• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔里木盆地顺北地区干酪根碳同位素恢复及下寒武统玉尔吐斯组烃源岩生烃模式探讨

    曹自成 云露 平宏伟 陈红汉 耿锋 韩俊 黄诚 吕海涛 蒋华山 刘永立

    曹自成, 云露, 平宏伟, 陈红汉, 耿锋, 韩俊, 黄诚, 吕海涛, 蒋华山, 刘永立, 2025. 塔里木盆地顺北地区干酪根碳同位素恢复及下寒武统玉尔吐斯组烃源岩生烃模式探讨. 地球科学, 50(12): 4736-4750. doi: 10.3799/dqkx.2025.182
    引用本文: 曹自成, 云露, 平宏伟, 陈红汉, 耿锋, 韩俊, 黄诚, 吕海涛, 蒋华山, 刘永立, 2025. 塔里木盆地顺北地区干酪根碳同位素恢复及下寒武统玉尔吐斯组烃源岩生烃模式探讨. 地球科学, 50(12): 4736-4750. doi: 10.3799/dqkx.2025.182
    Cao Zicheng, Yun Lu, Ping Hongwei, Chen Honghan, Geng Feng, Han Jun, Huang Cheng, Lyu Haitao, Jiang Huashan, Liu Yongli, 2025. Reconstruction of Carbon Isotope of Kerogen in Shunbei Area, Tarim Basin and Discussions on Hydrocarbon Generation Model of Lower Cambrian Yurtus Formation Source Rock. Earth Science, 50(12): 4736-4750. doi: 10.3799/dqkx.2025.182
    Citation: Cao Zicheng, Yun Lu, Ping Hongwei, Chen Honghan, Geng Feng, Han Jun, Huang Cheng, Lyu Haitao, Jiang Huashan, Liu Yongli, 2025. Reconstruction of Carbon Isotope of Kerogen in Shunbei Area, Tarim Basin and Discussions on Hydrocarbon Generation Model of Lower Cambrian Yurtus Formation Source Rock. Earth Science, 50(12): 4736-4750. doi: 10.3799/dqkx.2025.182

    塔里木盆地顺北地区干酪根碳同位素恢复及下寒武统玉尔吐斯组烃源岩生烃模式探讨

    doi: 10.3799/dqkx.2025.182
    基金项目: 

    国家自然科学基金项目 42272169

    国家自然科学基金企业创新发展联合基金集成项目 U24B6001

    国家“十五·五”科技专项课题 2025ZD1402301

    详细信息
      作者简介:

      曹自成(1979-),男,研究员,主要从事油气地质与勘探管理工作.ORCID:0009-0006-4611-2907.E-mail:caozc.xbsj@sinopec.com

      通讯作者:

      平宏伟(1982—),男,教授,主要从事油气成藏机理研究.ORCID: 0000-0002-3123-3099.E-mail:howping@qq.com

    • 中图分类号: P618

    Reconstruction of Carbon Isotope of Kerogen in Shunbei Area, Tarim Basin and Discussions on Hydrocarbon Generation Model of Lower Cambrian Yurtus Formation Source Rock

