• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东海含油气盆地基础地质问题研究进展及展望

    朱伟林 张迎朝 蒋一鸣 李宁 赵世杰 唐贤君 何新建 付晓伟

    朱伟林, 张迎朝, 蒋一鸣, 李宁, 赵世杰, 唐贤君, 何新建, 付晓伟, 2025. 东海含油气盆地基础地质问题研究进展及展望. 地球科学, 50(12): 4783-4800. doi: 10.3799/dqkx.2025.185
    引用本文: 朱伟林, 张迎朝, 蒋一鸣, 李宁, 赵世杰, 唐贤君, 何新建, 付晓伟, 2025. 东海含油气盆地基础地质问题研究进展及展望. 地球科学, 50(12): 4783-4800. doi: 10.3799/dqkx.2025.185
    Zhu Weilin, Zhang Yingzhao, Jiang Yiming, Li Ning, Zhao Shijie, Tang Xianjun, He Xinjian, Fu Xiaowei, 2025. Research Advances and Prospects on Fundamental Geological Issues of the East China Sea Petroliferous Basin. Earth Science, 50(12): 4783-4800. doi: 10.3799/dqkx.2025.185
    Citation: Zhu Weilin, Zhang Yingzhao, Jiang Yiming, Li Ning, Zhao Shijie, Tang Xianjun, He Xinjian, Fu Xiaowei, 2025. Research Advances and Prospects on Fundamental Geological Issues of the East China Sea Petroliferous Basin. Earth Science, 50(12): 4783-4800. doi: 10.3799/dqkx.2025.185

    东海含油气盆地基础地质问题研究进展及展望

    doi: 10.3799/dqkx.2025.185
    基金项目: 

    国家自然科学基金 42430806

    详细信息
      作者简介:

      朱伟林(1956-),研究员,主要从事石油地质研究. ORCID:0009-0005-1699-645X. E-mail:zhuwl@tongji.edu.cn

      通讯作者:

      付晓伟, E-mail:fu_xiaowei@tongji.edu.cn

    • 中图分类号: P618

    Research Advances and Prospects on Fundamental Geological Issues of the East China Sea Petroliferous Basin

    • 摘要: 东海盆地作为东亚陆缘构造演化的关键区域,其基底属性、俯冲过程及多期构造-沉积耦合机制长期存在争议.在现有地质-地球物理资料全面分析研究基础上,结合前人的证据和认识,对东海盆地关键基础地质问题进行了系统总结和评述,并提出未来研究的思路和方向.基底归属争议聚焦于华南陆壳延伸与外来地体拼贴两种假说,地壳厚度突变与锆石同位素为后者提供新证据,但地壳演化及碰撞造山带的时空约束仍待完善;中生代俯冲过程呈现低角度俯冲-板片拆离-岩浆弧迁移等阶段性演化,早侏罗世岛弧岩浆岩的发现修正了传统平俯冲模型,但白垩纪及新生代岩浆弧位置仍缺乏海域弧岩浆岩的直接证据.这很大程度上影响了中生界盆地性质及演化的认识.新生代盆地格局北部受俯冲后撤控制,南部可能与南海扩张密切相关,但还需俯冲及南海拉张过程等关键证据的支持.中生代古地理格局模糊,新生代物源体系突变及构造-沉积响应分异显著.当前研究缺乏华南陆域-东海盆地-琉球群岛地质证据的系统对比,未来需整合深部地球物理探测、高精度年代学与数值模拟,构建“俯冲-岩浆-沉积”协同演化模型,为油气资源勘探与陆缘动力学研究提供理论支撑.

       

    • 图  1  东海盆地构造区划

      Zhu et al.(2019修改).东海盆地包括东海陆架盆地及冲绳海槽盆地

      Fig.  1.  Tectonic division map of the East China Sea basin

      图  2  东海盆地南部地球物理综合探测剖面及岩石圈地学断面(杨文达等,2010修改)

      Fig.  2.  Integrated geophysical profile and lithospheric cross⁃section in the southern East China Sea basin (modified from Yang et al., 2010)

      图  3  东海外来块体演化模式(Fu et al., 2022)

      Fig.  3.  Evolutionary model of exotic terranes in the East China Sea (Fu et al., 2022)

      图  4  东海盆地性质及成因模式

      Fig.  4.  Nature and genetic models of the East China Sea basin

      图  5  冲绳岛构造纲要及地层分布

      Nakae et al.(2010)修改

      Fig.  5.  Tectonic framework and stratigraphic distribution map of Okinawa Island

      图  6  冲绳岛增生楔与象山石浦野外露头剖面照片

      a.琉球群岛冲绳岛北部晚白垩世名护组泥质片岩;b. 琉球群岛冲绳岛北部晚白垩世名护组砂岩;c. 琉球群岛冲绳岛北部始新统嘉阳组砂岩;d. 琉球群岛冲绳岛北部始新统嘉阳组泥质片岩;e. 琉球群岛冲绳岛北部始新统嘉阳组砂岩、泥岩互层,泥岩变质;f. 琉球群岛冲绳岛北部始新统嘉阳组大型褶皱;g. 象山石浦早白垩世灰岩;h. 象山石浦早白垩世灰岩

