位置(a)、构造纲要(b)与地层柱状(c)

      a. 据高华华等(2023)修改; b.据Dou et al.(2021)修改; c. 据肖坤叶等(2014); Dou et al.(2021)修改

      Fig.  1.  Regional map showing the location of the Bongor basin (a), structure outline of the Bongor basin (b) and stratigraphic column of the Bongor basin (c)

      图  2  Bongor盆地顶面构造

      a基底顶界面; b. K组顶界面

      Fig.  2.  Top structural diagram of Bongor basin

      图  3  Bongor盆地典型地震剖面及构造层划分(剖面位置见图 1)

      Fig.  3.  Typical seismic profile and tectonic layer division in Bongor basin

      图  4  Bongor盆地主干断裂活动速率图

      a.Bongor盆地各时期主干断裂活动性柱状图; b.Bongor盆地主干断裂活动性分布

      Fig.  4.  Bongor basin main fracture activity rate

      图  5  Bongor盆地各断陷构造演化过程

      Fig.  5.  Each depression tectonic evolution in the Bongor basin

      图  6  模型平面(a)与剖面(b)

      Fig.  6.  Top view (a) and cross section (b) of the model setup

      图  7  前裂陷期实验平面结果

      a.伸展量4.97 mm; b.伸展量8.28 mm; c.伸展量11.59 mm

      Fig.  7.  Top view results of the pre-rift period

      图  8  裂陷期实验平面结果

      a.伸展量14.90 mm; b.伸展量19.87 mm; c.伸展量24.84 mm

      Fig.  8.  Top view results of the rift period

      图  9  断坳转换期实验平面结果

      a.伸展量29.80 mm; b.伸展量34.77 mm; c.伸展量39.74 mm

      Fig.  9.  Top view results of the transition period

      图  10  反转期实验平面结果

      a.反转量4.96 mm; b.反转量9.33 mm; c.反转量14.90 mm

      Fig.  10.  Top view results of the inversion period

      图  11  物理模拟实验切片结果

      Fig.  11.  The cross section results of analog modeling experiment

      图  12  Bongor盆地典型构造样式分类

      Fig.  12.  Classification of typical structural patterns in the Bongor basin

      图  13  南大西洋构造纲要图

      Moulin et al. (2010);Min and Hou(2019)修改

      Fig.  13.  Structural outline map of the South Atlantic

      图  14  非洲板块各时期演化机制

      a.早白垩世早期; b.早白垩世晚期

      Fig.  14.  The evolutionary mechanisms of the African plate during different periods

      表  1  各断陷剖面参数统计表

      Table  1.   Statistics of parameters for each depression

      剖面名称 阶段 经历时间
      (Ma)
      伸展量参数
      ΔL(m) R(%) r(%) v(mm·a-1)
      TD-02-824(Moul) Prosopis 7.2 516.21 34.45 1.8 0.07
      Mimosa 6.83 684.28 45.67 2.4 0.10
      Kubla 4.37 156.75 10.46 0.29 0.04
      Ronier 8.4 49.64 3.31 0.1 0.01
      Baobab 12.5 91.44 6.10 0.31 0.01
      TD-02-804(Mango) Prosopis 7.2 1 719.87 36.66 3.7 0.24
      Mimosa 6.83 1 406.35 29.98 2.71 0.21
      Kubla 4.37 625.92 13.34 1.17 0.14
      Ronier 8.4 429.44 9.15 0.8 0.05
      Baobab 12.5 509.44 10.86 0.94 0.04
      TD-02-732(Cola) Prosopis 7.2 1 292.79 26.38 2.7 0.18
      Mimosa 6.83 1 919.59 39.17 3.9 0.28
      Kubla 4.37 187.58 3.83 0.37 0.04
      Ronier 8.4 562.74 11.48 1.1 0.07
      Baobab 12.5 937.91 19.14 1.81 0.08
      下载: 导出CSV