    • 摘要: 下寒武统玉尔吐斯组烃源岩已经被认为是塔里木盆地台盆区海相油气的主力烃源岩.目前对玉尔吐斯组烃源岩的认识主要基于野外露头和少量隆起区钻井岩心样品分析,而对斜坡和凹陷区烃源岩特征了解较少.理解玉尔吐斯组烃源岩干酪根碳同位素特征对于厘定烃源岩生烃机理及建立油气源对比关系具有重要的参考意义.通过对顺北地区不同断裂带原油和天然气样品开展详细的有机地化及碳同位素地球化学研究,在定量评价热成熟度对原油和天然气碳同位素影响的基础上,恢复了其初始碳同位素组成.利用油气形成过程干酪根与其生成油气组分的碳同位素分馏特点分别恢复了顺北地区奥陶系原油和天然气来源干酪根的碳同位素组成.结果表明:顺北地区生油干酪根碳同位素主要位于-32.3‰~-28.8‰,生气干酪根碳同位素主要位于-33.1‰~-29.8‰,原油和天然气主要来自以底栖藻类和浮游藻类混合生源为主的干酪根,其中原油还存在来自以浮游藻类为主要生源干酪根的贡献.偏轻的干酪根碳同位素特征表明顺北地区油气主要来自玉尔吐斯组烃源岩.根据成烃生物组合的变化,将玉尔吐斯组烃源岩划分为以浮游藻类为主要生源的生油型源岩(δ13C > -30‰)、以底栖和浮游藻类混合生源为主的油气兼生型源岩(-33.5‰ < δ13C < -30‰)及以底栖藻类为主要生源的生气型源岩(δ13C < -33.5‰).随着烃源岩热成熟度的增加,早期以浮游藻类生油为主,而晚期底栖藻类生成油(主要为挥发油-凝析油)的贡献增加,从而导致早期生成油同位素偏重,而晚期生成油具有相对偏轻的碳同位素特征;同时,生油干酪根含量逐渐减小,而生气干酪根相对含量逐渐增加,导致烃源岩中干酪根总体碳同位素逐渐变轻.因此,不同烃源岩类型及不同生源干酪根差异生烃过程导致了玉尔吐斯组烃源岩生成的油气具有复杂的碳同位素特征(如储层原油族组分碳同位素倒转、烃源岩氯仿抽提物与干酪根碳同位素倒转等).研究结果可为塔里木盆地超深层油气相态预测提供新的约束.

       

    • 图  1  顺北地区油气井位置及构造单元和主要断裂分布

      Fig.  1.  Location of oil and gas wells and distribution of structural units and major faults in Shunbei area

      图  2  顺北地区典型井原油饱和烃生标谱图

      Fig.  2.  Chromatograms of biomarkers of crude oils from typical wells in the Shunbei area

      图  3  顺北地区典型井原油芳烃热成熟度参数比值(a)以及换算的等效镜质体反射率(b)对比

      MPI1(甲基菲指数)=1.5(2-MP+3-MP)/(P+1-MP+9-MP);Ro1=0.6×MPI1+0.4(Radke,1988);MPR(甲基菲比值)=2-MP/1-MP;Ro2=0.99lgMPR)+ 0.94(Radke et al., 1984);F1=(2-MP+3-MP)/(2-MP+3-MP+1-MP+9-MP)(Kvalheim,1987);F2=2-MP/(2-MP+3-MP+1-MP+9-MP)(Kvalheim,1987

      Fig.  3.  The ratio of aromatic thermal maturity parameters (a) and the calculated equivalent vitrinite reflectance (b) of crude oils from typical wells in Shunbei area

      图  4  顺北地区成熟度最高的成熟度最低的原油族组分碳同位素对比

      Fig.  4.  Carbon isotope comparison of group component for the most mature and least mature crude oil in Shunbei area

      图  5  顺北地区原油族组分碳同位素与热成熟度关系

      Fig.  5.  Relationship between carbon isotopes of group component and thermal maturity of crude oil in Shunbei area

      图  6  顺北地区生油干酪根碳同位素(δ13C干酪根)与原油中沥青质和非烃碳同位素差值(δ13C沥青质13C非烃)关系

      Fig.  6.  Relationship between carbon isotopes of δ13Ckerogen predicted from crude oil and the difference of δ13Casphaltene and δ13Cresin in crude oil in Shunbei area

      图  7  顺北和塔里木盆地北部坳陷天然气正丁烷碳同位素与其组分含量关系

      Fig.  7.  Relationship between carbon isotope and molar content of n-butane in natural gas in Shunbei and northern depression of Tarim Basin

      图  8  顺北和塔河预测干酪根碳同位素与塔里木盆地野外露头和钻井实测下寒武统烃源岩干酪根碳同位素对比

      Fig.  8.  Comparison of predicted carbon isotopes of kerogen from Shunbei and Tahe areas with measured values of Lower Cambrian source rocks from outcrops and wells in Tarim Basin

      图  9  塔里木盆地下寒武玉尔吐斯组统烃源岩生烃模式

      Fig.  9.  Hydrocarbon generation model of Lower Cambrian Yurtus Formation source rocks in Tarim Basin