      Fig.  6.  Field outcrop photos of the Okinawa accretionary wedge and Shipu, Xiangshan

      图  7  东海盆地北部构造演化模式

      Zhu et al.(2019)Jiang et al.(2025)修改

      Fig.  7.  Model of tectonic evolution in the northern East China Sea basin

      表  1  东海陆架盆地钻井揭示的岩浆岩及变质岩

      Table  1.   Magmatic and metamorphic rocks revealed by drilling in the East China Sea Shelf basin

      位置 井号 取样深度(m) 岩性 测试方法 年龄(Ma) 资料来源
      福州凹陷 W1 3 022~3 032 花岗岩 锆石U-Pb 205及223 郭真等(2015)
      W2 凝灰岩 K-Ar体积法 70.42 杨传胜等(2012)
      W3 2 247~2 281 玄武岩 杨传胜等(2012)
      椒江凹陷 ECS611 2 436~2 439 闪长岩 锆石U-Pb法 118.1 Xu et al.(2017)
      丽水凹陷 ECS2611 4 080~4 090 花岗岩 锆石U-Pb法 181±1 Xu et al.(2017)
      ECS681 4 090~4 100 花岗岩 锆石U-Pb法 181±1 Xu et al.(2017)
      LS-1 3 318 安山岩 锆石U-Pb法 110.7±0.5 Hu et al.(2025)
      W4 2 941 花岗岩 锆石U-Pb 174.4 Yuan(2018)
      W4 2 982.61~2 983.07 花岗岩 K-Ar体积法 113 杨传胜等(2012)
      W5 3 312~3 326 安山岩 K-Ar体积法 75 杨传胜等(2012)
      W5 3 348~3 353 花岗闪长岩 K-Ar体积法 115 杨传胜等(2012)
      A-1 2 373.50~2 693.18 片麻岩 Rb-Sr法 1 680 杨传胜等(2012)
      A-2 2 489~2 809 片麻岩 Rb-Sr法 1 806 Li et al.(2000)
      A-3 2 496~2 980 片麻岩 锆石U-Pb 1 848±3.3 刘金水等(2020)
      钱塘凹陷 W6 4 498~4 501 流纹质凝灰岩 SHRIMP锆石U-Pb 107.5±3.9 杨传胜等(2012)
      西湖凹陷 XH-2 3 844 安山岩 锆石U-Pb法 107.5±0.4 Hu et al.(2025)
      XH-3 4 632 安山岩 锆石U-Pb法 108.7±0.4 Hu et al.(2025)
      XH-4 4 546 凝灰岩 锆石U-Pb法 109.6±0.4 Hu et al.(2025)
      XH-5 4 360.0~4363.5 安山岩 锆石U-Pb法 112.4±0.3 Hu et al.(2025)
      XH-6 4 888 安山岩 K-Ar法 109.7±1.0 Hu et al.(2025)
      XH-1 3 938 花岗岩 锆石U-Pb法 106.6 Hu et al.(2025)
      W7 4 946.0~4 949.5 安山岩 K-Ar稀释法 98.8±2.0 杨传胜等(2012)
      W8 3 888.0~3 920.5 安山岩 K-Ar稀释法 56.5±1.4 杨传胜等(2012)
      W9 3 639.45
      3 640.44~3 641.70
      安山岩
      凝灰岩
      K-Ar
      稀释法
      54.5±1.9
      53.1±1.6
      杨传胜等(2012)
      W10 2 866.3~2 866.5
      3109.39~3113.73
      安山岩
      凝灰岩
      K-Ar
      体积法
      42.5
      45.9
      杨传胜等(2012)
      W11 1 996.96~1 998.68 凝灰岩 K-Ar
      体积法
      14.7, 31.7 杨传胜等(2012)
      注:应保密要求,文献井号进行了保密处理,需查询原文献来获得准确井号.
      下载: 导出CSV
    • Chen, C. F., Zhu, W. L., Fu, X. W., et al., 2017. Provenance Change and Its Influence in Late Paleocene, Jiaojiang Sag, East China Sea Shelf Basin. Journal of Tongji University (Natural Science), 45(10): 1522-1530, 1548(in Chinese with English abstract).
      Chen, C. H., Lee, C. Y., Shinjo, R., 2008. Was There Jurassic Paleo⁃Pacific Subduction in South China?: Constraints from 40Ar/39Ar Dating, Elemental and Sr⁃Nd⁃Pb Isotopic Geochemistry of the Mesozoic Basalts. Lithos, 106(1-2): 83-92. https://doi.org/10.1016/j.lithos.2008.06.009
      Chen, Z., Zhang, C. M., Hou, G. W., et al., 2020. Fault Distribution Patterns and Their Control on Sand Bodies in Pinghu Formation of Xihu Sag in East China Sea Shelf Basin. Oil & Gas Geology, 41(4): 824-837 (in Chinese with English abstract).
      Feng, X. J., Cai, D. S., 2006. Controls of Mesozoic and Cenozoic Tectonic Evolution on Source Rock Distribution in East China Sea Shelf Basin. China Offshore Oil and Gas, 18(6): 372-375 (in Chinese with English abstract).
      Feng, X. J., Cai, D. S., Wang, C. X., et al., 2003. The Meso⁃Cenozoic Tectonic Evolution in East China Sea Shelf Basin. China Offshore Oil and Gas, 15(1): 33-37(in Chinese with English abstract).
      Flower, M. F. J., Russo, R. M., Tamaki, K., et al., 2001. Mantle Contamination and the Izu-Bonin-Mariana(IBM) 'High-Tide Mark': Evidence for Mantle Extrusion Caused by Tethyan Closure. Tectonophysics, 333(1-2): 9-34. https://doi.org/10.1016/s0040-1951(00)00264-x
