• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    页岩超长段压裂模式效果评价及套变弱化机制

    郝越翔 尹陈 李宜真 江雨濛 曾超 赵学钦 刘陈

    郝越翔, 尹陈, 李宜真, 江雨濛, 曾超, 赵学钦, 刘陈, 2025. 页岩超长段压裂模式效果评价及套变弱化机制. 地球科学, 50(12): 4751-4763. doi: 10.3799/dqkx.2025.178
    引用本文: 郝越翔, 尹陈, 李宜真, 江雨濛, 曾超, 赵学钦, 刘陈, 2025. 页岩超长段压裂模式效果评价及套变弱化机制. 地球科学, 50(12): 4751-4763. doi: 10.3799/dqkx.2025.178
    Hao Yuexiang, Yin Chen, Li Yizhen, Jiang Yumeng, Zeng Chao, Zhao Xueqin, Liu Chen, 2025. Evaluation of Fracturing Effect and Mechanism of Casing Deformation Weakening for Ultra-Long Section Fracturing. Earth Science, 50(12): 4751-4763. doi: 10.3799/dqkx.2025.178
    Citation: Hao Yuexiang, Yin Chen, Li Yizhen, Jiang Yumeng, Zeng Chao, Zhao Xueqin, Liu Chen, 2025. Evaluation of Fracturing Effect and Mechanism of Casing Deformation Weakening for Ultra-Long Section Fracturing. Earth Science, 50(12): 4751-4763. doi: 10.3799/dqkx.2025.178

    页岩超长段压裂模式效果评价及套变弱化机制

    doi: 10.3799/dqkx.2025.178
    基金项目: 

    岩土力学与工程安全全国重点实验室开放基金资助项目 SKLGME022006

    详细信息
      作者简介:

      郝越翔(1991-),男,博士研究生,主要从事地质研究工作. ORCID:0000-0001-6083-630X. E-mail:haoyx_cqyyq@cnpc.com.cn

      通讯作者:

      曾超,E-mail: wws@cdut.edu.cn

    • 中图分类号: P618

    Evaluation of Fracturing Effect and Mechanism of Casing Deformation Weakening for Ultra-Long Section Fracturing

    • 摘要: 由于长期多期复杂地质构造作用,川南页岩天然裂缝及断层极其发育,其不仅降低压裂效率,更引起套变,加大经济损失.因此,针对天然裂缝极其发育的高风险井段进行多段合并而实施超长段压裂模式,以期规避施工风险,提高压裂效果.以四川盆地威远页岩裂缝发育井为研究对象,该井全井段不同尺度的天然裂缝极其发育,预示着水力压裂承受着极大套变风险.水力压裂过程中发生套变,及时调整施工方案,将18段合并为1 168 m的超长段,针对该超长段分别进行18次压裂和暂堵.基于微地震地面大排列观测刻画裂缝活动的时空延展特征和破裂机制,结合微地震、三维地震、地质、测井开展超长段水力压裂地质工程一体化效果评估.研究表明超长段水力压裂在一定程度上可以降低高风险区域水力压裂套变风险,但高裂缝发育区亦会成为超长段压裂流体的泄流通道,造成改造不充分,因此,结合微地震响应开展超长段压裂实时分段和施工方案调整,既有利于降低套变风险,又提高压裂改造效果.

       

    • 图  1  微地震地面观测示意

      a.为俯视图;b.为侧视图

      Fig.  1.  Schematic diagram of microseismic ground observation

      图  2  微地震事件波形

      Fig.  2.  The microseismic wave event

      图  3  水力压裂井况特征及第1~4次压裂微地震响应

      a.设计压裂段与第1~4段裂缝破裂定位叠合图;b.井筒天然裂缝发育统计与第1~4段裂缝破裂定位叠合图;c.三维地震蚂蚁体裂缝数据与第1~4段裂缝破裂定位叠合图

      Fig.  3.  The treatment well characteristics and the microseismic response for Stage 1st to 4th

      图  4  超长段水力压裂作用模式下第5~22次压裂施工的微地震响应

      Fig.  4.  Microseismic responses of the 5th to 22nd fracturing operations under the ultra⁃long interval hydraulic fracturing action mode

      图  5  第23~27次压裂微地震响应

      Fig.  5.  Microseismic responses of the 23rd to 27th fracturing operations

      图  6  裂缝活动破裂机制

      相对震级大于-1.5. a.全部压裂次数裂缝活动反演震源机制;b.第1~4次压裂裂缝活动震源机制;c.第5~22超长压裂段压裂裂缝活动震源机制;d.第23~27次压裂裂缝活动震源机制