      表  1  研究区典型原油热成熟度及原油族组分碳同位素值

      Table  1.   The thermal maturity of typical crude oils and carbon isotope values of group component in the study area

      井号 深度(m) 层位 MPI1 MPR F1 F2 Rc1(%) Rc2(%) Rcave(%) 原油族组分碳同位素(δ13C)(‰)
      饱和烃 芳烃 非烃 沥青质
      顺北1 7 269.54~7 320.00 O2yj 0.73 1.01 0.41 0.23 0.84 0.94 0.89 -32.60 -31.60 -30.60 -31.80
      顺北5 O2yj 0.77 1.03 0.42 0.25 0.86 0.95 0.91 -32.30 -30.80 -30.40 -31.40
      顺北5-12 O2yj 0.70 0.90 0.38 0.21 0.82 0.89 0.86 -32.50 -31.10 -30.10 -30.70
      顺北83X 7 821.0~8 478.8 O2yj-O1-2y 1.41 3.14 0.77 0.43 1.25 1.43 1.34 -31.48 -28.62 -29.15 -29.91
      顺北85X 8 033~8 832 O2yj-O1-2y 1.38 2.78 0.73 0.41 1.23 1.38 1.30 -31.23 -28.76 -28.68 -30.36
      注:Rc1=0.6×MPI1+0.4,Ro < 1.35 %(Radke,1988);Rc2= 0.99lgMPR+0.94(Radke et al., 1984);Rcave =(Rc1+ Rc2)/2;MPI1=1.5(2-MP+3-MP)/(P+1-MP+9-MP);MPR=2-MP/1-MP;P.菲;MP.甲基菲.
      下载: 导出CSV
    • Andresen, B., Throndsen, T., Råheim, A., et al., 1995. A Comparison of Pyrolysis Products with Models for Natural Gas Generation. Chemical Geology, 126(3-4): 261-280. https://doi.org/10.1016/0009-2541(95)00122-0
      Behar, F., Lorant, F., Mazeas, L., 2008. Elaboration of a New Compositional Kinetic Schema for Oil Cracking. Organic Geochemistry, 39(6): 764-782. https://doi.org/10.1016/j.orggeochem.2008.03.007
      Cao Z. C., Yun, L., Ping, H. W., et al., 2025. Quantitative Evaluation of Gas Injection Contribution using Fluid Inclusion Data: A Case Study of the Condensate Gas Reservoirs of the Eastern Shunbei in the Tarim Basin. Journal of Earth Science, 36(6): 2819-2824. https://doi.org/10.1007/s12583-025-2039-7
      Cao, Z. C., Yun, L., Ping, H. W., et al., 2025. Geochemistry and Origin of Ordovician Natural Gas in Shunbei Area of Tarim Basin. Bulletin of Geological Science and Technology, 44(5): 40-52 (in Chinese with English abstract).
      Clayton, J. L., Bostick, N. H., 1986. Temperature Effects on Kerogen and on Molecular and Isotopic Composition of Organic Matter in Pierre Shale near an Igneous Dike. Organic Geochemistry, 10(1-3): 135-143. https://doi.org/10.1016/0146-6380(86)90017-3
      Clayton, C. J., 1991. Effect of Maturity on Carbon Isotope Ratios of Oils and Condensates. Organic Geochemistry, 17(6): 887-899. https://doi.org/10.1016/0146-6380(91)90030-n
      Chung, H. M., Rooney, M. A., Toon, M. B., et al., 1992. Carbon Isotope Composition of Marine Crude Oils. AAPG Bulletin, 76(7): 1000-1007 https://doi.org/10.1306/bdff8952-1718-11d7-8645000102c1865d
      Cai, C. F., Li, K. K., Ma, A. L., et al., 2009. Distinguishing Cambrian from Upper Ordovician Source Rocks: Evidence from Sulfur Isotopes and Biomarkers in the Tarim Basin. Organic Geochemistry, 40(7): 755-768. https://doi.org/10.1016/j.orggeochem.2009.04.008
      Chen, Z. H., Chai, Z., Cheng, B., et al., 2021. Geochemistry of High-Maturity Crude Oil and Gas from Deep Reservoirs and Their Geological Significance: A Case Study on Shuntuoguole Low Uplift, Tarim Basin, Western China. AAPG Bulletin, 105(1): 65-107. https://doi.org/10.1306/07072019015