      Fu, X. W., Ding, W. W., Dadd, K., et al., 2022. An Exotic Origin of the Eastern East China Sea Basement before ~150 Ma. Science Bulletin, 67(19): 1939-1942. https://doi.org/10.1016/j.scib.2022.08.029
      Fu, X. W., Gao, S. L., Zhu, W. L., 2024. The Northeast Mindoro Block is the Conjugate Margin of the Southern East China Sea Basin: Insight from Detrital Zircon Data. Marine and Petroleum Geology, 162: 106710. https://doi.org/10.1016/j.marpetgeo.2024.106710
      Fu, X. W., Zhu, W. L., Chen, C. F., et al., 2015. Detrital Zircon Provenance of Upper Mingyuefeng Formation in West Slope of Lishui⁃Jiaojiang Sag, the East China Sea. Earth Science, 40(12): 1987-2001(in Chinese with English abstract).
      Gao, T. J., Huang, H., Lin, Z. X., 1991. Two Significant Terrane Boundaries in Southeastern Coast of China. Geology of Fujian, 10(1): 1-15(in Chinese with English abstract).
      Guo, Z., Liu, C. Y., Tian, J. F., 2015. Structural Characteristics and Main Controlling Factors of Inversion Structures in Xihu Depression in Donghai Basin. Earth Science Frontiers, 22(3): 59-67(in Chinese with English abstract).
      Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer⁃Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/s1367⁃9120(01)00069⁃4
      Hao, T. Y., Xu, Y., Xu, Y., et al., 2006. Some New Understandings on Deep Structure in Yellow Sea and East China Sea. Chinese Journal of Geophysics, 49(2): 458-468 (in Chinese with English abstract). doi: 10.1002/cjg2.855
      Hou, F. H., Zhang, X. H., Li, G., et al., 2015. From Passive Continental Margin to Active Continental Margin: Basin Recordings of Mesozoic Tectonic Regime Transition of the East China Sea Shelf Basin. Oil Geophysical Prospecting, 50(5): 980-990, 807 (in Chinese with English abstract).
      Hsü, K. J., Li, J. L., Chen, H. H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183(1-4): 9-39. https://doi.org/10.1016/0040⁃1951(90)90186⁃C
      Hu, G., Hu, W. X., Cao, J., et al., 2012. Deciphering the Early Cretaceous Transgression in Coastal Southeastern China: Constraints Based on Petrography, Paleontology and Geochemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 317-318: 182-195. https://doi.org/10.1016/j.palaeo.2012.01.008
      Hu, L. C., Li, N., Fu, X. W., et al., 2025. Unveiling the ∼110 Ma Continental Arc in South China: Geochemical and Isotopic Insights from Offshore Magmatic Records in the East China Sea Basin. Gondwana Research, 143: 239-255. https://doi.org/10.1016/j.gr.2025.03.013
      Hu, X. M., Huang, Z. C., Wang, J. G., et al., 2012. Geology of the Fuding Inlier in Southeastern China: Implication for Late Paleozoic Cathaysian Paleogeography. Gondwana Research, 22(2): 507-518. https://doi.org/10.1016/j.gr.2011.09.016
      Isozaki, Y., Aoki, K., Nakama, T., et al., 2010. New Insight into a Subduction⁃Related Orogen: A Reappraisal of the Geotectonic Framework and Evolution of the Japanese Islands. Gondwana Research, 18(1): 82-105. https://doi.org/10.1016/j.gr.2010.02.015
      Jiang, W. W., Song, H. B., Hao, T. Y., et al., 2001. The Characters of Geology and Geophysics of Shell Basins of East China Sea and Adjacent Sea Area. Progress in Geophysics, 16(2): 18-27 (in Chinese with English abstract).
      Jiang, Y. M., He, X. J., Zhang, S. L., 2016. The Characteristics of "Inverse⁃Transform" Tectonic Migration Evolution of the East China Sea Shelf Basin—By Taking the Marginal Structure of Xihu Sag for Exammple. Journal of Yangtze University (Natural Science Edition), 13(26): 1-8(in Chinese with English abstract).