      Fig.  6.  Focal mechanism results for all fracturing

      图  7  水力压裂单段施工应力统计

      Fig.  7.  Statistical chart of stress for each stage fracturing

      图  8  水力压裂第22段(第22次压裂施工)施工参数

      Fig.  8.  Schematic diagram of single⁃stage injection parameters for 22nd hydraulic fracturing

      表  1  电缆遇阻及遇卡情况统计

      Table  1.   Statistics of cable sticking and blocking cases

      施工遇阻 探测时间 遇阻/遇卡位置 处置情况
      第1次 第5段电缆作业 4 154.4 m遇阻,上起遇卡 电缆弱点解卡
      第2次 第28段泵送 3 478 m遇阻 第二次泵送通过,上起时张力增加
      下载: 导出CSV
    • Chen, Z. W., Zhou, W. G., Xiang, D. G., et al., 2023. Development of Rubber Composite Casing for Preventing Shale Gas Casing Deformation and Its Shear Resistance Evaluation. Natural Gas Industry, 43(11): 131-136 (in Chinese with English abstract).
      Dong, K., Liu, N. Z., Chen, Z. W., et al., 2019. Geomechanical Analysis on Casing Deformation in Longmaxi Shale Formation. Journal of Petroleum Science and Engineering, 177: 724-733. https://doi.org/10.1016/j.petrol.2019.02.068
      Du, X. Y., Jin, Z. J., Zeng, L. B., et al., 2024. Development Model of Natural Fractures in Continental Shale of the Pingdiquan Formation in the Shuangjingzi Area, Eastern Junggar Basin. Earth Science, 49(9): 3264-3275 (in Chinese with English abstract).
      Fan, J. M., Chen, X. D., Lei, Z. D., et al., 2019. Characteristics of Natural and Hydraulic Fractures in Tight Oil Reservoir in Ordos Basin and Its Implication to Field Development. Journal of China University of Petroleum (Edition of Natural Science), 43(3): 98-106 (in Chinese with English abstract).
      Fei, Y., Peng, J. Y., Biao, B. S., et al., 2023. Evaluation of the Controlling Effect of New Annulus Materials on Casing Deformation in Shale Gas Wells. Natural Gas Industry B, 10(6): 638-647. https://doi.org/10.1016/j.ngib.2023.11.009
      Han, L. L., Li, X. Z., Liu, Z. Y., et al., 2023. Influencing Factors and Prevention Measures of Casing Deformation in Deep Shale Gas Wells in Luzhou Block, Southern Sichuan Basin, SW China. Petroleum Exploration and Development, 50(4): 853-861 (in Chinese with English abstract).
      Jin, Y. Q., Zhao, Q., Mou, Y. S., et al., 2024. Discussion on Formation Mechanism of Casing Deformation in Horizontal Wells in Deep Shale Gas of Luzhou Area. Natural Gas Industry, 44(2): 99-110 (in Chinese with English abstract).
      Li, G. X., Luo, K., Shi, D. Q., 2020. Key Technologies, Engineering Management and Important Suggestions of Shale Oil/Gas Development: Case Study of a Duvernay Shale Project in Western Canada Sedimentary Basin. Petroleum Exploration and Development, 47(4): 739-749(in Chinese with English abstract).
      Li, Y. C., Zhang, Q., Shen, J. G., et al., 2022. Volumetric Stimulation Technology of Long⁃Section Multi⁃Cluster Temporary Plugging in Shale Gas Reservoirs. Natural Gas Industry, 42(2): 143-150 (in Chinese with English abstract).
      Li, Z., Li, H. T., Li, G., et al., 2021. The Influence of Shale Swelling on Casing Deformation during Hydraulic Fracturing. Journal of Petroleum Science and Engineering, 205: 108844. https://doi.org/10.1016/j.petrol.2021.108844