      Dai, J. X., Song, Y., Wu, C. L., et al., 1992. Characteristics of Carbon Isotopes of Organic Alkane Gases in Petroliferous Basins of China. Journal of Petroleum Science and Engineering, 7(3-4): 329-338. https://doi.org/10.1016/0920-4105(92)90028-y
      Deng, Q., Wang, H. Z., Wei, Z. W., et al., 2021. Different Accumulation Mechanisms of Organic Matter in Cambrian Sedimentary Successions in the Western and Northeastern Margins of the Tarim Basin, NW China. Journal of Asian Earth Sciences, 207: 104660. https://doi.org/10.1016/j.jseaes.2020.104660
      Guo, L. G., Xiao, X. M., Tian, H., et al., 2009. Distinguishing Gases Derived from Oil Cracking and Kerogen Maturation: Insights from Laboratory Pyrolysis Experiments. Organic Geochemistry, 40(10): 1074-1084. https://doi.org/10.1016/j.orggeochem.2009.07.007
      Hu, G., Liu, W. H., Luo, H. Y., et al., 2019. The Impaction of Original Organism Assemblages in Source Rocks on the Kerogen Carbon Isotopic Compositions: A Case Study of the Early Paleozoic Source Rocks in the Tarim Basin, China. Bulletin of Mineralogy, Petrology and Geochemistry, 38(5): 902-913, 869(in Chinese with English abstract).
      James, A. T., 1983. Correlation of Natural Gas by Use of Carbon Isotopic Distribution between Hydrocarbon Components. AAPG Bulletin, 67(7): 1176-1191. https://doi.org/10.1306/03b5b722-16d1-11d7-8645000102c1865d
      James, A. T., 1990. Correlation of Reservoired Gases Using the Carbon Isotopic Compositions of Wet Gas Components. AAPG Bulletin, 74(9): 1441-1458. https://doi.org/10.1306/0c9b24f7-1710-11d7-8645000102c1865d
      Kvalheim, O. M., Christy, A. A., Telnæs, N., et al., 1987. Maturity Determination of Organic Matter in Coals Using the Methylphenanthrene Distribution. Geochimica et Cosmochimica Acta, 51(7): 1883-1888. https://doi.org/10.1016/0016-7037(87)90179-7
      Li, B., Zhang, X., Guo, Q., et al., 2022. Basin Modeling of Cambrian Ultra-Deep Petroleum System in Tarim Basin. Acta Petrolei Sinica, 43(6): 804-815(in Chinese with English abstract).
      Liu, W. H., Hu, G., Teng, G. E., 2016. Organism Assemblages in the Paleozoic Source Rocks and Their Implications. Oil & Gas Geology, 37(5): 617-626(in Chinese with English abstract).
      Li, F., Zhu, G. Y., Lü, X. X., et al., 2021. The Disputes on the Source of Paleozoic Marine Oil and Gas and the Determination of the Cambrian System as the Main Source Rocks in Tarim Basin. Acta Petrolei Sinica, 42(11): 1417-1436(in Chinese with English abstract).
      Luo, M. X., Cao, Z. C., Xu, Q. Q., et al., 2024. Geochemical Characteristics and Geological Significance of Sinian Crude Oil from Well Tashen 5, Tahe Oilfield, Tarim Basin. Bulletin of Geological Science and Technology, 43(1): 135-149(in Chinese with English abstract).
      Li, H. L., Gao, J., Cao, Z. C., et al., 2023. Spatial-Temporal Distribution of Fluid Activities and Its Significance for Hydrocarbon Accumulation in the Strike-Slip Fault Zones, Shuntuoguole Low-Uplift, Tarim Basin. Earth Science Frontiers, 30(6): 316-328(in Chinese with English abstract).