      Jiang, Y. M., Tang, X. J., Fu, X. W., et al., 2025. Differential Geological Responses and Geodynamic Mechanisms of Major Cenozoic Tectonic Movements in the East China Sea Shelf Basin. Journal of Asian Earth Sciences, 284: 106569. https://doi.org/10.1016/j.jseaes.2025.106569
      Jiang, Y. M., Wu, L. L., Qin, J., et al., 2024. Deciphering Tectonic Mechanism and Origin of T85 Horizon in Lishui Depression, East China Sea Basin. Earth Science, 49(12): 4450-4464(in Chinese with English abstract).
      Jiang, Y. H., Zhou, Q. P., Ni, H. Y., et al., 2023. Progress of Environmental Geological Investigation and Research in the Yangtze River Economic Zone. East China Geology, 44(3): 239-261(in Chinese with English abstract).
      Kizaki, K., 1986. Geology and Tectonics of the Ryukyu Islands. Tectonophysics, 125(1-3): 193-207. https://doi.org/10.1016/0040⁃1951(86)90014⁃4
      Li, C. F., Zhou, Z. Y., Ge, H. P., et al., 2009. Rifting Process of the Xihu Depression, East China Sea Basin. Tectonophysics, 472(1-4): 135-147. https://doi.org/10.1016/j.tecto.2008.04.026
      Li, J. B., Ding, W. W., Wu, Z. Y., et al., 2017. Origin of the East China Sea. Science China: Earth Sciences, 47(4): 406-411 (in Chinese).
      Li, J. H., Dong, S. W., Cawood, P. A., et al., 2018. An Andean⁃Type Retro⁃Arc Foreland System beneath Northwest South China Revealed by SINOPROBE Profiling. Earth and Planetary Science Letters, 490: 170-179. https://doi.org/10.1016/j.epsl.2018.03.008
      Li, J. H., Zhang, Y. Q., Dong, S. W., et al., 2014. Cretaceous Tectonic Evolution of South China: A Preliminary Synthesis. Earth⁃Science Reviews, 134: 98-136. https://doi.org/10.1016/j.earscirev.2014.03.008
      Li, P. L., Hou, H. B., Ma, H. F., 2000. Tectonics and Petroleum Potential of the East China Sea Shelf Rift Basin. Acta Geologica Sinica, 74(3): 651-660. https://doi.org/10.1111/j.1755⁃6724.2000.tb00037.x
      Li, P. L., Zhu, P., 1992. Basement Tectonic Evolution and Basin Formation Mechanism of the East China Sea Shelf Basin. Marine Geology & Quaternary Geology, 12(3): 37-43 (in Chinese with English abstract).
      Li, S. Z., Suo, Y. H., Li, X. Y., et al., 2018. Mesozoic Plate Subduction in West Pacific and Tectono⁃Magmatic Response in the East Asian Ocean⁃Continent Connection Zone. Chinese Science Bulletin, 63(16): 1550-1593(in Chinese). doi: 10.1360/N972017-01113
      Li, X. H., Li, Z. X., Li, W. X., et al., 2006. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island. The Journal of Geology, 114(3): 341-353. https://doi.org/10.1086/501222
      Li, Z. X., Li, X. H., 2007. Formation of the 1 300 km⁃Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat⁃Slab Subduction Model. Geology, 35(2): 179. https://doi.org/10.1130/g23193a.1
      Li, Z. X., Li, X. H., Chung, S. L., et al., 2012. Magmatic Switch⁃on and Switch⁃Off along the South China Continental Margin since the Permian: Transition from an Andean⁃Type to a Western Pacific⁃Type Plate Boundary. Tectonophysics, 532-535: 271-290. https://doi.org/10.1016/j.tecto.2012.02.011
      Lin, S. F., Xing, G. F., Davis, D. W., et al., 2018. Appalachian⁃Style Multi⁃Terrane Wilson Cycle Model for the Assembly of South China. Geology, 46(4): 319-322. https://doi.org/10.1130/g39806.1
      Liu, J. H., Wu, J. S., Fang, Y. X., et al., 2007. Pre⁃Cenozoic Groups in the Shelf Basin of the East China Sea. Acta Oceanologica Sinica, 29(1): 66-75 (in Chinese with English abstract).
      Liu, J. S., Xu, H. Z., Jiang, Y. M., et al., 2020. Mesozoic and Cenozoic Basin Structure and Tectonic Evolution in the East China Sea Basin. Acta Geologica Sinica, 94(3): 675-691 (in Chinese with English abstract).