      Ma, X. H., Xie, J., Yong, R., et al., 2020. Geological Characteristics and High Production Control Factors of Shale Gas Reservoirs in Silurian Longmaxi Formation, Southern Sichuan Basin, SW China. Petroleum Exploration and Development, 47(5): 841-855 (in Chinese with English abstract).
      Shang, C. J., Kang, Y. S., Deng, Z., et al., 2019. The Influence Mechanism of Filled Natural Fractures on the Variation Law of Shale Permeability in Loading Process. Journal of Geomechanics, 25(3): 382-391 (in Chinese with English abstract).
      Shen, C., Wu, J. F., Zeng, B., et al., 2024a. Measures and Results of Prevention and Control on Casing Deformation and Frac⁃Hit in Deep Shale Gas Wells in Southern Sichuan Basin. Natural Gas Industry B, 11(3): 262-273. https://doi.org/10.1016/j.ngib.2024.05.006
      Shen, C., Zeng, B., Liu, S., et al., 2024b. Control Factors and Risk Prediction of Casing Deformation in Deep Shale Gas Wells in Southern Sichuan Basin. Unconventional Resources, 4: 100092. https://doi.org/10.1016/j.uncres.2024.100092
      Tong, H. M., Cai, D. S., Wu, Y. P., et al., 2010. Activity Criterion of Pre⁃Existing Fabrics in Non⁃Homogeneous Deformation Domain. Science China Earth Sciences, 53(8): 1115-1125. https://doi.org/10.1007/s11430⁃010⁃3080⁃6
      Tong, H. M., Chen, Z. L., Liu, R. X., 2015. Generalized Shear Activation Criterion. Chinese Journal of Nature, 37(6): 441-447 (in Chinese with English abstract).
      Tong, H. M., Yin, A., 2011. Reactivation Tendency Analysis: A Theory for Predicting the Temporal Evolution of Preexisting Weakness under Uniform Stress State. Tectonophysics, 503(3-4): 195-200. https://doi.org/10.1016/j.tecto.2011.02.012
      Tong, H. M., Zhang, P., Zhang, H. X., et al., 2021. Geomechanical Mechanisms and Prevention Countermeasures of Casing Deformation in Shale Gas Horizontal Wells. Natural Gas Industry, 41(1): 189-197 (in Chinese with English abstract).
      Wang, K. Y., 2022. Study on Fault Dislocation Law Induced by Hydraulic Fracturing in Shale Reservoirs and Characteristics of Casing Damage (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).
      Wang, X. G., Zhong, S. M., Wu, Y. X., et al., 2023. Shear Effect of Fault Slip Induced by Hydraulic Fracturing on the Casing. Drilling & Production Technology, 46(5): 7-14 (in Chinese with English abstract).
      Wu, X. Z., 2019. Key Technologies in the Efficient Development of the Weiyuan Shale Gas Reservoir, Sichuan Basin. Petroleum Drilling Techniques, 47(4): 1-9 (in Chinese with English abstract).
      Xi, Y., Li, J., Zha, C. Q., et al., 2019. A New Investigation on Casing Shear Deformation during Multistage Fracturing in Shale Gas Wells Based on Microseism Data and Calliper Surveys. Journal of Petroleum Science and Engineering, 180: 1034-1045. https://doi.org/10.1016/j.petrol.2019.05.079
      Xiong, J., Liu, J. J., Wu, J., et al., 2021. Fracture Propagation Law and Fracability Evaluation of the Tight Reservoirs. Natural Gas Geoscience, 32(10): 1581-1591 (in Chinese with English abstract).
      Xu, K., Yang, H. J., Zhang, H., et al., 2023. Efficient Exploration Technology of Deep Tight Gas Reservoir Based on Geomechanics Method: A Case Study of Dibei Gas Reservoir in Kuqa Depression. Earth Science, 48(2): 621-639 (in Chinese with English abstract).