      Ma, Y. S., Cai, X. Y., Yun, L., et al., 2022. Practice and Theoretical and Technical Progress in Exploration and Development of Shunbei Ultra-Deep Carbonate Oil and Gas Field, Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 1-17(in Chinese with English abstract). doi: 10.1016/S1876-3804(22)60001-6
      Ping, H. W., Chen, H. H., Thiéry, R., et al., 2017. Effects of Oil Cracking on Fluorescence Color, Homogenization Temperature and Trapping Pressure Reconstruction of Oil Inclusions from Deeply Buried Reservoirs in the Northern Dongying Depression, Bohai Bay Basin, China. Marine and Petroleum Geology, 80: 538-562. https://doi.org/10.1016/j.marpetgeo.2016.12.024
      Ping, H. W., Chen, H. H., Zhu, J. Z., et al., 2018. Origin, Source, Mixing, and Thermal Maturity of Natural Gases in the Panyu Lower Uplift and the Baiyun Depression, Pearl River Mouth Basin, Northern South China Sea. AAPG Bulletin, 102(11): 2171-2200. https://doi.org/10.1306/04121817160
      Ping, H. W., Chen, H. H., Zhai, P. Q., et al., 2021. Evidence for Deeply Buried, Oil-Prone Source Rocks in the Baiyun Depression, Pearl River Mouth Basin, Northern South China Sea. AAPG Bulletin, 105(4): 749-783. https://doi.org/10.1306/04072018144
      Qi, L. X., 2016. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin. China Petroleum Exploration, 21(3): 38-51(in Chinese with English abstract).
      Qi, L. X., 2020. Characteristics and Inspiration of Ultra-Deep Fault-Karst Reservoir in the Shunbei Area of the Tarim Basin. China Petroleum Exploration, 25(1): 102-111(in Chinese with English abstract).
      Radke, M., 1988. Application of Aromatic Compounds as Maturity Indicators in Source Rocks and Crude Oils. Marine and Petroleum Geology, 5(3): 224-236. https://doi.org/10.1016/0264-8172(88)90003-7
      Radke, M., Leythaeuser, D., Teichmüller, M., 1984. Relationship between Rank and Composition of Aromatic Hydrocarbons for Coals of Different Origins. Org. Geochem. 6, 423-430. http://doi.org/10.1016/0146-6380(84)90065-2
      Wang, Q. H., Cai, Z. Z., Ping, H. W., et al., 2025. Geochemical Characteristics, Charging Differences, and Controlling Factors of the Ordovician Crude Oil in the FI17 Strike-Slip Fault Zone of the Fuman Oilfield, Tarim Basin. Bulletin of Geological Science and Technology, 44(5): 13-28 (in Chinese with English abstract).
      Waples, D. W., Tornheim, L., 1978. Mathematical Models for Petroleum-Forming Processes: Carbon Isotope Fractionation. Geochimica et Cosmochimica Acta, 42(5): 467-472. https://doi.org/10.1016/0016-7037(78)90196-5
      Whiticar, M. J., 1994. Correlation of Natural Gases with Their Source. In: Leslie, B. M.; Wallace, G. D., eds., The Petroleum System: From Source to Trap. AAPG Memoir, 261-283. https://doi.org/10.1306/m60585c16
      Whiticar, M. J., 1996. Stable Isotope Geochemistry of Coals, Humic Kerogens and Related Natural Gases. International Journal of Coal Geology, 32(1-4): 191-215. https://doi.org/10.1016/s0166-5162(96)00042-0
      Wang, Q. H., Yang, H. J., Wang, R. J., et al., 2021. Discovery and Exploration Technology of Fault-Controlled Large Oil and Gas Fields of Ultra-Deep Formation in Strike Slip Fault Zone in Tarim Basin. China Petroleum Exploration, 26(4): 58-71(in Chinese with English abstract).