      表  2  实验各阶段参数设置

      Table  2.   Parameter settings for each stage of the experiment

      阶段 硅胶厚度(mm) 石英砂厚度(mm) 实验时间(s) 实验速度(mm/s) 位移方向 位移量(mm)
      5 5 420 0.027 6 N-S 11.59
      5 10 900 0.027 6 N-S 24.84
      5 15 540 0.027 6 NE-SW 14.9
      5 15 540 0.027 6 N-S 14.9
      下载: 导出CSV

      表  3  实验材料物理参数及模型相似系数

      Table  3.   Analogue material properties and scaling ratios of the model

      模型参数 模型 Bongor盆地 相似比
      脆性层密度Pb(kg/m3) 1 500 2 600 ρb*=0.57
      内摩擦系数μ 0.65 0.6~0.85 μ* = 0.76–1.08
      内聚力c (Pa) 80 4×107 c* = 2×10-6
      脆性层厚度z(km) 1.5×10-5 20 z*=7.5×10-7
      硅胶密度ρd(kg/m)3 940 2 200 ρd* =0.43
      韧性层粘度η (Pa⋅s) 103 1022 η* =10-19
      韧性层厚度zd(km) 0.5×10-5 10 zd*=2.5×10-7
      长度L(m) 0.4 2.74×105 L* = 1.46×10-6
      重力g (m/s3) 9.81 9.81 g* = 1
      时间t(s) t*=9.26×10-7
      正应力σ(kg/m2) σ*=1.08×10-7
      应变速率ε ε*= 1.08×1012
      下载: 导出CSV
    • Alkmim, F. F., Marshak, S., Fonseca, M. A., 2001. Assembling West Gondwana in the Neoproterozoic: Clues from the São Francisco Craton Region, Brazil. Geology, 29(4): 319. https://doi.org/10.1130/0091-7613(2001)0290319:awgitn>2.0.co;2 doi: 10.1130/0091-7613(2001)0290319:awgitn>2.0.co;2
      Azevedo, R. L. M., 2004. Paleoceanografia e a Evolução do Atlântico Sul no Albiano. Boletim de Geociências da Petrobras, 12(2): 231-249.
      Bonifacio, J. F., Ganade, C. E., dos Santos, A. C., et al., 2023. Review and Critical Assessment on Plate Reconstruction Models for the South Atlantic. Earth-Science Reviews, 238: 104333. https://doi.org/10.1016/j.earscirev.2023.104333
      Brun, J. P., Buck, R., McClay, K., et al., 1999. Narrow Rifts versus Wide Rifts: Inferences for the Mechanics of Rifting from Laboratory Experiments and Discussion. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 357(1753): 695-712. doi: 10.1098/rsta.1999.0349
      Chaboureau, A. C., Guillocheau, F., Robin, C., et al., 2013. Paleogeographic Evolution of the Central Segment of the South Atlantic during Early Cretaceous Times: Paleotopographic and Geodynamic Implications. Tectonophysics, 604: 191-223. https://doi.org/10.1016/j.tecto.2012.08.025
      Chen, Z. G., Xu, G., Wang, J. C., et al., 2016. Different Structural Characteristics in the East and West Parts, Bongor Basin, Chad, and Their Influence on Hydrocarbon Accumulation. Oil Geophysical Prospecting, 51(Suppl. 1): 113-119(in Chinese with English abstract).
      Collettini, C., Sibson, R. H., 2001. Normal Faults, Normal Friction? Geology, 29(10): 927. https://doi.org/10.1130/0091-7613(2001)0290927:nfnf>2.0.co;2 doi: 10.1130/0091-7613(2001)0290927:nfnf>2.0.co;2
      Dahlstrom, C. D. A., 1970. Structural Geology in the Eastern Margin of the Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, 18(3): 332-406. https://doi.org/10.35767/gscpgbull.18.3.332
      Davison, I., 2007. Geology and Tectonics of the South Atlantic Brazilian Salt Basins. Geological Society, London, Special Publications, 272(1): 345-359. https://doi.org/10.1144/gsl.sp.2007.272.01.18