      Liu, L., Xu, X. S., Xia, Y., 2016. Asynchronizing Paleo⁃Pacific Slab Rollback beneath SE China: Insights from the Episodic Late Mesozoic Volcanism. Gondwana Research, 37: 397-407. https://doi.org/10.1016/j.gr.2015.09.009
      Lu, H., Jia, D., Wang, Z., et al., 1994. Tectonic Evolution of the Dongshan Terrane, Fujian Province, China. Journal of South American Earth Sciences, 7(3/4): 349-365. https://doi.org/10.1016/0895⁃9811(94)90020⁃5
      Maruyama, S., Isozaki, Y., Kimura, G., et al., 1997. Paleogeographic Maps of the Japanese Islands: Plate Tectonic Synthesis from 750 Ma to the Present. Island Arc, 6(1): 121-142. https://doi.org/10.1111/j.1440⁃1738.1997.tb00043.x
      Nakae, S., Kaneko, N., Miyazaki, K., et al., 2010. Geological Map of Japan 1∶200 000, Yoron Jima and Naha. Geological Survey of Japan, AIST.
      Niu, Y. L., Liu, Y., Xue, Q. Q., et al., 2015. Exotic Origin of the Chinese Continental Shelf: New Insights into the Tectonic Evolution of the Western Pacific and Eastern China since the Mesozoic. Science Bulletin, 60(18): 1598-1616. https://doi.org/10.1007/s11434⁃015⁃0891⁃z
      Northrup, C. J., Royden, L. H., Burchfiel, B. C., 1995. Motion of the Pacific Plate Relative to Eurasia and Its Potential Relation to Cenozoic Extension along the Eastern Margin of Eurasia. Geology, 23(8): 719. https://doi.org/10.1130/0091-7613(1995)0230719:motppr>2.3.co;2 doi: 10.1130/0091-7613(1995)0230719:motppr>2.3.co;2
      Ren, J. Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10)3337-3361(in Chinese with English abstract).
      Ren, J. Y., Tamaki, K., Li, S. T., et al., 2002. Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas. Tectonophysics, 344(3/4): 175-205. https://doi.org/10.1016/S0040⁃1951(01)00271⁃2
      Saitoh, Y., Masuda, F., 2004. Miocene Sandstone of 'Continental' Origin on Iriomote Island, Southwest Ryukyu Arc, Eastern Asia. Journal of Asian Earth Sciences, 24(2): 137-144. https://doi.org/10.1016/j.jseaes.2003.10.002
      Shang, L. N., Zhang, X. H., Jia, Y. G., et al., 2017. Late Cenozoic Evolution of the East China Continental Margin: Insights from Seismic, Gravity, and Magnetic Analyses. Tectonophysics, 698: 1-15. https://doi.org/10.1016/j.tecto.2017.01.003
      Shi, H. S., Li, C. F., 2012. Mesozoic and Early Cenozoic Tectonic Convergence⁃to⁃Rifting Transition Prior to Opening of the South China Sea. International Geology Review, 54(15): 1801-1828. https://doi.org/10.1080/00206814.2012.677136
      Sibuet, J. C., Zhao, M. H., Wu, J., et al., 2021. Geodynamic and Plate Kinematic Context of South China Sea Subduction during Okinawa Trough Opening and Taiwan Orogeny. Tectonophysics, 817: 229050. https://doi.org/10.1016/j.tecto.2021.229050
      Suo, Y. H., Li, S. Z., Jin, C., et al., 2019. Eastward Tectonic Migration and Transition of the Jurassic⁃Cretaceous Andean⁃Type Continental Margin along Southeast China. Earth⁃Science Reviews, 196: 102884. https://doi.org/10.1016/j.earscirev.2019.102884
      Suo, Y. H., Li, S. Z., Zhao, S. J., et al., 2015. Continental Margin Basins in East Asia: Tectonic Implications of the Meso⁃Cenozoic East China Sea Pull⁃Apart Basins. Geological Journal, 50(2): 139-156. https://doi.org/10.1002/gj.2535
      Tian, B., Li, X. Y., Pang, G. Y., et al., 2012. Sedimentary Systems of the Superimposed Rift⁃Subsidence Basin: Taking Lishui⁃Jiaojiang Sag of the East China Sea as an Example. Acta Sedimentologica Sinica, 30(4): 696-705 (in Chinese with English abstract).