      Wang, Q. H., Yang, H. J., Li, Y., et al., 2022. Control of Strike-Slip Fault on the Large Carbonate Reservoir in Fuman, Tarim Basin: A Reservoir Model. Earth Science Frontiers, 29(6): 239-251(in Chinese with English abstract).
      Stahl, W., 1974. Carbon Isotope Fractionations in Natural Gases. Nature, 251: 134-135. https://doi.org/10.1038/251134a0
      Stahl, W. J., 1979. Carbon Isotopes in Petroleum Geochemistry. Lectures in Isotope Geology. Springer, Berlin, Heidelberg: Berlin, Heidelberg, 274-282. https://doi.org/10.1007/978-3-642-67161-6_23
      Schoell, M., 1980. The Hydrogen and Carbon Isotopic Composition of Methane from Natural Gases of Various Origins. Geochimica et Cosmochimica Acta, 44(5): 649-661. https://doi.org/10.1016/0016-7037(80)90155-6
      Schoell, M., 1984. Stable Isotopes in Petroleum Research. Advances in Petroleum Geochemistry. Academic Press, London, 215-245.
      Sofer, Z., 1984. Stable Carbon Isotope Compositions of Crude Oils: Application to Source Depositional Environments and Petroleum Alteration. AAPG Bulletin, 68: 68(1): 31-49. https://doi.org/10.1306/ad460963-16f7-11d7-8645000102c1865d
      Sofer, Z., Zumberge, J. E., Lay, V., 1986. Stable Carbon Isotopes and Biomarkers as Tools in Understanding Genetic Relationship, Maturation, Biodegradation, and Migration of Crude Oils in the Northern Peruvian Oriente (Maranon) Basin. Organic Geochemistry, 10(1-3): 377-389. https://doi.org/10.1016/0146-6380(86)90037-9
      Yang, H. J., Chen, Y. Q., Tian, J., et al., 2020. Great Discovery and Its Significance of Ultra-Deep Oil and Gas Exploration in Well Luntan-1 of the Tarim Basin. China Petroleum Exploration, 25(2): 62-72(in Chinese with English abstract).
      Yun, L., 2021. Controlling Effect of NE Strike-Slip Fault System on Reservoir Development and Hydrocarbon Accumulation in the Eastern Shunbei Area and Its Geological Significance, Tarim Basin. China Petroleum Exploration, 26(3): 41-52(in Chinese with English abstract).
      Yun, L., Deng, S., 2022. Structural Styles of Deep Strike-Slip Faults in Tarim Basin and the Characteristics of Their Control on Reservoir Formation and Hydrocarbon Accumulation: A Case Study of Shunbei Oil and Gas Field. Acta Petrolei Sinica, 43(6): 770-787(in Chinese with English abstract).
      Zhang, Z. N., Liu, W. H., Zheng, J. J., et al., 2006. Characteristics of Carbon Isotopic Composition of Soluble Organic Components of Deep Source Rocks in Tarim Basin. Acta Sedimentologica Sinica, 24(5): 769-773(in Chinese with English abstract).
      Zhu, G. Y., Chen, F. R., Chen, Z. Y., et al., 2016. Discovery and Basic Characteristics of the High-Quality Source Rocks of the Cambrian Yuertusi Formation in Tarim Basin. Natural Gas Geoscience, 27(1): 8-21(in Chinese with English abstract).
      Zhu, G. Y., Chen, F. R., Wang, M., et al., 2018. Discovery of the Lower Cambrian High-Quality Source Rocks and Deep Oil and Gas Exploration Potential in the Tarim Basin, China. AAPG Bulletin, 102(10): 2123-2151. https://doi.org/10.1306/03141817183