      de Matos, R. M. D., Krueger, A., Norton, I., et al., 2021. The Fundamental Role of the Borborema and Benin–Nigeria Provinces of NE Brazil and NW Africa during the Development of the South Atlantic Cretaceous Rift System. Marine and Petroleum Geology, 127: 104872. https://doi.org/10.1016/j.marpetgeo.2020.104872
      Dou, L. R., Wang, J., Wang, R. C., et al., 2018. Precambrian Basement Reservoirs: Case Study from the Northern Bongor Basin, the Republic of Chad. AAPG Bulletin, 102(9): 1803-1824. https://doi.org/10.1306/02061817090
      Dou, L. R., Wang, J. C., Wang, R. C., et al., 2018. The Precambrian Basement Play in the Central African Rift System. Earth Science Frontiers, 25(2): 15-23(in Chinese with English abstract).
      Dou, L. R., Wang, R. C., Wang, J. C., et al., 2021. Thermal History Reconstruction from Apatite Fission-Track Analysis and Vitrinite Reflectance Data of the Bongor Basin, the Republic of Chad. AAPG Bulletin, 105(5): 919-944. https://doi.org/10.1306/11182019167
      Dou, L. R., Xiao, K. Y., Du, Y. B., et al., 2024. Tectonics of the West and Central African Strike-Slip Rift System. Petroleum Science, 21(6): 3742-3753. https://doi.org/10.1016/j.petsci.2024.11.017
      Dou, L. R., Xiao, K. Y., Hu, Y., et al., 2011. Petroleum Geology and a Model of Hydrocarbon Accumulations in the Bongor Basin, the Republic of Chad. Acta Petrolei Sinica, 32(3): 379-386(in Chinese with English abstract).
      Eagles, G., 2007. New Angles on South Atlantic Opening. Geophysical Journal International, 168(1): 353-361. https://doi.org/10.1111/j.1365-246X.2006.03206.x
      Fairhead, J. D., 2020. Regional Tectonics and Basin Formation: The Role of Potential Field Studies: An Application to the Mesozoic West and Central African Rift System. Regional Geology and Tectonics: Principles of Geologic Analysis. Amsterdam, Elsevier, 541-556. https://doi.org/10.1016/b978-0-444-64134-2.00018-3
      Fairhead, J. D., 2023. The Mesozoic West and Central Africa Rift System (WCARS) and the Older Kandi Shear Zone (KSZ): Rifting and Tectonics of North Africa and South America and Fragmentation of Gondwana Based on Geophysical Investigations. Journal of African Earth Sciences, 199: 104817. https://doi.org/10.1016/j.jafrearsci.2022.104817
      Fairhead, J. D., Green, C. M., Masterton, S. M., et al., 2013. The Role That Plate Tectonics, Inferred Stress Changes and Stratigraphic Unconformities have on the Evolution of the West and Central African Rift System and the Atlantic Continental Margins. Tectonophysics, 594: 118-127. https://doi.org/10.1016/j.tecto.2013.03.021.
      Franke, D., 2013. Rifting, Lithosphere Breakup and Volcanism: Comparison of Magma-Poor and Volcanic Rifted Margins. Marine and Petroleum Geology, 43: 63-87. https://doi.org/10.1016/j.marpetgeo.2012.11.003.
      Frindt, S., Trumbull, R. B., Romer, R. L., 2004. Petrogenesis of the Gross Spitzkoppe Topaz Granite, Central Western Namibia: A Geochemical and Nd–Sr–Pb Isotope Study. Chemical Geology, 206(1/2): 43-71. https://doi.org/10.1016/j.chemgeo.2004.01.015
      Gao, H. H., Du, Y. B., Wang, L., et al., 2023. Tectonic Features, Genetic Mechanisms and Basin Evolution of the Eastern Doseo Basin, Chad. Petroleum Exploration and Development, 50(5): 1003-1015(in Chinese with English abstract).