      Yin, C., 2017. Fault Detection Based on Microseismic Events. Applied Geophysics, 14(3): 363-371. https://doi.org/10.1007/s11770⁃017⁃0631⁃z
      Yong, R., Wu, J. F., Zeng, B., et al., 2024. Geology⁃Engineering Integration Casing Deformation Prevention Technology and Its Application in Shale Gas, Luzhou Block. Drilling & Production Technology, 47(6): 83-92 (in Chinese with English abstract).
      Yuan, G. J., Wang, X. Y., Qiao, L., et al., 2023. Mechanism of Casing Deformation Induced by Shale Gas Well Fracturing and Its Physical Simulation Analysis. Natural Gas Industry, 43(11): 137-145 (in Chinese with English abstract).
      Zhang, G. Y., Ma, F., Liang, Y. B., et al., 2015. Domain and Theory⁃Technology Progress of Global Deep Oil & Gas Exploration. Acta Petrolei Sinica, 36(9): 1156-1166 (in Chinese with English abstract).
      Zhang, J. Y., Cui, Z. D., Chen, X. P., et al., 2024. Research Progress on the Microfracture of Shale: Experimental Methods, Microfracture Propagation, Simulations, and Perspectives. Applied Sciences, 14(2): 784. https://doi.org/10.3390/app14020784
      Zhang, P., He, Y. B., Liu, Z. P., et al., 2021. Shear Compression Deformation Test and Deformation Prevention Practice of Casing in Shale Gas Horizontal Wells. Natural Gas Industry, 41(5): 84-91 (in Chinese with English abstract).
      陈朝伟, 周文高, 项德贵, 等, 2023. 预防页岩气套变的橡胶组合套管研制及其抗剪切性能评价. 天然气工业, 43(11): 131-136.
      杜晓宇, 金之钧, 曾联波, 等, 2024. 准噶尔盆地东部双井子地区平地泉组陆相页岩天然裂缝发育模式. 地球科学, 49(9): 3264-3275. doi: 10.3799/dqkx.2024.022
      樊建明, 陈小东, 雷征东, 等, 2019. 鄂尔多斯盆地致密油藏天然裂缝与人工裂缝特征及开发意义. 中国石油大学学报(自然科学版), 43(3): 98-106.
      韩玲玲, 李熙喆, 刘照义, 等, 2023. 川南泸州深层页岩气井套变主控因素与防控对策. 石油勘探与开发, 50(4): 853-861.
      金亦秋, 赵群, 牟易升, 等, 2024. 泸州地区深层页岩气水平井套变成因机理探讨. 天然气工业, 44(2): 99-110.
      李国欣, 罗凯, 石德勤, 2020. 页岩油气成功开发的关键技术、先进理念与重要启示: 以加拿大都沃内项目为例. 石油勘探与开发, 47(4): 739-749.
      李彦超, 张庆, 沈建国, 等, 2022. 页岩气藏长段多簇暂堵体积改造技术. 天然气工业, 42(2): 143-150.
      马新华, 谢军, 雍锐, 等, 2020. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素. 石油勘探与开发, 47(5): 841-855.
      尚春江, 康永尚, 邓泽, 等, 2019. 充填天然裂缝对页岩受载过程中渗透率变化规律影响机理分析. 地质力学学报, 25(3): 382-391.
      童亨茂, 陈正乐, 刘瑞珣, 2015. 广义剪切活动准则. 自然杂志, 37(6): 441-447.
      童亨茂, 张平, 张宏祥, 等, 2021. 页岩气水平井开发套管变形的地质力学机理及其防治对策. 天然气工业, 41(1): 189-197.
      王孔阳, 2022. 页岩储层水力压裂诱发断层错动规律及套管损坏特征研究(博士学位论文). 北京: 中国石油大学.
      王雪刚, 钟守明, 吴彦先, 等, 2023. 水力压裂诱发断层滑移对套管的剪切作用研究. 钻采工艺, 46(5): 7-14.
      伍贤柱, 2019. 四川盆地威远页岩气藏高效开发关键技术. 石油钻探技术, 47(4): 1-9.
      熊健, 刘峻杰, 吴俊, 等, 2021. 致密储层压裂缝扩展规律与可压裂性评价. 天然气地球科学, 32(10): 1581-1591.
      徐珂, 杨海军, 张辉, 等, 2023. 基于地质力学方法的深层致密气藏高效勘探技术: 以库车坳陷迪北气藏为例. 地球科学, 48(2): 621-639. doi: 10.3799/dqkx.2022.379
      雍锐, 吴建发, 曾波, 等, 2024. 泸州区块页岩气地质工程一体化套变预防技术及应用. 钻采工艺, 47(6): 83-92.
      袁光杰, 王向阳, 乔磊, 等, 2023. 页岩气井压裂套管变形机理及物理模拟分析. 天然气工业, 43(11): 137-145.
      张光亚, 马锋, 梁英波, 等, 2015. 全球深层油气勘探领域及理论技术进展. 石油学报, 36(9): 1156-1166.
      张平, 何昀宾, 刘子平, 等, 2021. 页岩气水平井套管的剪压变形试验与套变预防实践. 天然气工业, 41(5): 84-91.
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  18
    • HTML全文浏览量:  11
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-16
    • 网络出版日期:  2026-01-12
    • 刊出日期:  2025-12-25

    目录

      /

      返回文章
      返回