      Zhu, G. Y., Hu, J. F., Chen, Y. Q., et al., 2022. Geochemical Characteristics and Formation Environment of Source Rock of the Lower Cambrian Yuertusi Formation in Well Luntan 1 in Tarim Basin. Acta Geologica Sinica, 96(6): 2116-2130(in Chinese with English abstract).
      Zhu, C. L., Yan, H., Yun, L., et al., 2014. Characteristics of Cambrian Source Rocks in Well XH1, Shaya Uplift, Tarim Basin. Petroleum Geology & Experiment, 36(5): 626-632(in Chinese with English abstract).
      Zhang, Y. B., Li, X. B., Wang, Z. D., et al., 2022. Origin of Carbon Isotopic Inversion of Ordovician Crude Oil and Group Components in Tahe Oilfield, Tarim Basin. Natural Gas Geoscience, 33(8): 1332-1343(in Chinese with English abstract).
      Zhang, Y., Cao, Z. C., Chen, H. H., et al., 2023. Difference of Hydrocarbon Charging Events and Their Contribution Percentages to Ordovician Reservoirs among Strike-Slip Fault Belts in Shunbei Area, Tarim Basin. Earth Science, 48(6): 2168-2188(in Chinese with English abstract).
      曹自成, 云露, 平宏伟, 等, 2025. 塔里木盆地顺北地区奥陶系天然气地球化学与成因. 地质科技通报, 44(5): 40-52.
      胡广, 刘文汇, 罗厚勇, 等, 2019. 成烃生物组合对烃源岩干酪根碳同位素组成的影响: 以塔里木盆地下古生界烃源岩为例. 矿物岩石地球化学通报, 38(5): 902-913, 869.
      李斌, 张欣, 郭强, 等, 2022. 塔里木盆地寒武系超深层含油气系统盆地模拟. 石油学报, 43(6): 804-815.
      刘文汇, 胡广, 腾格尔, 等, 2016. 早古生代烃源形成的生物组合及其意义. 石油与天然气地质, 37(5): 617-626.
      李峰, 朱光有, 吕修祥, 等, 2021. 塔里木盆地古生界海相油气来源争议与寒武系主力烃源岩的确定. 石油学报, 42(11): 1417-1436.
      罗明霞, 曹自成, 徐勤琪, 等, 2024. 塔里木盆地塔河油田塔深5井震旦系原油地球化学特征及地质意义. 地质科技通报, 43(1): 135-149.
      李慧莉, 高键, 曹自成, 等, 2023. 塔里木盆地顺托果勒低隆起走滑断裂带流体时空分布及油气成藏意义. 地学前缘, 30(6): 316-328.
      马永生, 蔡勋育, 云露, 等, 2022. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发, 49(1): 1-17.
      漆立新, 2016. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义. 中国石油勘探, 21(3): 38-51
      漆立新, 2020. 塔里木盆地顺北超深断溶体油藏特征与启示. 中国石油勘探, 25(1): 102-111.
      王清华, 蔡振忠, 平宏伟, 等, 2025. 塔里木盆地富满油田FI17走滑断裂带奥陶系原油地化特征、充注差异及其控制因素. 地质科技通报, 44(5): 13-28.
      王清华, 杨海军, 汪如军, 等, 2021. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新. 中国石油勘探, 26(4): 58-71.
      王清华, 杨海军, 李勇, 等, 2022. 塔里木盆地富满大型碳酸盐岩油气聚集区走滑断裂控储模式. 地学前缘, 29(6): 239-251.
      杨海军, 陈永权, 田军, 等, 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62-72.
      云露, 2021. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义. 中国石油勘探, 26(3): 41-52.
      云露, 邓尚, 2022. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例. 石油学报, 43(6): 770-787.
      张中宁, 刘文汇, 郑建京, 等, 2006. 塔里木盆地深层烃源岩可溶有机组分的碳同位素组成特征. 沉积学报, 24(5): 769-773.
      朱光有, 陈斐然, 陈志勇, 等, 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征. 天然气地球科学, 27(1): 8-21.
      朱光有, 胡剑风, 陈永权, 等, 2022. 塔里木盆地轮探1井下寒武统玉尔吐斯组烃源岩地球化学特征与形成环境. 地质学报, 96(6): 2116-2130.
      朱传玲, 闫华, 云露, 等, 2014. 塔里木盆地沙雅隆起星火1井寒武系烃源岩特征. 石油实验地质, 36(5): 626-632.
      张亚斌, 李晓斌, 王作栋, 等, 2022. 塔里木盆地塔河油田奥陶系原油及族组分碳同位素倒转成因分析. 天然气地球科学, 33(8): 1332-1343.
      张钰, 曹自成, 陈红汉, 等, 2023. 顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性. 地球科学, 48(6): 2168-2188. doi: 10.3799/dqkx.2023.103
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  138
    • HTML全文浏览量:  17
    • PDF下载量:  10
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-11-12
    • 刊出日期:  2025-12-25

    目录

      /

      返回文章
      返回