      Tao, R. M., 1994. Discussion on Basin Formation Mechanism and Basin Types in East China Sea Continental Shelf Basin Based on West Pacific Plate Tectonics. China Offshore Oil and Gas, 8(1): 14-20(in Chinese with English abstract).
      Wang, H. M., Yin, W. R., 1986. Gravity and Magnetic Anomaly and the Geological Tectonics of the East China Sea. Oil & Gas Geology, 7(4): 295-307(in Chinese with English abstract).
      Wang, K. D., Wang, J. P., Xu, G. Q., et al., 2000. The Discovery and Division of the Mesozoic Strata in the Southwest of Donghai Shelf Basin. Journal of Stratigraphy, 24(2): 129-131 (in Chinese with English abstract).
      Wei, X. D., Ding, W. W., Christeson, G. L., et al., 2021. Mesozoic Suture Zone in the East China Sea: Evidence from Wide⁃Angle Seismic Profiles. Tectonophysics, 820: 229116. https://doi.org/10.1016/j.tecto.2021.229116
      Wu, J. T., Wu, J., 2019. Izanagi⁃Pacific Ridge Subduction Revealed by a 56 to 46 Ma Magmatic Gap along the Northeast Asian Margin. Geology, 47(10): 953-957. https://doi.org/10.1130/g46778.1
      Wu, J., Lin, Y. A., Flament, N., et al., 2022. Northwest Pacific⁃Izanagi Plate Tectonics since Cretaceous Times from Western Pacific Mantle Structure. Earth and Planetary Science Letters, 583: 117445. https://doi.org/10.1016/j.epsl.2022.117445
      Wu, J., Suppe, J., Lu, R. Q., et al., 2016. Philippine Sea and East Asian Plate Tectonics since 52 Ma Constrained by New Subducted Slab Reconstruction Methods. Journal of Geophysical Research: Solid Earth, 121(6): 4670-4741. https://doi.org/10.1002/2016JB012923
      Xiang, H., Zhang, L., Zhou, H. W., et al., 2008. Zircon U⁃Pb Ages and Hf Isotopes of Basic⁃Ultrabasic Metamorphic Rocks in the Metamorphic Basement of Southwestern Zhejiang: The Response of Metamorphic Basement of Cathaysian Block to Indosinian Orogeny in South China. Science in China (Series D), 38(4): 401-413(in Chinese).
      Xie, X. J., Xiong, L. Q., Han, Y. K., et al., 2024. New Insights into Reservoirs Heterogeneous Genesis of Favorable Facies in Pinghu Formation, Xihu Depression. Earth Science, 49(4): 1400-1410(in Chinese with English abstract).
      Xu, C. H., Zhang, L., Shi, H. S., et al., 2017. Tracing an Early Jurassic Magmatic Arc from South to East China Seas. Tectonics, 36(3): 466-492. https://doi.org/10.1002/2016TC004446
      Xu, J. Y., Ben⁃Avraham, Z., Kelty, T., et al., 2014. Origin of Marginal Basins of the NW Pacific and Their Plate Tectonic Reconstructions. Earth⁃Science Reviews, 130: 154-196. https://doi.org/10.1016/j.earscirev.2013.10.002
      Yang, C. Q., Sun, J., Yang, Y. Q., et al., 2020. Key Factors Controlling Mesozoic Hydrocarbon Accumulation in the Southern East China Sea Basin. Marine and Petroleum Geology, 118: 104436. https://doi.org/10.1016/j.marpetgeo.2020.104436
      Yang, C. Q., Yang, C. S., Sun, J., et al., 2019. Mesozoic Evolution and Dynamics Transition in Southern Shelf Basin of the East China Sea. Journal of Jilin University (Earth Science Edition), 49(1): 139-153 (in Chinese with English abstract).
      Yang, C. S., Li, G., Yang, C. Q., et al., 2012. Temporal and Spatial Distribution of the Igneous Rocks in the East China Sea Shelf Basin and Its Adjacent Regions. Marine Geology & Quaternary Geology, 32(3): 125-133(in Chinese with English abstract).
      Yang, C. S., Yang, C. Q., Yang, Y. Q., et al., 2017. Characteristics of Mesozoic Strata in the East China Shelf Basin and Their Geotectonic Implications. Periodical of Ocean University of China, 47(11): 86-95 (in Chinese with English abstract).
      Yang, W. D., Cui, Z. K., Zhang, Y. B., 2010. Geology and Mineral Resources of the East China Sea. Ocean Press, Beijing (in Chinese).