      Genik, G. J., 1993. Petroleum Geology of Cretaceous-Tertiary Rift Basins in Niger, Chad, and Central African Republic. AAPG Bulletin, 77: BDFF8EAC–1718–11D7–8645000102C1865D. https://doi.org/10.1306/bdff8eac-1718-11d7-8645000102c1865d
      Gladczenko, T. P., Hinz, K., Eldholm, O., et al., 1997. South Atlantic Volcanic Margins. Journal of the Geological Society, 154(3): 465-470. https://doi.org/10.1144/gsjgs.154.3.0465
      Gupta, S., Cowie, P. A., Dawers, N. H., et al., 1998. A Mechanism to Explain Rift-Basin Subsidence and Stratigraphic Patterns through Fault-Array Evolution. Geology, 26(7): 595. https://doi.org/10.1130/0091-7613(1998)0260595:amterb>2.3.co;2 doi: 10.1130/0091-7613(1998)0260595:amterb>2.3.co;2
      Gürer, D., Granot, R., van Hinsbergen, D. J. J., 2022. Plate Tectonic Chain Reaction Revealed by Noise in the Cretaceous Quiet Zone. Nature Geoscience, 15(3): 233-239. https://doi.org/10.1038/s41561-022-00893-7
      Hao, L. L., Hu, W. L., Wang, Q., et al., 2025. Bangong-Nujiang Neo-Tethyan Ocean (Central Tibet): Geodynamics, Crustal Evolution, Metallogeny, and Linkages to the "Yanshan Movement". Earth-Science Reviews, 265: 105119. https://doi.org/10.1016/j.earscirev.2025.105119
      Hu, W. L., Wang, Q., Tang, G. J., et al., 2022. Late Early Cretaceous Magmatic Constraints on the Timing of Closure of the Bangong–Nujiang Tethyan Ocean, Central Tibet. Lithos, 416/417: 106648. https://doi.org/10.1016/j.lithos.2022.106648
      Hubbert, M. K., 1951. Mechanical Basis for Certain Familiar Geologic Structures. Geological Society of America Bulletin, 62(4): 355. https://doi.org/10.1130/0016-7606(1951)62[355:mbfcfg]2.0.co;2
      Lenhardt, N., Omietimi, E. J., Edegbai, A. J., et al., 2025. Traversing the Rift: A Review of the Evolution of the West and Central African Rift System and Its Economic Potential. Earth-Science Reviews, 261: 104999. https://doi.org/10.1016/j.earscirev.2024.104999
      Li, Z. H., Cui, F. Y., Yang, S. T., et al., 2023. Key Geodynamic Processes and Driving Forces of Tethyan Evolution. Science China: Earth Sciences, 53(12): 2701-2722(in Chinese).
      Liu, C. Z., Chung, S. L., Wu, F. Y., et al., 2016. Tethyan Suturing in Southeast Asia: Zircon U-Pb and Hf-O Isotopic Constraints from Myanmar Ophiolites. Geology, 44(4): 311-314. https://doi.org/10.1130/g37342.1
      Liu, H. F., 1993. Dynamic Classification of Sedimentary Basins and Their Structural Styles. Earth Science, 18(6): 699-724, 814(in Chinese with English abstract).
      Lowell, T. P. H. J. D., 1979. Structural Styles, Their Plate-Tectonic Habitats, and Hydrocarbon Traps in Petroleum Provinces. AAPG Bulletin, 63: 2F9184B4-16CE-11D7-8645000102C1865D. https://doi.org/10.1306/2f9184b4-16ce-11d7-8645000102c1865d
      Lustrino, M., Melluso, L., Brotzu, P., et al., 2005. Petrogenesis of the Early Cretaceous Valle Chico Igneous Complex (SE Uruguay): Relationships with Paraná–Etendeka Magmatism. Lithos, 82(3-4): 407-434. https://doi.org/10.1016/j.lithos.2004.07.004