      Yu, X. H., Li, S. L., Cao, B., et al., 2017. Oligocene Sequence Stratigraphic Framework and Depositional Response in the Xihu Sag, East China Sea Shelf Basin. Acta Sedimentologica Sinica, 35(2): 299-314 (in Chinese with English abstract).
      Yuan, W., Yang, Z. Y., Zhao, X. X., et al., 2018. Early Jurassic Granitoids from Deep Drill Holes in the East China Sea Basin: Implications for the Initiation of Palaeo⁃Pacific Tectono⁃Magmatic Cycle. International Geology Review, 60(7): 813-824. https://doi.org/10.1080/00206814.2017.1351312
      Zhang, C. C., Fang, C. G., Liu, T., et al., 2024. Research Progress on Flood-Triggered Hyperpycnal Flows in Sedimentary Basins. East China Geology, 45(1): 49-61(in Chinese with English abstract).
      Zhang, G. H., Zhang, J. P., 2015. A Discussion on the Tectonic Inversion and Its Genetic Mechanism in the East China Sea Shelf Basin. Earth Science Frontiers, 22(1): 260-270 (in Chinese with English abstract).
      Zhang, G. Q., Wang, Q. S., Yu, Y. P., et al., 2012. Stratigraphic Age and Subdivision of Volcanic Rocks in Eastern Zhejiang. Journal of Stratigraphy, 36(3): 641-652(in Chinese with English abstract).
      Zhang, J. P., Li, S. Z., Suo, Y. H., 2016. Formation, Tectonic Evolution and Dynamics of the East China Sea Shelf Basin. Geological Journal, 51(Suppl. 1): 162-175. https://doi.org/10.1002/gj.2808
      Zhang, Y. Z., Jiang, Y. M., Zou, W., et al., 2024. Lithostratigraphic Division and Correlation of the Paleogene in the East China Sea Basin. Journal of Stratigraphy, 48(4): 341-359(in Chinese with English abstract).
      Zhang, Y., Yao, Y. J., Li, X. J., et al., 2020. Tectonic Evolution and Resource⁃Environmental Effect of China Seas and Adjacent Areas under the Multisphere Geodynamic System of the East Asia Ocean⁃Continent Convergent Belt since Mesozoic. Geology in China, 47(5): 1271-1309(in Chinese with English abstract).
      Zhao, J. H., 2004. The Forming Factors and Evolvement of the Mesozoic and Cenozoic Basin in the East China Sea. Offshore Oil, 24(4): 6-14(in Chinese with English abstract).
      Zhao, L., Guo, F., Zhang, X. B., et al., 2021. Cretaceous Crustal Melting Records of Tectonic Transition from Subduction to Slab Rollback of the Paleo⁃Pacific Plate in SE China. Lithos, 384-385: 105985. https://doi.org/10.1016/j.lithos.2021.105985
      Zhong, K., Wang, X. F., Zhang, T., et al., 2019. Distribution of Residual Mesozoic Basins and Their Exploration Potential in the Western Depression Zone of East China Sea Shelf Basin. Marine Geology & Quaternary Geology, 39(6): 41-51(in Chinese with English abstract).
      Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
      Zhou, Z. Y., Jia, J. Y., Li, J. B., et al., 2002. Quantitative Study on Inversion Structures in Xihu Depression, East China Sea: Constraints from Fission Track Analysis Data. Marine Geology & Quaternary Geology, 22(1): 63-67(in Chinese with English abstract).
      Zhu, W. L., Xu, X. H., Wang, B., et al., 2022. Late Mesozoic Continental Arc Migration in Southern China and Its Effects on the Evolution of Offshore Forearc Basins. Earth Science Frontiers, 29(6): 277-290 (in Chinese with English abstract).
      Zhu, W. L., Zhong, K., Fu, X. W., et al., 2019. The Formation and Evolution of the East China Sea Shelf Basin: A New View. Earth⁃Science Reviews, 190: 89-111. https://doi.org/10.1016/j.earscirev.2018.12.009
      Zhu, X., 1987. On the Evolution of Continental Margins of China. Marine Geology & Quaternary Geology, 7(3): 115-120 (in Chinese with English abstract).