      Marzoli, A., Melluso, L., Morra, V., et al., 1999. Geochronology and Petrology of Cretaceous Basaltic Magmatism in the Kwanza Basin (Western Angola), and Relationships with the Paranà-Etendeka Continental Flood Basalt Province. Journal of Geodynamics, 28(4-5): 341-356. https://doi.org/10.1016/s0264-3707(99)00014-9
      Min, G., Hou, G. T., 2019. Mechanism of the Mesozoic African Rift System: Paleostress Field Modeling. Journal of Geodynamics, 132: 101655. https://doi.org/10.1016/j.jog.2019.101655
      Moulin, M., Aslanian, D., Unternehr, P., 2010. A New Starting Point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews, 98(1-2): 1-37. https://doi.org/10.1016/j.earscirev.2009.08.001
      Qu, X. M., Wang, R. J., Xin, H. B., et al., 2012. Age and Petrogenesis of A-Type Granites in the Middle Segment of the Bangonghu–Nujiang Suture, Tibetan Plateau. Lithos, 146/147: 264-275. https://doi.org/10.1016/j.lithos.2012.05.006
      Scotese, C. R., Vérard, C., Burgener, L., et al., 2025. The Cretaceous World: Plate Tectonics, Palaeogeography and Palaeoclimate. Geological Society, London, Special Publications, 544(1): 31-202. https://doi.org/10.1144/sp544-2024-28
      Segall, P., Pollard, D. D., 1980. Mechanics of Discontinuous Faults. Journal of Geophysical Research: Solid Earth, 85(B8): 4337-4350. https://doi.org/10.1029/JB085iB08p04337
      Sibson, R. H., 1985. A Note on Fault Reactivation. Journal of Structural Geology, 7(6): 751-754. https://doi.org/10.1016/0191-8141(85)90150-6
      Sibson, R. H., Xie, G. Y., 1998. Dip Range for Intracontinental Reverse Fault Ruptures: Truth not Stranger than Friction? Bulletin of the Seismological Society of America, 88(4): 1014-1022. https://doi.org/10.1785/bssa0880041014
      Simmons, N. A., Myers, S. C., Johannesson, G., et al., 2015. Evidence for Long-Lived Subduction of an Ancient Tectonic Plate beneath the Southern Indian Ocean. Geophysical Research Letters, 42(21): 9270-9278. https://doi.org/10.1002/2015GL066237
      Stampfli, G. M., Borel, G. D., 2002. A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons. Earth and Planetary Science Letters, 196(1-2): 17-33. https://doi.org/10.1016/S0012-821X(01)00588-X
      Sun, W. D., Liu, L. J., Hu, Y. B., et al., 2018. Post-Ridge-Subduction Acceleration of the Indian Plate Induced by Slab Rollback. Solid Earth Sciences, 3(1): 1-7. https://doi.org/10.1016/j.sesci.2017.12.003
      Turner, J. P., Williams, G. A., 2004. Sedimentary Basin Inversion and Intra-Plate Shortening. Earth-Science Reviews, 65(3/4): 277-304. https://doi.org/10.1016/j.earscirev.2003.10.002
      Wan, B., Wu, F. Y., Chen, L., et al., 2019. Cyclical One-Way Continental Rupture-Drift in the Tethyan Evolution: Subduction-Driven Plate Tectonics. Science China: Earth Sciences, 62(12): 2005-2016. https://doi.org/10.1007/s11430-019-9393-4
      Wang, E. Q., Meng, K., Xu, G., et al., 2018. Cenozoic Two-Stage Obduction of the Indian Subcontinent: On the Interaction between the Indian Ocean, Tethyan and Eurasian Plates. Acta Petrologica Sinica, 34(7): 1867-1875(in Chinese with English abstract).
      Wang, H. X., Lü, Y. F., Fu, X. F., et al., 2013. Formation, Evolution and Reservoir-Controlling Mechanism of Relay Zone in Rift Basin. Geological Science and Technology Information, 32(4): 102-110(in Chinese with English abstract).
      Wang, L., Zhang, X. S., Xiao, K. Y., et al., 2022. Formation and Evolution of Baobab Structural Zone and Controlling Factors of Hydrocarbon Accumulation in Bongor Basin, Chad. China Petroleum Exploration, 27(2): 84-92(in Chinese with English abstract).
      Wang, W. L., Tang, J. G., Sun, Q. Q., et al., 2017. Research Progress and Development Trends of the Transfer Zone. Geology and Resources, 26(2): 195-202(in Chinese with English abstract).
      Xiao, K. Y., Zhao, J., Yu, Z. H., et al., 2014. Structural Characteristics of Intensively Inversed Bongor Basin in CARS and Their Impacts on Hydrocarbon Accumulation. Earth Science Frontiers, 21(3): 172-180(in Chinese with English abstract).
      Xu, C. C., 2012. The Characteristics of Inversion Structures in Bongor Basin and its Relationship with Hydrocarbon Accumulation (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Yang, S. T., Li, Z. H., Wan, B., et al., 2021. Subduction-Induced Back-Arc Extension versus Far-Field Stretching: Contrasting Modes for Continental Marginal Break-up. Geochemistry, Geophysics, Geosystems, 22(3): e2020GC009416. https://doi.org/10.1029/2020GC009416
      Yu, Z. H., Xiao, K. Y., Zhang, G. L., et al., 2018. Analysis on Inverted Structure Characteristics and Its Forming Mechanism in the Bongor Basin, Chad. China Petroleum Exploration, 23(3): 90-98(in Chinese with English abstract).
      Zhu, R. X., Zhao, P., Zhao, L., 2021. Tectonic Evolution and Geodynamics of the Neo-Tethys Ocean. Science China: Earth Sciences, 52(1): 1-25(in Chinese).
      陈志刚, 徐刚, 王景春, 等, 2016. 乍得Bongor盆地东、西部构造特征差异及其对油气富集的影响. 石油地球物理勘探, 51(增刊. 1): 113-119.
      窦立荣, 王景春, 王仁冲, 等, 2018. 中非裂谷系前寒武系基岩油气成藏组合. 地学前缘, 25(2): 15-23.
      窦立荣, 肖坤叶, 胡勇, 等, 2011. 乍得Bongor盆地石油地质特征及成藏模式. 石油学报, 32(3): 379-386.
      高华华, 杜业波, 王林, 等, 2023. 乍得Doseo盆地东部构造特征、成因机制与盆地演化. 石油勘探与开发, 50(5): 1003-1015.
      李忠海, 崔峰源, 杨舒婷, 等, 2023. 特提斯演化的关键动力学过程与驱动力. 中国科学: 地球科学, 53(12): 2701-2722.
      刘和甫, 1993. 沉积盆地地球动力学分类及构造样式分析. 地球科学, 18(6): 699-724, 814. http://www.earth-science.net/article/id/85
      王二七, 孟恺, 许光, 等, 2018. 印度陆块新生代两次仰冲事件及其构造驱动机制: 论印度洋、特提斯和欧亚板块相互作用. 岩石学报, 34(7): 1867-1875.
      王海学, 吕延防, 付晓飞, 等, 2013. 裂陷盆地转换带形成演化及其控藏机理. 地质科技情报, 32(4): 102-110.
      王利, 张新顺, 肖坤叶, 等, 2022. 乍得邦戈盆地Baobab构造带形成演化及油气成藏控制因素. 中国石油勘探, 27(2): 84-92
      王文龙, 汤济广, 孙乔琪, 等, 2017. 构造转换带研究进展与发展趋势. 地质与资源, 26(2): 195-202.
      肖坤叶, 赵健, 余朝华, 等, 2014. 中非裂谷系Bongor盆地强反转裂谷构造特征及其对油气成藏的影响. 地学前缘, 21(3): 172-180.
      许长春, 2012, Bongor盆地反转构造特征及其与油气聚集关系(硕士学位论文). 北京, 中国地质大学(北京).
      余朝华, 肖坤叶, 张桂林, 等, 2018. 乍得Bongor盆地反转构造特征及形成机制分析. 中国石油勘探, 23(3): 90-98.
      朱日祥, 赵盼, 赵亮, 2021, 新特提斯洋演化与动力过程. 中国科学: 地球科学, 52(1): 1-25.
    • 加载中
    图(14) / 表(3)
    计量
    • 文章访问数:  142
    • HTML全文浏览量:  13
    • PDF下载量:  6
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-07-18
    • 刊出日期:  2025-12-25

    目录

      /

      返回文章
      返回