      Zhu, Y. M., Li, Y., Zhou, J., et al., 2012. Geochemical Characteristics of Tertiary Coal⁃Bearing Source Rocks in Xihu Depression, East China Sea Basin. Marine and Petroleum Geology, 35(1): 154-165. https://doi.org/10.1016/j.marpetgeo.2012.01.005
      陈春峰, 朱伟林, 付晓伟, 等, 2017. 东海椒江凹陷晚古新世物源变化. 同济大学学报(自然科学版), 45(10): 1522-1530, 1548.
      陈哲, 张昌民, 侯国伟, 等, 2020. 东海陆架盆地西湖凹陷平湖组断层组合样式及其控砂机制. 石油与天然气地质, 41(4): 824-837.
      冯晓杰, 蔡东升, 2006. 东海陆架盆地中新生代构造演化对烃源岩分布的控制作用. 中国海上油气, 18(6): 372-375.
      冯晓杰, 蔡东升, 王春修, 等, 2003. 东海陆架盆地中新生代构造演化特征. 中国海上油气地质, 15(1): 33-371.
      付晓伟, 朱伟林, 陈春峰, 等, 2015. 丽水—椒江凹陷西斜坡明月峰组上段碎屑锆石物源. 地球科学, 40(12): 1987-2001. doi: 10.3799/dqkx.2015.178
      高天钧, 黄辉, 林知勋, 1991. 中国东南沿海两条重要的地体边界. 福建地质, 10(1): 1-15.
      郭真, 刘池洋, 田建锋, 2015. 东海盆地西湖凹陷反转构造特征及其形成的动力环境. 地学前缘, 22(3): 59-67.
      郝天珧, 徐亚, 胥颐, 等, 2006. 对黄海—东海研究区深部结构的一些新认识. 地球物理学报, 49(2): 458-468.
      侯方辉, 张训华, 李刚, 等, 2015. 从被动陆缘到主动陆缘: 东海陆架盆地中生代构造体制转换的盆地记录. 石油地球物理勘探, 50(5): 980-990, 807.
      江为为, 宋海斌, 郝天珧, 等, 2001. 东海陆架盆地及其周边海域地质、地球物理场特征. 地球物理学进展, 16(2): 18-27.
      姜月华, 周权平, 倪化勇, 等, 2023. 长江经济带环境地质调查研究进展. 华东地质, 44(3): 239-261.
      蒋一鸣, 何新建, 张绍亮, 2016. 东海陆架盆地"反转-改造"构造迁移演化特征: 以西湖凹陷边缘构造为例. 长江大学学报(自科版), 13(26): 1-8.
      蒋一鸣, 吴路路, 覃军, 等, 2024. 东海盆地丽水凹陷T85构造变革界面的厘定及其成因模式探讨. 地球科学, 49(12): 4450-4464. doi: 10.3799/dqkx.2024.084
      李家彪, 丁巍伟, 吴自银, 等, 2017. 东海的来历. 中国科学: 地球科学, 47(4): 406-411.
      李培廉, 朱平, 1992. 试论东海陆架盆地的基底构造演化和盆地形成机制. 海洋地质与第四纪地质, 12(3): 37-43.
      李三忠, 索艳慧, 李玺瑶, 等, 2018. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应. 科学通报, 63(16): 1550-1593.
      刘建华, 吴健生, 方银霞, 等, 2007. 东海陆架盆地的前新生界. 海洋学报, 29(1): 66-75.
      刘金水, 许怀智, 蒋一鸣, 等, 2020. 东海盆地中、新生代盆架结构与构造演化. 地质学报, 94(3): 675-691.
      任建业, 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330
      田兵, 李小燕, 庞国印, 等, 2012. 叠合断陷盆地沉积体系分析: 以东海丽水—椒江凹陷为例. 沉积学报, 30(4): 696-705.
      陶瑞明, 1994. 从西太平洋板块构造探讨东海陆架盆地形成机制和类型划分. 中国海上油气, 8(1): 14-20.
      王和明, 尹文荣, 1986. 东海重力磁力异常与地质构造. 石油与天然气地质, 7(4): 295-307.
      王可德, 王建平, 徐国庆, 等, 2000. 东海陆架盆地西南部中生代地层的发现. 地层学杂志, 24(2): 129-131.
      向华, 张利, 周汉文, 等, 2008. 浙西南变质基底基性-超基性变质岩锆石U⁃Pb年龄、Hf同位素研究: 华夏地块变质基底对华南印支期造山的响应. 中国科学(D辑), 38(4): 401-413.
      谢晓军, 熊连桥, 韩雅坤, 等, 2024. 西湖凹陷平湖斜坡有利相带内储层非均质性成因新认识. 地球科学, 49(4): 1400-1410. doi: 10.3799/dqkx.2022.246
      杨传胜, 李刚, 杨长清, 等, 2012. 东海陆架盆地及其邻域岩浆岩时空分布特征. 海洋地质与第四纪地质, 32(3): 125-133
      杨传胜, 杨长清, 杨艳秋, 等, 2017. 东海陆架盆地中生界残留分布特征及其大地构造意义. 中国海洋大学学报(自然科学版), 47(11): 86-95.
      杨文达, 崔征科, 张异彪, 2010. 东海地质与矿产. 北京: 海洋出版社.
      杨长清, 杨传胜, 孙晶, 等, 2019. 东海陆架盆地南部中生代演化与动力学转换过程. 吉林大学学报(地球科学版), 49(1): 139-153.
      于兴河, 李顺利, 曹冰, 等, 2017. 西湖凹陷渐新世层序地层格架与沉积充填响应. 沉积学报, 35(2): 299-314.
      张国华, 张建培, 2015. 东海陆架盆地构造反转特征及成因机制探讨. 地学前缘, 22(1): 260-270.
      张国全, 王勤生, 俞跃平, 等, 2012. 浙江东部火山岩地区的地层时代和划分. 地层学杂志, 36(3): 641-652.
      张迎朝, 蒋一鸣, 邹玮, 等, 2024. 东海盆地古近系地层划分与对比. 地层学杂志, 48(4): 341-359.
      张勇, 姚永坚, 李学杰, 等, 2020. 中生代以来东亚洋陆汇聚带多圈层动力下的中国海及邻区构造演化及资源环境效应. 中国地质, 47(5): 1271-1309.
      章诚诚, 方朝刚, 刘桃, 等, 2024. 沉积盆地洪水异重流研究进展. 华东地质, 45(1): 49-61.
      赵金海, 2004. 东海中、新生代盆地成因机制和演化(上). 海洋石油, 24(4): 6-14.
      钟锴, 王雪峰, 张田, 等, 2019. 东海陆架盆地西部坳陷带中生界残留盆地分布特征与勘探潜力. 海洋地质与第四纪地质, 39(6): 41-51.
      周祖翼, 贾健谊, 李家彪, 等, 2002. 东海西湖凹陷反转构造定量研究: 来自裂变径迹分析数据的约束. 海洋地质与第四纪地质, 22(1): 63-67.
      朱伟林, 徐旭辉, 王斌, 等, 2022. 华南晚中生代陆弧迁移与海域盆地演化. 地学前缘, 29(6): 277-290.
      朱夏, 1987. 关于中国大陆边缘构造演化. 海洋地质与第四纪地质, 7(3): 115-120.
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  13
    • HTML全文浏览量:  17
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-04-17
    • 网络出版日期:  2026-01-12
    • 刊出日期:  2025-12-25

    目录

      /

      返回文章
      返回